Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 771 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
771
Dung lượng
12,16 MB
Nội dung
EngineeringDataonMixing
by Reiji Mezaki, Masafumi Mochizuki, Kohei Ogawa
• ISBN: 0444828028
• Publisher: Elsevier Science & Technology Books
• Pub. Date: January 2000
Preface
This book is a compilation of the engineeringdataon mixing, which have appeared in the
major technical journals of chemical engineering and bioengineering since 1975. That year
marked the beginning of a period of rapid advancement in the science and technology of
mixing, with rather reliable results for both theoretical and experimental studies. In addition,
we have included some important earlier articles which have been and are still being referred
to.
Mixing is a basic technology important in a wide variety of
industries.
Many numbers of
tanks equipped with various types of
agitators
have been used for mixing all kinds of materials
since ancient times. Yet designs of both agitators and tanks still depend primarily on art and
experience. In the light of this fact we felt that the dataonmixing should be compiled and
presented in a systematic manner for assistance in design and analysis of agitated tanks , and
to provide easier access to mixing
data
for various engineering activities.
Of
course,
computer-
aided searches of pertinent data bases can be of assistance to chemical engineers and
bioengineers in their studies. However, computer surveys of
data
bases are sometimes time-
consuming
and
often costly. Furthermore inadequate selection of key words
can
jeopardize the
searches. In view of these objections, we offer this book in the hope that it will be useful to
those who desire to conduct an efficient and accurate survey of the mixingdata of interest to
them.
No attempts were made to verify the mixingdata given by the various investigators. We
have simply indicated the limitations of correlations and
data
when they are available. The use
of
uniform
units might have been appreciated
by
users of this
book.
However, we have elected
to use the original units as given by the various authors, lest errors be introduced in the
conversion process.
In Chapter 1 we present a variety of results for the experimental measurements of flow
patterns in stirred tanks. Most of the measurements were made by using modem Laser-
Doppler techniques. This chapter is useful for the prediction of flow patterns in tanks with
many different geometries, various types of agitators, and fluids of diverse physical and
rheological properties. Here can also be found valuable data for the validation of results
obtained by CFD simulations. Chapters 2 through 5 deal with data for traditional chemical
engineering subjects. In Chapter 6 we sununarize a number of scale-up relations developed
over the years for various systems. They include liquid, solid-liquid, liquid-liquid, gas-liquid,
and solid-liquid-gas systems. Chapter 7 provides data related to multiphase processes. We
wish to call attention to two sections:
Section 7.4.1
Drop
size
and
drop-size distributions
Section 7.4.2 Bubble size
and
bubble-size distributions
These two subjects have not been treated systematically either in text books or in handbooks
on stirred-tank mixing, although the results of both experimental and theoretical
investigations have been reported on many occasions. Chapter 8 deals with gas-inducing
mechanically agitated systems. The applications of this type of agitation system will become
increasingly attractive
from
the standpoint of rationahzation of stirred-tank operations as well
as environmental protection.
A review of
this
book will reveal many important research subjects that fall in the domain
of stirred-tank mixing. We examined over nine hundred technical articles published since
1950.
From this activity we could draw two important conclusions: (1) First, about
95%
of the
results reported in those articles were obtained by employing vessels whose diameters were
less than 0.5 m. In industry, vessels with appreciably greater diameters are in daily use, and
many more vessels will be designed and
fabricated
for future use. In view of
this
fact,
much of
the accumulated data and associated theory based on small- scale experiments will probably be
VI
inadequate for prediction of the performance of industrial-scale vessels. More data are
undoubtedly needed to narrow the gap originating from this mismatch of equipment sizes.
More specifically, advanced scale-up techniques, not rules, should be developed for precise
prediction. In this respect it would be of great help if industries were cooperative in furnishing
unsuccessful, as well as successful, examples of scale-up. (2) Secondly, there is a striking
shortage of mixingdata for systems in which highly viscous, non-Newtonian fluids are studied.
It may be true that conventional agitated tanks are not satisfactory for such fluids. However,
the authors of this book feel that many challenges still exist in this area.
In this book we have excluded from consideration two important subjects related to
mixing: reactions and crystallization in stirred tanks. Most of the articles treating those
subjects were found to place more emphasis on the development of rate expressions for the
reactions or crystallization. Here, we have aimed to compile data correlating process
parameters with agitated-tank geometry and the physical properties of the relevant fluids. For
this reason we feel that reactions and crystallization should be treated differently.
It should be noted that several important journals issued in Russia, in Eastern Europe,
and in the People's Republic of China were not considered in our search for mixing data. This
is mainly because of difficulties in obtaining the original journals as well as the English-
language versions. However, the authors sincerely hope that the pubhcation of this book will
encourage other interested persons to compile mixingdata published in the geographical
regions mentioned above. Perhaps in this way some collaborative efforts will result in a
substantially more complete compilation of engineeringmixing data.
It is inevitable that errors, omissions, and misunderstandings will arise in a work of this
type. The authors will be grateful if readers would take the time and trouble to point these out
to us.
The authors would like to thank Professor R. B. Bird of the University of Wisconsin, who
aided with advice and suggestions in reviewing and editing the title and preface to this book.
Acknowledgment is also made to the staff members of Shinzan Sha, in particular, to Mr. K.
Shinoe for his constructive advice during the preparation of the manuscript of this book, and
to Ms. H. Tomita for the preparation of the camera-ready manuscript. Without their efforts this
book could not have become a reality.
August, 1999
Reiji Mezaki
Masafumi Mochizuki
Kohei Ogawa
Table of Contents
Preface, Pages v-vi
Chapter 1 - Flow patterns, Pages 1-84
Chapter 2 - Mixing time, Pages 85-115
Chapter 3 - Power draw and consumption, Pages 117-238
Chapter 4 - Heat transfer, Pages 239-304
Chapter 5 - Mass Transfer, Pages 305-468
Chapter 6 - Scale-up rules, Pages 469-512
Chapter 7 - Other subjects related to multi-phase systems, Pages 513-731
Chapter 8 - Gas-inducing mechanically agitated systems, Pages 733-764
Author index, Pages 765-769
Chapter 1. Flow patterns
1.1 Single phase
Peters, D. C. and
Smith,
J.
M.,
Ttans.
Instn.
Chem.
Engrs.,
45, T360 (1967)
Fluid Flow in the Region of Anchor Agitator Blades
Experimental apparatus
Vessel
Type: flat-bottomed
Diameter: 12.08
in
Height: 18 in
Liquid contained
Height:
14
in
Impeller
Type: anchor
Width of agitator
blade:
1.0 in
Wall/blade
clearance:
runs2A 0.125 in runs2C 0.50 in
Working fluids and their physical properties
No.
1 lubricating oil
2 lubricating oil
3 glycerol
(3%
water)
4 silicone oil (MS200)
5 silicone oil (MS200)
6
1%
polyacrylamide (aq.)
7
2%
8
4%
Reynolds numbers were computed
Flow measurement technique
Photography
Results
Tank:
22.9 cm
diameter
Anchor:
19.5 cm
diameter,
2.5 cm
wide,
90
rev/min
Fluid:
Silicone
oils,
60
poise
and
180
poise
Velocity
components
perpendicular
to
radii,
along.
normal
to, and
at
30*^
to
agitator
blade
^ (poise)
1.5 - 2.5
6.8
-
10.4
5.6
-
9.75
125
- 131
290
~
318
n
0.7
0.46
-
0.54
0.30
- 0.38
p (g/cm^)
0.865
0.885
1.25
0.96
0.98
/j(gs"
Vcm)
p(g/cm^)
2.12
-
2.57
1.01
40.4
-
50.4
1.02
308-460
1.04
using temperature-corrected viscosity data.
1
'
1
' '
t-
t«-
-
t-
1
8
«
'
' ' LJ-' f
^^^-^^V^J
Hi))
^^^Sr/w/y
feCX^^^y^vy*!?^^^^
IS^^^^^r^'^^'
Velocity
profiles and
flow
patterns (Beckner, J.
L., Ph. D.
Thesis,
1965.
University of Wales)
Chapter
1.
Flow pattoms
\'
X
y
16 p.p.s. (some points at 8 p.p.s.)
NiRe)=21A, Run3-2C-10
25.4 p.p.s. (some points at 12.7 p.p.s.)
iV(i?«)=105.3, Run3-2C-30
33.4 p.p.s. and 63.4 p.p.s.
i\^(/?e)=143.4, Run3-2C-60
Flow patterns with glycerol
1.1 Single phas«
^"
•
. -^A*
• . 7
• '. •M-Ji'.i'V^ ••• y
/f •
r'' *
. >r;*, .
/
32.0p.p.s.
N*(Me)=l2.9, Run7-2C-40
64.0 p.p.s (some points at 32
p.p.s.)
iV*(/?^)=25.5, Run7-2C-80
'- -r - ^ *
/
64.0 p.p.s (some points at 32
p.p.s.)
N*(Jie)=3lA,
Run7-2C-100
Notation
a geometrical constant
c clearance between blades
and wall
D paddle diameter
DT
tank diameter
k usual power
law
characterization parameter
n usual power
law
characterization parameter
N rotational speed of stirrer
p density of fluid
/i viscosity of fluid
Note: Cxeneralized Reynolds numbers are based on a
power law (expression for the shear rate/shear stress
relationship as used by Beckner)
Flow patterns with
2%
aqueous polyacrylamide, 1 in.
blade, 0.5 in clearance
The normal Reynolds number:
NiHe)=N^Dpln
The Reynolds nimiber for power-law fluids:
N*{Re)=N^~''D^p/[k[a(\-n)Y'\
a=37-120
C/DT
Chapter
1.
Plow patterns
Cooper, R. C. and
Wolf,
D.,
Can.
J.
ofChem. Eng., 46,94 (1968)
Velocity Profiles and Pumping Capacities for Turbine Type Impellers
Experimental apparatus
Vessel
Type:
flat-bottomed
Diameter:
15
in
Height:
20
in
Baffle
Number: 4
Width:
IV2
in
Impeller
Type:
6
and
10
bladed turbines
Dimension:
Turbine
No.
1
2
3
4
5
6
7
8
9
10
11
12
Blade diameter
in.
3
4
5
6
9
9
4
4
4
4
4
4
Blade width
in.
0.6
0.8
1.0
1.2
1.8
3.6
0.6
1.0
1.2
1.4
1.6
0.8
Blade length
in.
0.75
1.0
1.25
1.5
2.25
2.25
1.0
1.0
1.0
1.0
1.0
1.0
No of Blades
6
6
6
6
6
6
6
6
6
6
6
10
Working fluids
Water and air
Flow measurement technique
Hot-wire anemometry
and
three-directional pressure measurement
1.1 Siiigl* phas«
Results
J
2
.4 .« .B LO
Normalized radial velocity profiles for various turbine
sizes
and
various rotational speeds in water.
Radial velocity profiles at different radial distances
(4-in.
turbine in water).
Notation
VR
radial velocity component
W turbine blade width
Z vertical distance
Chapter
1.
Flow patterns
Bourne,
J.
R.
and Butler, H.,
Trans.
Instn.
Chem.
Engrs.,
47,
Til (1969)
An
Analysis of the Flow Produced by Helical Ribbon Impellers
Experimental apparatus
Dimensions of vessels and impellers
Type:
flat-bottomed
Volume:
(1) 6 gals
(2)
160
gals
Geometry
The geometry of the helical
ribbon
mixer
Summery of principal dimensions
Impeller number
1
2
3
4
5
d
(in)
10.303
11.030
11.142
11.370
34.34
d
D
0.889
0.952
0.962
0.981
0.954
h
D
1.06
1.06
1.06
1.06
1.06
W
D
0.108
0.108
0.108
0.108
0.104
s
D
0.345
0.345
0.345
0.345
0.345
Zo
D
1.22
1.2L'
1.22
1.22
1.22
Working fluids and their physical properties
Pseudoplastic fluids:
aqueous solutions of
sodium
carboxy methyl cellulose
(CMC)
and hydroxypropyl methyl
cellulose (Celacol)
apparent viscosities 1 ~
500 poise
at concentrations
up
to
3
w/w%
and shear rates of 1 -
3001/s
[...]... (1979) IWo Dimensional Model Analysis of Flow Behavior of Highly Viscous Non-Newtonian Fluid in Agitated Vessel with Paddle Impeller Dimension of vessel and impeller 0.3 ^d/D< 0.9 Computational conditions 10 < Re {=^DVp/fi) Computational results d/D > 0.5 n «o.e Rcf 0 (p/>*.v) Non-Newtonian viscosity distribution for paddle of rf/2>=0.5 Notation Non-Newtonian viscosity distributions for different size... -Q05 -01 Q05 (a) V, component (b) lit component (a) Vr component (b) Vet component Distribution offlowvelocity expressed by threedimensional components (D=0.2m, it =6.88 s *) Distribution offlowvelocity expressed by threedimensional components (D=0.2 m, «=6.88 s *) 1.1 S i n g I * phas« 25 Cenler axis of vessel blade 0 a: [-{U k » \ V V _ -0.6 [ {:=: (c) Vt component Distribution offlowvelocity expressed... fluid consistency, k g / m (sec)^"** ^-^mv/DT I {(cDw+2)}.N J n flow behavior index J? radial coordinate, m Re Reynolds number, DVp/fi, dimensionless V rotational velocity of vessel wall, m / s e c Superscript p non-Newtonian viscosity, N s e c / m ^ — averaged value /Xar apparent viscosity, N s e c / m ^ Subscript ft* dimensionless non-Newtonian viscosity, fi/po, NN non-Newtonian fluid dimensionless... Visualization Experimental conditions Impeller rotational velocity: 82,104 and 106 rpm Results Notation B width of impeller blade, m D impeller diameter, m N impeller rotational speed, 1/min Sock surface !cl B/D»1/8 Front surface N*106rpm Visualization of flow on the surface of blade with oil film method 1.1 Single phase 21 Kuboi, R and Nienow, A W, Chem Eng Sci., 41,123 (1986) Intervortex Mixing Rates... Fluid: tap water and water/glycerin solutions Tracer: polystyrene particles (diameter 0.5 mm) Flow measurement technique Photography Experimental conditions Direction of Impeller speed: 5 rps Results rototion Schematic thee dimensional view of the trailing vortex pair Dirtetion Schematic two dimensional view of theflowin the stirrer blade region S, stagnation point Chapter 1 Flow patterns 14 , Blode... Working fluids Aqueous solutions of com syrup containing solid-particles as tracers Flow measurement technique Photography Experimental conditions Results i • : C«tcuUt«d : ExptrimtnUI Tangential velocity distributions (Be = 1) Notation d impeller diameter N rotational speed of impeller U, V velocity components VB tangential velocity of blade tip Re Reynolds number, d ^Nl v, dimensionless V kinematic viscosity... HELICAL SCREW (GRAY) 0.01 0.02 0.0^ 0.1 1 -K , C / D , 0.2 I/D^ Shear characteristics Notation b blade width of helical ribbon, cm d impeller diameter, cm D vessel diameter, cm Dd disk diameter, cm gr gravitational conversion factor, g cm/G sec^ / distance between disks, cm n rotational speed, 1/sec Pv power consumption/unit volume, Gcm/seccm^ Vb, V2 tangential and axial velocity, cm/sec 77 liquid viscosity,... (CN)6 The kinematic viscosities of the solutions are the same as that of water Flow measurement technique Measurement of diffusional mass transfer rate using a multi-electrode Experimental conditions Impeller speed: 60,90 and 120 rpm Results Notation r_ radial position, mm Ui mean velocity of i component, cm/sec UT impeller tip velocity, cm/sec 2 axial position, mm 65 75 85 95 105 r, mm Turbulence intensity... H==2D, n=150 rpm (group A) Notation D Ettox hb H L n P' 6 P- 6mn tank diameter maximum value of mixing efficiency vertical distance between bottom of a tank and center of lower impeller water depth vertical distance between double impellers impeller rotational speed energy consumption minimum value of energy consumption P- 6 Chapter 1 Flow patterns 30 Wu, H and Patterson, G K., Chem Eng Scu, 44,2207... The distribution of axialfluidvelocities in the core for impeller 2 pumping upwards Notation d D h N r Ri 5 Vt W Zo Y / 1 outside diameter of ribbon inside diameter of tank height of ribbon rotational speed of impeUer radial coordinate inside radius of ribbon pitch of ribbon axial fluid velocity width of ribbon static height of liquid in tank 1 'i X-t- i 1 ! r -T— • r - — 0-03 X V Y Y y 20A X40 i^AO . dimensionless V rotational velocity of vessel wall, m/sec p non-Newtonian viscosity, Nsec/m^ /Xar apparent viscosity, Nsec/m^ ft* dimensionless non-Newtonian viscosity, fi/po, dimensionless. Viscous Non-Newtonian Fluid in Agitated Vessel with Paddle Impeller Dimension of vessel and impeller 0.3 ^d/D< 0.9 Computational conditions 10 < Re {=^DVp/fi) Computational results. Preface This book is a compilation of the engineering data on mixing, which have appeared in the major technical journals of chemical engineering and bioengineering since 1975. That year marked