1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (262)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,89 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 0 B 2 C 1 D 3 Câu 2 Ph[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n + Câu Tìm giới hạn lim n+1 A B C Câu Phát biểu sau sai? A lim k = n C lim un = c (un = c số) D = n n D lim q = (|q| > 1) B lim Câu Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ x+1 Câu Tính lim x→−∞ 6x − 1 A B 2 x − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 x3 − Câu Tính lim x→1 x − A B −∞ C D C D C D C +∞ D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B − sin 2x C −1 + sin 2x x −9 Câu Tính lim x→3 x − A −3 B +∞ C x−2 Câu Tính lim x→+∞ x + A B −3 C √ x2 + 3x + Câu 10 Tính giới hạn lim x→−∞ 4x − 1 A B C √ √ D + sin 2x D D − D − Câu 11 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B < m ≤ C ≤ m ≤ D m ≥ 4 Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C Vô số D 63 − xy Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 11 − 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 2 Trang 1/5 Mã đề Câu 15 [12214d] Với giá trị m phương trình B < m ≤ A ≤ m ≤ 3|x−2| = m − có nghiệm C ≤ m ≤ D < m ≤ Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = ey − C xy0 = −ey + D xy0 = −ey − log(mx) = có nghiệm thực log(x + 1) C m < D m < ∨ m = Câu 18 [1226d] Tìm tham số thực m để phương trình B m < ∨ m > A m ≤ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A 2; B [3; 4) C ;3 D (1; 2) 2 √ ab Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 B A 3 cos n + sin n Câu 22 Tính lim n2 + A −∞ B Câu 23 Dãy số sau có giới hạn khác 0? n+1 A √ B n n Câu 24 Tính lim A n−1 n2 + B C +∞ D C D +∞ C n D C sin n n D Câu 25 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ C Nếu lim un = a > lim = lim ! un D Nếu lim un = a < lim = > với n lim = −∞ + + ··· + n Mệnh đề sau đúng? n2 + A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 26 [3-1132d] Cho dãy số (un ) với un = Câu 27 Dãy số sau có giới hạn 0? n2 − 3n n2 − A un = B u = n n2 5n − 3n2 C un = n2 + n + (n + 1)2 D un = − 2n 5n + n2 Trang 2/5 Mã đề Câu 28 Phát biểu sau sai? A lim un = c (Với un = c số) = với k > nk ! 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) C lim A B B lim √ = n D lim qn = với |q| > C Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C D un D −∞ Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C D a 3 Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a D a A 2a B a C 0 0 Câu 33 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B a C D A 2 Câu 34 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a C D A a B 2 Câu 35 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a B C a D Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 4a C 3a D 2a [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 19 19 17 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) Trang 3/5 Mã đề 2a a 8a 5a B C D 9 9 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a D C Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên A hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Chỉ có (II) D Cả hai câu Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 43 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 46 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z D f (x)dx = f (x) Trang 4/5 Mã đề Câu 47 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A Z x Z xα+1 C 0dx = C, C số D xα dx = + C, C số α+1 Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 49 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai sai D Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A C B D C D C 10 D 11 A 12 13 A 14 B B 15 B 16 17 B 18 19 C B 22 23 B 24 C 27 D 29 31 C B B C 26 D 28 D 32 C B 34 A D 35 D 36 38 A 37 A 39 D 40 A 41 D 42 A 43 D 44 A 47 C 30 33 A 45 D 20 21 25 C C 46 A D 48 49 A 50 A C ... Cả hai sai D Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A C B D C D C 10 D 11 A 12 13 A 14 B B 15 B 16 17 B 18 19 C B 22 23... S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) Trang 3/5 Mã đề 2a a 8a 5a B C D 9... B n n Câu 24 Tính lim A n−1 n2 + B C +∞ D C D +∞ C n D C sin n n D Câu 25 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞

Ngày đăng: 10/03/2023, 21:24

w