Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào trong các phát biểu sau là đúng? A Nếu h[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm x−3 bằng? x+3 B +∞ Câu [1] Tính lim x→3 A C D −∞ 1−n Câu [1] Tính lim bằng? 2n + 1 A − B C D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) − g(x)] = a − b x→+∞ B lim [ f (x)g(x)] = ab x→+∞ x→+∞ f (x) a = C lim x→+∞ g(x) b D lim [ f (x) + g(x)] = a + b x→+∞ 4x + bằng? x→−∞ x + B Câu [1] Tính lim A −4 Câu !Dãy số sau có giới !n hạn 0? n A B 3 C −1 D !n C e !n D − C D !n C un = D un = C −∞ D C −1 D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Dãy số! có giới hạn 0? n −2 A un = B un = n2 − 4n 2n − + 3n + A B +∞ 2−n Câu 10 Giá trị giới hạn lim n+1 A B Câu Tính lim 2n2 n3 − 3n n+1 Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C 2020 D log2 2020 Câu 12 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D √ Câu 13 [12215d] Tìm m để phương trình x+ 3 A < m ≤ B ≤ m ≤ 4 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ − 4.2 x+ 1−x2 Trang 1/5 Mã đề log(mx) = có nghiệm thực log(x + 1) A m < ∨ m = B m < ∨ m > C m ≤ D m < − xy Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 − 19 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 14 [1226d] Tìm tham số thực m để phương trình Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 ;3 B 2; C [3; 4) D (1; 2) A 2 √ ab Câu 18 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D √ Câu 19 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C Vô số D 62 Câu 20 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 21 Dãy số sau có giới hạn 0? n2 − − 2n A un = B un = 5n − 3n 5n + n2 C un = 12 + 22 + · · · + n2 Câu 22 [3-1133d] Tính lim n3 A B n2 + n + (n + 1)2 D un = n2 − 3n n2 ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 24 Tính lim A 2n2 − 3n6 + n4 B Câu 25 Phát biểu sau sai? A lim un = c (Với un = c số) C lim k = với k > n 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C +∞ D C D B lim qn = với |q| > 1 D lim √ = n ! C D Trang 2/5 Mã đề Câu 27 Tính lim n+3 A Câu 28 A Câu 29 A B C ! 1 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C B 2 n−1 Tính lim n +2 B C D D +∞ D Câu 30 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un = −∞ B Nếu lim un = a < lim = > với n lim C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C a D A 2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ a b2 + c2 b a2 + c2 c a2 + b2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B C 2a D a A a Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC Trang 3/5 Mã đề ab 1 C √ D √ √ a2 + b2 a2 + b2 a2 + b2 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A C B a D d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 A a2 ab + b2 B Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Cả hai sai Câu 42 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K B f (x) xác định K D f (x) có giá trị nhỏ K D Chỉ có (II) Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) C dx = log |u(x)| + C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) Câu 46 Z Các khẳng định Z sau sai? k f (x)dx = k A Z C Z !0 f (x)dx, k số B f (x)dx = f (x) Z Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Trang 4/5 Mã đề Câu 47 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 48 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Chỉ có (II) D Cả hai câu Câu 49 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z D f (x)dx = f (x) f (x)dx = F(x) + C Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A D C 10 11 A 12 15 A 16 17 A 18 19 D B 22 23 B 24 25 B 26 27 B 28 A C 31 B C D C D 30 A D 32 B 34 B 35 A 37 D 39 B 20 A 21 33 C 14 A B 29 B A A 13 C 36 C 38 C 40 C D B 41 D 42 A 43 D 44 45 D 46 D 48 D 47 B 49 A 50 C B ... mệnh đề D (I) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A D C 10 11 A 12 15 A 16 17 A 18 19 D B 22 23 B 24 25 B 26 27 B 28... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III)... Trang 2/5 Mã đề Câu 27 Tính lim n+3 A Câu 28 A Câu 29 A B C ! 1 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C B 2 n−1 Tính lim n +2 B C D D +∞ D Câu 30 Trong mệnh đề đây, mệnh đề ! sai? un