1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (217)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,23 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→1 x3 − 1 x − 1 A −∞ B +∞ C 0 D 3 Câu 2 Dãy[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x3 − Câu Tính lim x→1 x − A −∞ B +∞ Câu Dãy số có giới hạn 0? ! n −2 n3 − 3n B un = A un = n+1 Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B − n2 Câu [1] Tính lim bằng? 2n + 1 A B 2n − Câu Tính lim 2n + 3n + A +∞ B x+2 Câu Tính lim bằng? x→2 x A B C D C un = n − 4n !n D un = C D C − D C −∞ D C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm x+1 Câu Tính lim x→−∞ 6x − 1 A B C D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) 2x + x→+∞ x + B −1 x→a x→b x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) Câu 10 Tính giới hạn lim A C D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 Trang 1/5 Mã đề Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m ≥ C m > D m < q Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 1] Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (1; 3; 2) C (2; 4; 3) D (2; 4; 6) √ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ Câu 18 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D log 2x Câu 19 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x B y0 = D y0 = A y0 = C y0 = 3 x ln 10 x 2x ln 10 2x3 ln 10 Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 n−1 Câu 22 Tính lim n +2 A B C D un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D 1 + + ··· + n Mệnh đề sau đúng? Câu 24 [3-1132d] Cho dãy số (un ) với un = n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = Câu 25 Dãy số sau có giới hạn 0? n2 + n + n2 − n2 − 3n − 2n A un = B u = C u = D un = n n 2 (n + 1) 5n − 3n n 5n + n2 Câu 17 [12215d] Tìm m để phương trình x+ 3 B ≤ m ≤ A < m ≤ 4 1−x2 Câu 26 Dãy số sau có giới hạn khác 0? sin n A B n n Câu 27 Tính lim A −∞ cos n + sin n n2 + B − 4.2 x+ C 1−x2 n+1 n C +∞ D √ n D Trang 2/5 Mã đề 1 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) B A Câu 29 Phát biểu sau sai? A lim √ = n C lim qn = với |q| > ! C D B lim un = c (Với un = c số) D lim = với k > nk Câu 30 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = −∞ = a < lim = > với n lim ! un = a > lim = lim = +∞ ! un = = a , lim = ±∞ lim = +∞ lim = a > lim(un ) = +∞ Câu 31 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a C a B D a Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a C D B A a 6 d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C 4a D Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ √ (A C D) √ a a 2a A B C D a 2 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A C B a 57 D 19 17 19 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 13 26 Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 38 a 38 3a 58 B C D A 29 29 29 29 Câu 41 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R B Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z D f (x)dx = f (x) Câu 44 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C dx = ln |x| + C, C số x Câu 45 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K B Z D 0dx = C, C số xα dx = xα+1 + C, C số α+1 B f (x) xác định K D f (x) có giá trị nhỏ K Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] Trang 4/5 Mã đề (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai sai D Cả hai Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 49 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 50 ! định sau sai? Z Các khẳng A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Z B Z D f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C D C C B A B 10 A D 11 B C 12 13 B 14 15 B 16 D 17 B 18 D 19 A 21 B 20 22 B 23 A C B 24 C 25 D 26 C 27 D 28 C 29 C 30 31 C 32 C 34 C 33 D 35 D 36 C D 37 B 38 39 A B 40 A 41 C 42 43 C 44 D 45 C 46 D 47 49 B B 48 A C 50 B ... Z f (t)dt = F(t) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C D C C B A B 10 A D 11 B C 12 13 B 14 15 B 16 D 17 B 18 D 19 A 21 B... g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 49 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx... Mã đề 1 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) B A Câu 29 Phát biểu sau sai? A lim √ = n C lim qn = với |q| > ! C D B lim un = c (Với un = c số) D lim = với k > nk Câu 30 Trong mệnh đề

Ngày đăng: 10/03/2023, 21:23

w