Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào có giới hạn bằng 0? A un = n2 − 4n B un = ([.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy số có giới hạn 0?! n A un = n − 4n B un = !n −2 C un = D un = x3 − Câu Tính lim x→1 x − A +∞ C D D Câu A Câu A B −∞ √ x2 + 3x + Tính giới hạn lim x→−∞ 4x − 1 B − x−2 Tính lim x→+∞ x + B −3 C C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C −1 + sin 2x Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm 2n + Câu Tính giới hạn lim 3n + 2 A B C x+1 Câu Tính lim x→+∞ 4x + A B C 3 x+1 Câu Tính lim x→−∞ 6x − 1 B C A 2x + Câu 10 Tính giới hạn lim x→+∞ x + A −1 B C n3 − 3n n+1 D − D + sin 2x D D D D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 12 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 Trang 1/5 Mã đề Câu 13 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m > D m ≥ √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 √ Câu 15 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C 64 D Vơ số log(mx) = có nghiệm thực Câu 16 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m < C m ≤ D m < ∨ m > Câu 14 [12215d] Tìm m để phương trình x+ A m ≥ B < m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 19 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 21 Phát biểu sau sai? A lim qn = với |q| > C lim = với k > nk B lim √ = n D lim un = c (Với un = c số) + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = 1 C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 23 Dãy số sau có giới hạn khác 0? n+1 1 sin n A B C √ D n n n n Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un C Nếu lim un = a > lim = lim = +∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Trang 2/5 Mã đề 12 + 22 + · · · + n2 n3 B Câu 26 [3-1133d] Tính lim A +∞ C Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D un D +∞ Câu 28 Dãy số sau có giới hạn 0? n2 − n2 − 3n n2 + n + 1 − 2n B u = C u = D u = A un = n n n 5n + n2 5n − 3n2 n2 (n + 1)2 Câu 29 Tính lim n+3 A B C D ! 1 Câu 30 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 a 38 3a A B C D 29 29 29 29 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C 2a D A a [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a Khoảng cách từ O đến (S √ √ 2a 57 a 57 a 57 C A B a 57 D 19 17 19 Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a A B C D 9 9 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C a D d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Không có câu D Câu (III) sai sai Câu 42 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 43 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) C dx = log |u(x)| + C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 44 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu D Cả hai câu sai Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 46 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B Z C Z D f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 48 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A Z x Z xα+1 C xα dx = + C, C số D 0dx = C, C số α+1 Câu 49 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z f (x)g(x)dx = f (x)dx g(x)dx k f (x)dx = f B Z D f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D B C A C C 10 11 D 12 A 13 D 14 15 B 16 A 17 B 18 19 B 20 A C D C C C 21 A 22 C 23 A 24 C 26 C 25 27 C B C 29 31 28 A B 33 D 30 B 32 B 34 D 35 B 36 D 37 B 38 D 39 B 40 A 41 C 42 C 43 C 44 C 45 C 46 47 C 48 49 C 50 D C B ... trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D B C A C C 10 11 D 12 A 13 D 14 15 B 16 A 17 B 18 19 B 20 A C D C C... A0 ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √... (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 46 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) Z C