Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A −∞ B 0 C +∞ D 1 Câ[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n − Câu Tính lim 2n + 3n + A −∞ B x−3 Câu [1] Tính lim bằng? x→3 x + A B +∞ x2 − 12x + 35 Câu Tính lim x→5 25 − 5x 2 A B − 5 Câu Phát biểu sau sai? A lim k = n C lim = n x+2 Câu Tính lim bằng? x→2 x A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B −1 C +∞ D C D −∞ C −∞ D +∞ B lim un = c (un = c số) D lim qn = (|q| > 1) C D C D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) Câu Tính lim x→+∞ x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) x−2 x+3 C − D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? A −3 B x→+∞ x→+∞ A lim [ f (x)g(x)] = ab x→+∞ f (x) a C lim = x→+∞ g(x) b B lim [ f (x) + g(x)] = a + b x→+∞ D lim [ f (x) − g(x)] = a − b x→+∞ 2x + x+1 B Câu 10 Tính giới hạn lim x→+∞ Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 3) C (1; 3; 2) D (2; 4; 4) q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 2] C m ∈ [0; 4] D m ∈ [−1; 0] A −1 C D Trang 1/5 Mã đề Câu 13 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m < C m > D m ≤ 4 4 x x Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực x≥1 A m > B m < C m ≤ D m ≥ Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 13 D log2 2020 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e + C xy0 = −ey − D xy0 = ey − Câu 17 [3-12217d] Cho hàm số y = ln A xy0 = ey + √ Câu 18 [12215d] Tìm m để phương trình x+ 3 B < m ≤ A ≤ m ≤ 4 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ − 4.2 x+ 1−x2 Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A 2; B (1; 2) C [3; 4) D ;3 2 √ ab Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 21 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + n2 − − 2n A un = B u = C u = D u = n n n n2 (n + 1)2 5n − 3n2 5n + n2 Câu 22 Dãy số sau có giới hạn khác 0? sin n A √ B n n C n 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + A - B C cos n + sin n Câu 24 Tính lim n2 + A −∞ B C +∞ ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 D n+1 n D D D ! 3n + 2 + a − 4a = Tổng phần tử Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Trang 2/5 Mã đề 12 + 22 + · · · + n2 n3 A +∞ B ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) Câu 27 [3-1133d] Tính lim A Câu 29 Tính lim n+3 A C D B C D B C D Câu 30 Phát biểu sau sai? A lim qn = với |q| > 1 C lim k = với k > n B lim un = c (Với un = c số) D lim √ = n d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a D a B a C Câu 34 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B C a D a 2 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a C D Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a, S D = Trang 3/5 Mã đề √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 38 3a A B C D 29 29 29 29 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 3a D 2a A 4a B Câu 41 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 42 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (III) sai C Câu (II) sai D Khơng có câu sai Câu 43 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề Câu 45 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = xα+1 + C, C số α+1 B Z D D (II) (III) 0dx = C, C số dx = ln |x| + C, C số x Câu 46 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Trang 4/5 Mã đề Z C Nếu Z D Nếu f (x)dx = Z f (x)dx = Z g(x)dx f (x) , g(x), ∀x ∈ R g(x)dx f (x) = g(x), ∀x ∈ R Câu 47 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 48 Z Các khẳng định Z sau sai? k f (x)dx = k f (x)dx, k số ! Z C f (x)dx = f (x) A Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K Z B Z D f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C B f (x) xác định K D f (x) liên tục K Câu 50 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A A D C D C D 10 C 11 A C 12 D D 13 D 14 15 D 16 17 D 18 A 19 D 20 A 21 D 22 D 24 D 23 A 25 D 26 A C 27 28 A 29 A 30 A 31 A 32 33 D 36 A 37 41 B 34 B 35 A 39 C 38 C 40 B 42 C 43 D C B D 44 A 45 C 46 D 47 C 48 D 49 D 50 A ... f (x)dx, k ∈ R, k , - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A A D C D C D 10 C 11 A C 12 D D 13 D 14 15 D 16 17 D 18 A 19 D 20 A... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề Câu 45 Z... = F(u) +C B f (x) xác định K D f (x) liên tục K Câu 50 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx