Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A −1 B 1 C 0[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A −1 B x+1 Câu Tính lim x→+∞ 4x + A B 3 − n2 Câu [1] Tính lim bằng? 2n + 1 B A − 2n Câu [1] Tính lim bằng? 3n + A B x − 12x + 35 Câu Tính lim x→5 25 − 5x A −∞ B − C D D C C D − 2 C − D C D +∞ Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B − sin 2x C −1 + sin 2x D −1 + sin x cos x x−2 Câu Tính lim x→+∞ x + A B − C D −3 Câu Phát biểu sau sai? A lim qn = (|q| > 1) B lim = n C lim k = D lim un = c (un = c số) n Câu Dãy số! có giới hạn 0? n n3 − 3n −2 B un = A un = n+1 C un = n − 4n !n D un = C D +∞ Câu 10 Giá trị lim (3x2 − 2x + 1) x→1 A B Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = x ln 10 2x ln 10 2x ln 10 x3 log(mx) Câu 13 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Trang 1/5 Mã đề 1 Câu 14 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ q Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 1] √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 ;3 C 2; D [3; 4) A (1; 2) B 2 √ Câu 17 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B Vô số C 62 D 63 √ √ Câu 18 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A m ≥ B < m ≤ C ≤ m ≤ D ≤ m ≤ 4 x Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 +3)−log2 (2020−21−x ) A log2 2020 B 2020 C log2 13 D 13 Trong khẳng định sau đây, khẳng định đúng? Câu 20 [3-12217d] Cho hàm số y = ln x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + Câu 21 Tính lim n+3 A B C D 2 Câu 22 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un D Nếu lim un = a > lim = lim = +∞ Câu 23 Dãy số sau có giới hạn 0? − 2n n2 − B u = A un = n 5n + n2 5n − 3n2 C un = n2 + n + (n + 1)2 D un = n2 − 3n n2 Câu 24 Dãy số sau có giới hạn khác 0? sin n n+1 A √ B C D n n n n + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = un Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D Câu 27 Trong khẳng định có khẳng định đúng? Trang 2/5 Mã đề (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 12 + 22 + · · · + n2 Câu 28 [3-1133d] Tính lim n3 A B +∞ ! 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D C D C D 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 ! D +∞ Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 a b2 + c2 b a2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S√BC) √ với mặt đáy S O = a √ a 57 2a 57 a 57 B C D a 57 A 17 19 19 0 0 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 34 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 4a D 3a A 2a B Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B C D a 2 Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C D a Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ A C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 38 3a 58 3a B C D A 29 29 29 29 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Khơng có câu D Câu (III) sai sai Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (I) D Chỉ có (II) Câu 43 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 44 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = x + C, C số α+1 Z Z dx = ln |x| + C, C số C 0dx = C, C số D x Câu 45 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R B Trang 4/5 Mã đề Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 48 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 49 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K Z D f (x)dx = f (x) Z C f (x)dx = F(x) + C ⇒ Z B Z f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 50 ! định sau sai? Z Các khẳng A f (x)g(x)dx = B f (t)dt = F(t) + C D Z Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D C C C C A A A 10 A 11 12 A C 13 A 15 14 A B 16 17 C 18 19 C 20 A D B C 22 D 23 A 24 D 25 A 26 D 28 D 21 C 27 29 A 30 A 31 B 32 B 33 B 34 B 35 C 37 A 39 D 41 43 36 D 38 D 40 C 42 C B D 44 A 45 D 46 A 47 D 48 B 50 B 49 C ... (x)dx = k f (x)dx, k số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D C C C C A A A 10 A 11 12 A C 13 A 15 14 A B 16 17 C 18 19 C 20 A D... (a+ ) = f (a) F (b− ) = f (b) Câu 48 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx... − B xy = −e − C xy0 = −ey + D xy0 = ey + Câu 21 Tính lim n+3 A B C D 2 Câu 22 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞