1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (74)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,89 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) 2n − + 3n + A B −∞ 2−n Câu Giá trị giới hạn lim n+1 A −1 B x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B +∞ 2n + Câu Tính giới hạn lim 3n + A B √ √ 4n2 + − n + Câu Tính lim 2n − A B +∞ Câu Tính lim 2n2 x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) C +∞ D C D C D C D C D C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 Câu !Dãy số sau có giới !n hạn 0? n A B 3 x+1 x→+∞ 4x + B !n C − !n D e Câu 10 Tính lim 1 D √ Câu 11 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 62 D 64 q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [−1; 0] A C Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e − C xy0 = −ey + D xy0 = ey + Câu 13 [3-12217d] Cho hàm số y = ln A xy0 = −ey − Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m > D m ≤ log 2x Câu 15 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x 0 A y0 = B y = C y = D y = x3 2x3 ln 10 x3 ln 10 2x3 ln 10 Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m < ∨ m > C m < D m ≤ √ Câu 18 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 1−x2 √ − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 − 4.2 x+ 1−x2 Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 ;3 A [3; 4) B (1; 2) C 2; D 2 √ ab Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 Câu 21 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a > lim = lim = +∞ ! un = a , lim = ±∞ lim = 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + A - B 3 cos n + sin n Câu 24 Tính lim n2 + A B −∞ C D C D +∞ Trang 2/5 Mã đề Câu 25 Phát biểu sau sai? A lim qn = với |q| > 1 C lim √ = n = với k > nk D lim un = c (Với un = c số) B lim n−1 Câu 26 Tính lim n +2 A B C ! 1 + ··· + Câu 27 [3-1131d] Tính lim + 1+2 + + ··· + n A B C 2 D D +∞ ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D un Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C D +∞ + + ··· + n Câu 30 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C B 2a D a A 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C 3a D d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 A B C D a 57 19 19 17 0 0 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ b a2 + c2 c a2 + b2 a b2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a C D B Câu 41 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R A Nếu f (x)dx = Câu 42 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai C Câu (II) sai D Câu (III) sai sai Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai Câu 44 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K C Cả hai câu D Chỉ có (II) B f (x) liên tục K D f (x) có giá trị nhỏ K Trang 4/5 Mã đề Câu 45 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 46 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Cả hai sai D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A C D B 11 13 D A A C B 10 D 12 D 14 A C 15 B 16 A 17 A 18 C 19 D 20 21 D 22 C 23 A 24 C 25 A 26 27 A 28 A 29 C C D 34 D D D 36 37 D 38 A 39 D 40 41 D 42 A 44 C 45 A C B 46 A 47 49 C 32 35 43 D 30 31 A 33 D D 48 50 B B D ... hai sai D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A C D B 11 13 D A A C B 10 D 12 D 14 A C 15 B 16 A 17 A 18 C 19 D 20... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III)... với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim

Ngày đăng: 10/03/2023, 21:17

w