Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 2 B 1 C −1 D 1 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2x + x→+∞ x + A B C −1 √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B C − A 4 2 Câu Cho f (x) = sin x − cos x − x Khi f (x) A −1 + sin x cos x B + sin 2x C −1 + sin 2x 1−n Câu [1] Tính lim bằng? 2n + 1 A B C − x+1 Câu Tính lim x→−∞ 6x − 1 A B C x−3 bằng? Câu [1] Tính lim x→3 x + A −∞ B +∞ C 4x + Câu [1] Tính lim bằng? x→−∞ x + A −1 B C x+1 Câu Tính lim x→+∞ 4x + 1 A B C 3 x −1 Câu Tính lim x→1 x − A B C +∞ Câu Tính giới hạn lim D D D − sin 2x D D D D −4 D D −∞ Câu 10 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) + g(x)] = a + b B lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ f (x) a C lim [ f (x)g(x)] = ab D lim = x→+∞ x→+∞ g(x) b Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D √ Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A [3; 4) B (1; 2) C 2; D ;3 2 Câu 13 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m < D m > 4 4 Trang 1/5 Mã đề 1 Câu 14 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 log(mx) Câu 16 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m < C m ≤ D m < ∨ m > q Câu 17 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 1] D m ∈ [0; 4] − xy Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ √ √ √ y 11 − 19 11 + 19 11 − 18 11 − 29 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m ≥ D m < Câu 15 [12215d] Tìm m để phương trình x+ A < m ≤ B m ≥ 1−x2 − 4.2 x+ 1−x2 Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 6) C (1; 3; 2) D (2; 4; 4) Câu 21 Tính lim n+3 A B C D ! 1 + + ··· + Câu 22 Tính lim 1.2 2.3 n(n + 1) A B C D + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 3 7n − 2n + Câu 25 Tính lim 3n + 2n2 + A B C D - 3 Câu 26 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A Câu 27 Tính lim A B n−1 n2 + C B C 1 + + ··· + n n3 B 2 D D Câu 28 [3-1133d] Tính lim A +∞ C 2n2 − Câu 29 Tính lim 3n + n4 A B C ! 1 + ··· + Câu 30 [3-1131d] Tính lim + 1+2 + + ··· + n A B +∞ C 2 D D D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S BC) √ √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C a 57 D A 19 17 19 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 a b2 + c2 abc b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 35 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B C 3a D 2a Trang 3/5 Mã đề 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ √ với mặt đáy S O = a Khoảng cách từ A đến (S √ a 57 a 57 2a 57 B a 57 C D A 19 17 19 Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ √ (A C D) √ a a 2a B C D a A 2 Câu 41 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 43 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R B Câu 44 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C dx = ln |x| + C, C số x B Z D xα dx = xα+1 + C, C số α+1 0dx = C, C số Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Trang 4/5 Mã đề Câu 46 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 48 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (II) D Chỉ có (I) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai sai Câu 50 Xét hai khẳng đinh sau C Câu (II) sai D Câu (I) sai (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Cả hai sai C Chỉ có (I) D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C B 13 B D D C C B 10 D 12 D 16 A D 18 B 19 14 A B 15 17 C C 11 C 20 21 A 22 C C 23 D 24 25 D 26 27 A B B 28 29 30 C 31 C D 32 D B 33 A 34 D 35 A 36 D 37 38 B 39 A B 40 C 41 C 42 A 43 C 44 B 45 A 46 B 47 A 48 A 49 A 50 D ... có (I) D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C B 13 B D D C C B 10 D 12 D 16 A D 18 B 19 14 A B 15 17 C C 11 C 20... (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Trang 4/5 Mã đề Câu 46 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb)... b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 35 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39