1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (192)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,54 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào sau đây là sai? A lim 1 n = 0 B lim 1 nk[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Phát biểu sau sai? A lim = n C lim qn = (|q| > 1) B lim Câu !Dãy số sau có giới !n hạn 0? n A B e !n C − !n D C D C D !n C un = D un = n2 − 4n C D C D C D C D Câu Tìm giới hạn lim A = nk D lim un = c (un = c số) 2n + n+1 B Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Dãy số! có giới hạn 0? n −2 n3 − 3n A un = B un = n+1 − 2n Câu [1] Tính lim bằng? 3n + 1 A B − 3 2−n Câu Giá trị giới hạn lim n+1 A −1 B √ √ 4n2 + − n + Câu Tính lim 2n − 3 B +∞ A x+1 Câu Tính lim x→−∞ 6x − 1 A B x+2 Câu 10 Tính lim bằng? x→2 x A B C √ D √ Câu 11 [12215d] Tìm m để phương trình x+ − 4.2 x+ − 3m + = có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D m ≥ 4 log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x 0 A y0 = B y = C y = D y = x3 x3 ln 10 2x3 ln 10 2x3 ln 10 log(mx) = có nghiệm thực Câu 13 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m < C m ≤ D m < ∨ m > 1−x2 1−x2 Trang 1/5 Mã đề √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 64 D 63 Câu 15 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 16 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m > C m ≥ D m ≤ 4 4 Trong khẳng định sau đây, khẳng định đúng? Câu 17 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e − B xy = −e + C xy0 = ey − D xy0 = ey + Câu 18 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vơ số D Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m < D m ≤ − xy Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 11 − 18 11 − 29 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 cos n + sin n Câu 21 Tính lim n2 + A +∞ B C −∞ D + + ··· + n Mệnh đề sau đúng? Câu 22 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 23 Tính lim n+3 A B C D 2 + + ··· + n Câu 24 [3-1133d] Tính lim n3 A B C D +∞ 3 ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 2n2 − Câu 26 Tính lim 3n + n4 A B C D Câu 27 Dãy số sau có giới hạn khác 0? sin n 1 n+1 A B C √ D n n n n Trang 2/5 Mã đề ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 2 7n − 2n + Câu 29 Tính lim 3n + 2n2 + B - C D A 3 un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C D +∞ 3a , hình chiếu vng Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a B 2a D a C A Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a C a B D d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B C 2a D 4a Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a B A a C D Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 0 0 Câu 38.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a C D Trang 3/5 Mã đề √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 58 3a A B C D 29 29 29 29 Câu 41 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx B Z D ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z f (x)g(x)dx = f (x)dx g(x)dx Câu 42 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề Câu 44 Z Các khẳng định Z sau sai? k f (x)dx = k A Z C Z D (II) (III) !0 f (x)dx, k số B f (x)dx = f (x) Z Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Câu 46 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số Trang 4/5 Mã đề A Câu (II) sai B Khơng có câu C Câu (III) sai D Câu (I) sai sai Câu 47 Z Trong khẳng định sau, khẳng định sai? Z A dx = x + C, C số B 0dx = C, C số Z Z xα+1 C dx = ln |x| + C, C số D xα dx = + C, C số x α+1 Câu 48 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z D f (x)dx = f (x) f (x)dx = F(x) + C Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C A B A B A A C 10 A 11 12 C B 13 A 14 A 15 A 16 D 18 D C 17 19 B 20 B 21 D 22 C 23 D 24 C 25 D 26 A 27 D 28 A 29 B 30 31 D 33 32 A 34 C 35 B 36 37 B 38 39 C 41 D B D 40 D C 42 A 44 43 A 45 C B 46 B B 47 D 48 49 D 50 D D ... (a) F (b− ) = f (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C A B A B A A C 10 A 11 12 C B 13 A 14 A 15 A 16 D 18 D C 17 19 B 20... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề Câu 44 Z... phẳng (S BD) √ √ √ 3a 38 a 38 3a 58 3a A B C D 29 29 29 29 Câu 41 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x)

Ngày đăng: 10/03/2023, 21:09

w