Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A 5 B 0 C −1 D[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B C −1 D C +∞ D C D C D Câu Tính lim x→1 A −∞ x −1 x−1 B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −1 B −4 2n + Câu Tính giới hạn lim 3n + A B Câu Dãy số có giới hạn 0? ! n n3 − 3n −2 A un = B un = n+1 C un = n − 4n !n D un = Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = A lim x→+∞ g(x) b C lim [ f (x)g(x)] = ab B lim [ f (x) − g(x)] = a − b x→+∞ D lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ Câu Giá trị lim(2x2 − 3x + 1) x→1 A B Câu !Dãy số sau có giới !hạn 0? n n 5 A B − 3 2−n n+1 A B 2n + Câu 10 Tìm giới hạn lim n+1 A B C D +∞ !n C !n D e C −1 D C D Câu Giá trị giới hạn lim Câu 11 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D log 2x x2 1 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 2x ln 10 x x ln 10 − xy Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 − 11 + 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 12 [1229d] Đạo hàm hàm số y = Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [−1; 0] q x+ log23 x + 1+4m−1 = D m ∈ [0; 1] Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < √ Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 B ;3 C (1; 2) D [3; 4) A 2; 2 Câu 19 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 13 D 2020 ! 3n + 2 + a − 4a = Tổng phần tử Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D ! 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ 12 + 22 + · · · + n2 Câu 24 [3-1133d] Tính lim n3 A +∞ B C D 3 n−1 Câu 25 Tính lim n +2 A B C D Câu 26 Dãy số sau có giới hạn 0? − 2n n2 − 3n A un = B u = n 5n + n2 n2 Câu 27 Tính lim n+3 A B C un = C n2 + n + (n + 1)2 D un = n2 − 5n − 3n2 D Trang 2/5 Mã đề Câu 28 Tính lim A 2n2 − 3n6 + n4 B 1 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D C D ! Câu 30 Phát biểu sau sai? A lim un = c (Với un = c số) C lim qn = với |q| > 1 = với k > nk D lim √ = n B lim Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 38 a 38 3a 58 B C D A 29 29 29 29 Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a A B C D 9 9 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 0 0 Câu 35.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A 2 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B C a D a d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 17 19 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 41 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z f (x)dx = g0 (x)dx C Nếu f (x) = g(x) + 1, ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 43 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 44 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Cả hai sai C Chỉ có (II) D Chỉ có (I) Câu 46 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A x Z Z xα+1 α C x dx = + C, C số D 0dx = C, C số α+1 Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D Trang 4/5 Mã đề (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Khơng có câu D Câu (III) sai sai Câu 48 Z Các khẳng định Z sau sai? Z !0 f (x)dx = f (x) f (x)dx, k số B Z Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C k f (x)dx = k A C Z Câu 49 !0 sau sai? Z Mệnh đề f (x)dx = f (x) A B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (II) (III) C Cả ba mệnh đề D (I) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C C B C C 12 13 B 14 15 B 16 A 18 17 A 22 B C B B 24 25 C 26 A 27 C 28 29 C 30 31 C 32 A B C C 36 37 C 38 A 39 B 40 41 B 42 A 43 B 44 A 45 C 46 47 C 48 50 A D C C D C 34 35 49 D 20 A B 21 A 33 C 10 A 11 A 23 B A 19 D B C D ... mệnh đề D (I) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C C B C C 12 13 B 14 15 B 16 A 18 17 A 22 B C B B 24 25 C 26 A 27 C 28... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (II) (III) C Cả ba mệnh đề D (I) (III)... √ √ a a a A B C D a 6 Câu 41 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx