1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (157)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,89 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 1 B 3 C 2 D 0 Câu 2 Tí[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tìm giới hạn lim A Câu Tính lim x→5 A 2n + n+1 B C D C −∞ D +∞ C +∞ D C D x2 − 12x + 35 25 − 5x B − x−3 bằng? x→3 x + A B −∞ x+1 Câu Tính lim x→+∞ 4x + A B 3 Câu [1] Tính lim Câu [1] Tính lim A − n2 bằng? 2n2 + B − 2n bằng? 3n + 1 A B − 3 4x + bằng? Câu [1] Tính lim x→−∞ x + A −1 B C D − C D Câu [1] Tính lim Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B −1 C −4 D C D C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu 10 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a C f (x) có giới hạn hữu hạn x → a x→a x→a D lim f (x) = f (a) x→a Câu 11 [12211d] Số nghiệm phương trình 12.3 + 3.15 x − x = 20 A Vô nghiệm B C x D Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Trang 1/5 Mã đề Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 B ;3 C (1; 2) D [3; 4) A 2; 2 √ ab Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = −ey − C xy0 = −ey + D xy0 = ey − Câu 15 [3-12217d] Cho hàm số y = ln A xy0 = ey + Câu 16 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 1 − ln 2x − ln 2x A y0 = B y0 = C y0 = 2x ln 10 2x ln 10 x ln 10 D y0 = − log 2x x3 Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 3) C (2; 4; 6) D (1; 3; 2) ! 3n + 2 + a − 4a = Tổng phần tử Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C −∞ D cos n + sin n Câu 23 Tính lim n2 + A B +∞ C D −∞ Câu 24 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề 12 + 22 + · · · + n2 Câu 26 [3-1133d] Tính lim n3 A B C 3 ! 1 + ··· + Câu 27 [3-1131d] Tính lim + 1+2 + + ··· + n A B C 2 7n − 2n + Câu 28 Tính lim 3n + 2n2 + A B - C 3 Câu 29 Tính lim n+3 A B C D +∞ D +∞ D D Câu 30 Dãy số sau có giới hạn 0? − 2n n2 − n2 + n + n2 − 3n B u = C u = D u = A un = n n n n2 5n + n2 5n − 3n2 (n + 1)2 Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a B A a C D 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a B C D A 3 √ Câu 33 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a a 38 3a 38 3a 58 A B C D 29 29 29 29 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C D 4a [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 19 19 17 0 0 Câu 37 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 Trang 3/5 Mã đề 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S BC) √ với mặt đáy S O = a √ √ a 57 a 57 2a 57 B C a 57 A D 17 19 19 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B a C D Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K B f (x) liên tục K C f (x) có giá trị lớn K D f (x) xác định K Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 43 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 44 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A Z x Z xα+1 + C, C số D 0dx = C, C số C xα dx = α+1 Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Cả hai câu D Chỉ có (II) Câu 46 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số Trang 4/5 Mã đề A Câu (I) sai B Câu (III) sai C Câu (II) sai D Khơng có câu sai Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Chỉ có (II) D Cả hai Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D Cả ba đáp án Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 50 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) +C ⇒ !0 f (x)dx = f (x) f (u)dx = F(u) +C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C D D B D B D 10 11 C 12 13 C 14 D 15 19 21 D C 20 C C 24 A 25 C 26 A B 29 D C 33 B 30 B D 36 A 37 A 41 28 34 C 38 39 D 32 A D 35 B 22 B 31 C 18 23 27 D 16 A C 17 D D B 40 B C 42 A 43 C 44 45 C 46 47 C 48 49 A 50 A C D B ... ⇒ f (t)dt = F(t) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C D D B D B D 10 11 C 12 13 C 14 D 15 19 21 D C 20 C C 24 A 25 C 26 A... = +∞ lim A +∞ B C −∞ D cos n + sin n Câu 23 Tính lim n2 + A B +∞ C D −∞ Câu 24 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim... có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 Trang 3/5 Mã đề 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a

Ngày đăng: 10/03/2023, 21:24

w