1. Trang chủ
  2. » Khoa Học Tự Nhiên

materials science and engineering an introduction, 7th edition

975 1,9K 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 975
Dung lượng 24,05 MB

Nội dung

1496T_fm_i-xxvi 1/6/06 02:56 Page iii Materials Science and Engineering An Introduction 1496T_fm_i-xxvi 1/6/06 22:25 Page v SEVENTH EDITION Materials Science and Engineering An Introduction William D Callister, Jr Department of Metallurgical Engineering The University of Utah with special contributions by David G Rethwisch The University of Iowa John Wiley & Sons, Inc 1496T_fm_i-xxvi 1/11/06 23:05 Page vi Front Cover: A unit cell for diamond (blue-gray spheres represent carbon atoms), which is positioned above the temperature-versus-logarithm pressure phase diagram for carbon; highlighted in blue is the region for which diamond is the stable phase Back Cover: Atomic structure for graphite; here the gray spheres depict carbon atoms The region of graphite stability is highlighted in orange on the pressure-temperature phase diagram for carbon, which is situated behind this graphite structure ACQUISITIONS EDITOR MARKETING DIRECTOR SENIOR PRODUCTION EDITOR SENIOR DESIGNER COVER ART TEXT DESIGN SENIOR ILLUSTRATION EDITOR COMPOSITOR ILLUSTRATION STUDIO Joseph Hayton Frank Lyman Ken Santor Kevin Murphy Roy Wiemann Michael Jung Anna Melhorn Techbooks/GTS, York, PA Techbooks/GTS, York, PA This book was set in 10/12 Times Ten by Techbooks/GTS, York, PA and printed and bound by Quebecor Versailles The cover was printed by Quebecor This book is printed on acid free paper Copyright © 2007 John Wiley & Sons, Inc All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508)750-8400, fax (508)750-4470 Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM To order books or for customer service please call 1(800)225-5945 Library of Congress Cataloging-in-Publication Data Callister, William D., 1940Materials science and engineering : an introduction / William D Callister, Jr.—7th ed p cm Includes bibliographical references and index ISBN-13: 978-0-471-73696-7 (cloth) ISBN-10: 0-471-73696-1 (cloth) Materials I Title TA403.C23 2007 620.1’1—dc22 2005054228 Printed in the United States of America 10 1496T_fm_i-xxvi 1/6/06 02:56 Page vii Dedicated to my colleagues and friends in Brazil and Spain 1496T_fm_i-xxvi 1/6/06 02:56 Page viii 1496T_fm_i-xxvi 1/6/06 03:19 Page xv Contents LIST OF SYMBOLS xxiii Introduction 1.1 1.2 1.3 1.4 1.5 1.6 Learning Objectives Historical Perspective Materials Science and Engineering Why Study Materials Science and Engineering? Classification of Materials Advanced Materials 11 Modern Materials’ Needs 12 References 13 Atomic Structure and Interatomic Bonding 2.1 15 Learning Objectives 16 Introduction 16 ATOMIC STRUCTURE 16 2.2 2.3 2.4 Fundamental Concepts 16 Electrons in Atoms 17 The Periodic Table 23 2.5 2.6 2.7 2.8 Bonding Forces and Energies 24 Primary Interatomic Bonds 26 Secondary Bonding or van der Waals Bonding 30 Molecules 32 ATOMIC BONDING IN SOLIDS 24 Summary 34 Important Terms and Concepts 34 References 35 Questions and Problems 35 The Structure of Crystalline Solids 3.1 Learning Objectives 39 Introduction 39 3.2 3.3 3.4 3.5 3.6 38 Fundamental Concepts 39 Unit Cells 40 Metallic Crystal Structures 41 Density Computations 45 Polymorphism and Allotropy 46 CRYSTAL STRUCTURES 39 • xv 1496T_fm_i-xxvi 1/6/06 02:56 Page xvi xvi • Contents 3.7 Crystal Systems 46 CRYSTALLOGRAPHIC POINTS, DIRECTIONS, PLANES 49 3.8 3.9 3.10 3.11 3.12 Point Coordinates 49 Crystallographic Directions 51 Crystallographic Planes 55 Linear and Planar Densities 60 Close-Packed Crystal Structures AND 3.17 61 Single Crystals 63 Polycrystalline Materials 64 Anisotropy 64 X-Ray Diffraction: Determination of Crystal Structures 66 Noncrystalline Solids 71 Summary 72 Important Terms and Concepts 73 References 73 Questions and Problems 74 Imperfections in Solids 80 Mechanical Properties of Metals 6.1 6.2 6.3 6.4 6.5 Learning Objectives 81 Introduction 81 6.9 POINT DEFECTS 6.10 4.2 4.3 4.4 Vacancies and Self-Interstitials 81 Impurities in Solids 83 Specification of Composition 85 81 88 4.5 4.6 4.7 4.8 General 97 Microscopic Techniques 98 Grain Size Determination 102 MICROSCOPIC EXAMINATION 5.1 5.2 5.3 DESIGN/SAFETY Variability of Material Properties 161 Design/Safety Factors 163 97 Summary 104 Important Terms and Concepts 105 References 105 Questions and Problems 106 Design Problems 108 Diffusion AND Summary 165 Important Terms and Concepts 166 References 166 Questions and Problems 166 Design Problems 172 Dislocations–Linear Defects 88 Interfacial Defects 92 Bulk or Volume Defects 96 Atomic Vibrations 96 4.9 4.10 4.11 143 Tensile Properties 144 True Stress and Strain 151 Elastic Recovery after Plastic Deformation 154 Compressive, Shear, and Torsional Deformation 154 Hardness 155 PROPERTY VARIABILITY FACTORS 161 6.11 6.12 137 Stress-Strain Behavior 137 Anelasticity 140 Elastic Properties of Materials 141 PLASTIC DEFORMATION 6.6 6.7 6.8 131 Learning Objectives 132 Introduction 132 Concepts of Stress and Strain 133 ELASTIC DEFORMATION 4.1 MISCELLANEOUS IMPERFECTIONS Nonsteady-State Diffusion 114 Factors That Influence Diffusion 118 Other Diffusion Paths 125 Summary 125 Important Terms and Concepts 126 References 126 Questions and Problems 126 Design Problems 129 CRYSTALLINE AND NONCRYSTALLINE MATERIALS 63 3.13 3.14 3.15 3.16 5.4 5.5 5.6 109 Learning Objectives 110 Introduction 110 Diffusion Mechanisms 111 Steady-State Diffusion 112 Dislocations and Strengthening Mechanisms 174 7.1 Learning Objectives 175 Introduction 175 DISLOCATIONS DEFORMATION 7.2 7.3 7.4 7.5 7.6 7.7 PLASTIC 175 AND Basic Concepts 175 Characteristics of Dislocations 178 Slip Systems 179 Slip in Single Crystals 181 Plastic Deformation of Polycrystalline Materials 185 Deformation by Twinning 185 1496T_fm_i-xxvi 01/10/06 22:13 Page xvii Contents • xvii MECHANISMS OF STRENGTHENING METALS 188 IN 7.8 7.9 7.10 Strengthening by Grain Size Reduction 188 Solid-Solution Strengthening 190 Strain Hardening 191 RECOVERY, RECRYSTALLIZATION, GROWTH 194 7.11 7.12 7.13 AND 9.2 9.3 9.4 9.5 9.6 BINARY PHASE DIAGRAMS GRAIN 9.7 9.8 9.9 Recovery 195 Recrystallization 195 Grain Growth 200 Summary 201 Important Terms and Concepts 202 References 202 Questions and Problems 202 Design Problems 206 9.10 9.11 9.12 9.13 Failure 8.1 207 Learning Objectives 208 Introduction 208 FRACTURE 8.2 8.3 8.4 8.5 8.6 9.14 9.15 208 Fundamentals of Fracture 208 Ductile Fracture 209 Brittle Fracture 211 Principles of Fracture Mechanics 215 Impact Fracture Testing 223 FATIGUE 227 8.7 8.8 8.9 8.10 8.11 Cyclic Stresses 228 The S–N Curve 229 Crack Initiation and Propagation 232 Factors That Affect Fatigue Life 234 Environmental Effects 237 8.12 8.13 8.14 8.15 Generalized Creep Behavior 238 Stress and Temperature Effects 239 Data Extrapolation Methods 241 Alloys for High-Temperature Use 242 CREEP 9.16 9.17 9.18 9.19 9.20 Summary 302 Important Terms and Concepts 303 References 303 Questions and Problems 304 10 Phase Transformations in Metals: Development of Microstructure and Alteration of Mechanical Properties 311 10.1 9.1 10.2 10.3 252 Learning Objectives 253 Introduction 253 DEFINITIONS AND BASIC CONCEPTS 10.4 253 290 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram 290 Development of Microstructure in Iron–Carbon Alloys 293 The Influence of Other Alloying Elements 301 Learning Objectives 312 Introduction 312 PHASE TRANSFORMATIONS Phase Diagrams 258 Binary Isomorphous Systems 258 Interpretation of Phase Diagrams 260 Development of Microstructure in Isomorphous Alloys 264 Mechanical Properties of Isomorphous Alloys 268 Binary Eutectic Systems 269 Development of Microstructure in Eutectic Alloys 276 Equilibrium Diagrams Having Intermediate Phases or Compounds 282 Eutectic and Peritectic Reactions 284 Congruent Phase Transformations 286 Ceramic and Ternary Phase Diagrams 287 The Gibbs Phase Rule 287 THE IRON–CARBON SYSTEM 238 Summary 243 Important Terms and Concepts 245 References 246 Questions and Problems 246 Design Problems 250 Solubility Limit 254 Phases 254 Microstructure 255 Phase Equilibria 255 One-Component (or Unary) Phase Diagrams 256 312 Basic Concepts 312 The Kinetics of Phase Transformations 313 Metastable versus Equilibrium States 324 1496T_fm_i-xxvi 01/10/06 22:13 Page xviii xviii • Contents MICROSTRUCTURAL AND PROPERTY CHANGES IRON–CARBON ALLOYS 324 10.5 10.6 10.7 10.8 10.9 Isothermal Transformation Diagrams 325 Continuous Cooling Transformation Diagrams 335 Mechanical Behavior of Iron–Carbon Alloys 339 Tempered Martensite 343 Review of Phase Transformations and Mechanical Properties for Iron–Carbon Alloys 346 Summary 350 Important Terms and Concepts 351 References 352 Questions and Problems 352 Design Problems 356 11 Applications and Processing of Metal Alloys 358 11.1 OF METAL ALLOYS OF METALS 382 11.4 11.5 11.6 Forming Operations 383 Casting 384 Miscellaneous Techniques 386 11.7 11.8 11.9 Annealing Processes 388 Heat Treatment of Steels 390 Precipitation Hardening 402 THERMAL PROCESSING OF METALS Ceramic Phase Diagrams 439 MECHANICAL PROPERTIES Summary 453 Important Terms and Concepts 454 References 454 Questions and Problems 455 Design Problems 459 13 Applications and Processing of Ceramics 460 13.1 Learning Objectives 461 Introduction 461 Glasses 461 Glass–Ceramics 462 Clay Products 463 Refractories 464 Abrasives 466 Cements 467 Advanced Ceramics 468 Fabrication and Processing of Glasses and Glass–Ceramics 471 13.10 Fabrication and Processing of Clay Products 476 13.11 Powder Pressing 481 13.12 Tape Casting 484 Summary 484 Important Terms and Concepts 486 References 486 Questions and Problems 486 Design Problem 488 14 Polymer Structures CERAMIC STRUCTURES 12.2 12.3 12.4 12.5 12.6 Learning Objectives 415 Introduction 415 14.1 14.2 14.3 14.4 415 Crystal Structures 415 Silicate Ceramics 426 Carbon 430 Imperfections in Ceramics 434 Diffusion in Ionic Materials 438 OF 13.9 12 Structures and Properties of Ceramics 414 12.1 OF FABRICATION AND PROCESSING CERAMICS 471 387 Summary 407 Important Terms and Concepts 409 References 409 Questions and Problems 410 Design Problems 411 442 12.8 Brittle Fracture of Ceramics 442 12.9 Stress–Strain Behavior 447 12.10 Mechanisms of Plastic Deformation 449 12.11 Miscellaneous Mechanical Considerations 451 13.2 13.3 13.4 13.5 13.6 13.7 13.8 359 Ferrous Alloys 359 Nonferrous Alloys 372 FABRICATION 12.7 TYPES AND APPLICATIONS CERAMICS 461 Learning Objectives 359 Introduction 359 TYPES 11.2 11.3 IN 14.5 489 Learning Objectives 490 Introduction 490 Hydrocarbon Molecules 490 Polymer Molecules 492 The Chemistry of Polymer Molecules 493 Molecular Weight 497 1496T_fm_i-xxvi 01/10/06 22:13 Page xix Contents • xix 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 Molecular Shape 500 Molecular Structure 501 Molecular Configurations 503 Thermoplastic and Thermosetting Polymers 506 Copolymers 507 Polymer Crystallinity 508 Polymer Crystals 512 Defects in Polymers 514 Diffusion in Polymeric Materials 515 Summary 517 Important Terms and Concepts 519 References 519 Questions and Problems 519 15.2 15.3 15.4 15.5 15.6 OF POLYMERS MECHANISMS OF DEFORMATION AND FOR STRENGTHENING OF POLYMERS 535 15.7 15.8 15.9 Deformation of Semicrystalline Polymers 535 Factors That Influence the Mechanical Properties of Semicrystalline Polymers 538 Deformation of Elastomers 541 CRYSTALLIZATION, MELTING, AND GLASS TRANSITION PHENOMENA IN POLYMERS 544 15.10 Crystallization 544 15.11 Melting 545 15.12 The Glass Transition 545 15.13 Melting and Glass Transition Temperatures 546 15.14 Factors That Influence Melting and Glass Transition Temperatures 547 POLYMER TYPES 15.15 15.16 15.17 15.18 15.19 16.1 560 Polymerization 561 Polymer Additives 563 Forming Techniques for Plastics 565 Fabrication of Elastomers 567 Fabrication of Fibers and Films 568 577 Learning Objectives 578 Introduction 578 16.4 16.5 16.6 16.7 16.8 16.9 16.10 16.11 16.12 16.13 580 Large-Particle Composites 580 Dispersion-Strengthened Composites 584 FIBER-REINFORCED COMPOSITES 585 Influence of Fiber Length 585 Influence of Fiber Orientation and Concentration 586 The Fiber Phase 595 The Matrix Phase 596 Polymer-Matrix Composites 597 Metal-Matrix Composites 603 Ceramic-Matrix Composites 605 Carbon–Carbon Composites 606 Hybrid Composites 607 Processing of Fiber-Reinforced Composites 607 STRUCTURAL COMPOSITES 610 16.14 Laminar Composites 610 16.15 Sandwich Panels 611 Summary 613 Important Terms and Concepts 615 References 616 Questions and Problems 616 Design Problems 619 17 Corrosion and Degradation of Materials 621 549 Plastics 549 Elastomers 552 Fibers 554 Miscellaneous Applications 555 Advanced Polymeric Materials 556 PROCESSING PARTICLE-REINFORCED COMPOSITES 524 Stress–Strain Behavior 524 Macroscopic Deformation 527 Viscoelastic Deformation 527 Fracture of Polymers 532 Miscellaneous Mechanical Characteristics 533 AND Summary 569 Important Terms and Concepts 571 References 571 Questions and Problems 572 Design Questions 576 16.2 16.3 Learning Objectives 524 Introduction 524 MECHANICAL BEHAVIOR 15.20 15.21 15.22 15.23 15.24 16 Composites 15 Characteristics, Applications, and Processing of Polymers 523 15.1 POLYMER SYNTHESIS 17.1 Learning Objectives 622 Introduction 622 17.2 17.3 Electrochemical Considerations 623 Corrosion Rates 630 CORROSION OF METALS 622 1496T_ind_I0-I22 1/13/06 22:28 Page I10 I10 • Index Impact strength, polymers, 533–534 Imperfections, see Defects; Dislocations Impurities: in ceramics, 437–438 diffusion, 111 electrical resistivity, 675–676 in metals, 83–85 thermal conductivity, W10 Incongruent phase transformation, 286 Index of refraction, W63–W64, G6 selected materials, W64 Indices, Miller, 55–58, G8 Indium antimonide, electrical characteristics, 680 Induced dipoles, 31 Induction hardening, W104 Inert gases, 23 Inhibitors, 649, G6 Initial permeability, W34 Injection molding, 566 Insulators (electrical), G6 See also Dielectric materials ceramics and polymers as, 700–701, 711 color, W69–W70 defined, 668 electron band structure, 670, 672 translucency and opacity, W71 Integrated circuits, 698–699, G6 fabrication, W119–W128 interconnects, 124 materials selection, W119–W128 scanning electron micrograph, 665, 699 Interatomic bonding, 26–30 Interatomic separation, 25, 26 Interconnects, integrated circuits, 124 Interdiffusion, 111, G6 Interfacial defects, 92–96 Interfacial energies, 96 for heterogeneous nucleation, 319 Intergranular corrosion, 644–645, G6 Intergranular fracture, 212, 214, G6 Intermediate solid solutions, 282, 285, G6 Intermetallic compounds, 282, 404, W125, G6 Interplanar spacing, cubic crystals, 68 Interstitial diffusion, 112, G6 Interstitial impurity defects, 84 Interstitials: in ceramics, 434 in polymers, 514 self-, 82, G11 Interstitial solid solutions, 84, 437, G6 Intrinsic carrier concentration, 680 temperature dependence for Si and Ge, 686 Intrinsic conductivity, 680 Intrinsic semiconductors, 679–682, G6 Invar, Material of Importance, W8 thermal properties, W5 Invariant point, 270, G6 Inverse lever rule, see Lever rule Inverse spinel structure, W28 Ion cores, 29 Ionic bonding, 26–28, G6 in ceramics, 415 Ionic character (percent), 29, 416 Ionic conduction, 438, 668, 701 Ionic polarization, 708, 709, G9 Ionic radii, 416, 418 Iridium, 380 Iron, see also Ferrous alloys; Steels atomic radius and crystal structure, 41 bonding energy and melting temperature, 28 Curie temperature, W32 electrical conductivity, 674 ferrite (␣), 290, 291, 296, G4 as ferromagnetic material, W26–W27 magnetic properties, W41 magnetization curves (single crystal), W37 polymorphism, 46 recrystallization temperature, 198 rolling texture, W40 slip systems, 180 stress-strain behavior (at three temperatures), 149 thermal properties, W5 yield and tensile strengths, ductility, 148 Iron age, Iron-carbon alloys, see Ferrous alloys Iron-iron carbide alloys, 290–293 Iron-silicon alloys, magnetic properties, W41 Material of Importance (use in transformer cores), W40 Isobutane, 492 Isobutylene, 509 Isomerism, 491, G6 geometrical, 505, 506 stereoisomerism, 504, 506 Isomorphous systems, 259, G6 binary, see Binary isomorphous alloys Isoprene, 505 Isostatic powder pressing, 482 Isostrain, in fiber-reinforced composites, 588 Isostress, in fiber-reinforced composites, 591 Isotactic configuration, 504, 506, G6 Isothermal, G5 Isothermal transformation diagrams, 325–335, 462, G6 4340 alloy steel, 333 0.76 wt% C steel, 333 1.13 wt% C steel, 354 glass-ceramic, 462 Isotopes, 16, 35, G6 Isotropic materials, 64, 595, G6 Izod impact test, 223, 224, G6 J Jominy end-quench test, 391, G7 Junction transistors, 696–697, G7 K Kaolinite clay, 414, 429, 430, 477 Kevlar, see Aramid Kinetics, 322–323, G7 crystallization of polymers, 544–545 oxidation, 653–654 phase transformations, 313–323 Knoop hardness, 156, 158 Kovar: as low-expansion alloy, W8 thermal properties, W5 for integrated circuit fabrication, W121, W122 L Ladder polymer, 658 Lamellae (polymers), 513 Laminar composites, 610–611, G7 Large-particle composites, 580–584, G7 Larson-Miller parameter, 241 Lasers, W75–W79, G7 semiconductor, W77–W78, W79 types, characteristics, and applications, W79 Laser beam welding, 387 Latent heat of fusion, 315 Latex, 555 Lattice parameters, 46, 47, G7 Lattices, 40, G7 Lattice strains, 178–179, 190–191, 407, G7 Lattice waves, W3 Laue photograph, 38, 70 Layered silicates, 429–430 1496T_ind_I0-I22 1/13/06 22:28 Page I11 Index • I11 Lay-up, in prepreg processing, 609 Lead, 380 atomic radius and crystal structure, 41 diffraction pattern, 70 recrystallization temperature, 198 superconducting critical temperature, W50 Leadframe design, W120–W123 Lead-free solders, 275 Lead-tin phase diagram, 271, 276–278, 280–281 Lead titanate, 470 Lead zirconate, 712 Lead-zirconate-titanate, 470, 712 Leak-before-break design, 221 Leathery region, polymers, 529–530 LEDs, see Light-emitting diodes Lever rule, 261–262, G7 Life cycle analysis/assessment, W139–W140 Light: absorption, W65–W68 reflection, W65 refraction, W63–W64 scattering, W71 transmission, W68–W69 Light-emitting diodes: organic, W74 polymer, W74 semiconductor, W73 Lime, 467 Linear atomic density, 60 Linear coefficient of thermal expansion, 237, W4–W7, W8, W12, W13, W18, G13 values for leadframe materials, W122 values for selected materials, 678, W5, A17–A20 Linear defects, 88–92 Linear polymers, 502, G7 Liquid crystal polymers, 557–559, G7 Liquidus line, 259, 260, 269, 270, G7 Liquidus temperatures, Cu-Au system, 304 Lodestone (magnetite), W20, W28 Longitudinal direction, 587, G7 Longitudinal loading, composites, 586–589, 592 Lost foam casting, 385 Lost-wax casting, 385 Low-angle grain boundaries, see Small-angle grain boundaries Low carbon steels, 360–362 Low-cycle fatigue, 231 Lower critical temperature (ferrous alloys), 389, G7 Lower yield point, 143, 144 Low-expansion alloys, W8 Luminescence, W72, G7 M Macromolecules, 492, G7 Magnesia, see Magnesium oxide Magnesium: diffraction pattern, 38 elastic and shear moduli, 137 Poisson’s ratio, 137 slip systems, 180 Magnesium alloys, 377, 378 Magnesium fluoride, optical properties, W65 Magnesium-lead phase diagram, 284 Magnesium oxide: bonding energy and melting temperature, 28 flexural strength, 448 index of refraction, W64 modulus of elasticity, 448 thermal properties, W5 Magnesium oxide-aluminum oxide phase diagram, 440 Magnetic anisotropy, W37–W38, W40 Magnetic ceramics, W28–W32 Magnetic dipoles, W20, W21 Magnetic domains, see Domains Magnetic energy product, W41–W42 Magnetic field strength, W21, W23, G7 Magnetic field vectors, W21–W23 Magnetic flux density, W21, W23, G7 critical values for superconductors, W50 Magnetic hysteresis, W34–W36 factors that affect, W37 soft and hard magnetic materials, W38–W39, W41–W42 Magnetic induction, see Magnetic flux density Magnetic materials: hard, W41–W44 low thermal expansion characteristics, W8 neodymium-iron-boron alloys, W43–W44 samarium-cobalt alloys, W43 soft, W38–W41 Magnetic moments, W23–W24 cations, W28–W29 Magnetic permeability, W22, W23, W59, W64 Magnetic storage, W44–W47 Magnetic susceptibility, W23, G7 selected diamagnetic and paramagnetic materials, W26 various units for, W23, W53 Magnetic texture, 65–66, W40 Magnetic units, conversion factors, W23 Magnetism: basic concepts, W20–W24 electron spin and, W24 Magnetite (lodestone), W19, W28 Magnetization, W22–W23, G7 easy and hard directions, W38 saturation, W26–W27, W31, G11 Magnetocrystalline anisotropy, W38 Magnetostrictive materials,12 Magnetorheological fluids, 12 Majority charge carriers, 683 Malleability, see Ductility Malleable cast iron, 368, 371, G7 compositions, mechanical properties, and applications, 369 Manganese oxide, as antiferromagnetic material, W28 Manufacturing techniques, economics, W137 Martensite, 331–332, 337, 347, G7 alloying to favor formation of, 337 crystal structure, 331 hardness, 342 hardness vs carbon content, 343 shape-memory phase transformations, 348–349 tempering of, 343–345 Martensitic stainless steels, 364, 365 Materials: advanced, 11–12 by design, 12 classification of, 5–11 costs, 602, W93, A31–A36 current and future needs, 12–13 disposal of, W138–W139 economic considerations, W136–W137 engineered, W138 of the future, 11–12 historical development of, nanoengineered, 12 nonrenewable sources of, 13, W138 smart, 11–12 total cycle, W138–W139 Materials engineering, 3–4, 132–133, W87 1496T_ind_I0-I22 1/13/06 22:28 Page I12 I12 • Index Materials of Importance: aluminum electrical wires, 677–678 aluminum for integrated circuit interconnects, 124–125 carbon nanotubes, 433 carbonated beverage containers, 10 catalysts (and surface defects), 95 Invar and other low-expansion alloys, W8 an iron-silicon alloy that is used in transformer cores, W40 lead-free solders, 275 light-emitting diodes,W73–W74 metal alloys used for euro coins, 381 nanocomposites in tennis balls, 612–613 phenolic billiard balls, 552 piezoelectric ceramics, 470 shape-memory alloys, 348–350 shrink-wrap polymer films, 541 tin (its allotropic transformation), 48 water (its volume expansion upon freezing), 33 Materials science, 3, W87 Materials selection, W87 case studies: artificial hip replacement, W108–W115 chemical protective clothing, W115–W119 failure of an automobile rear axle, W101–W108 integrated circuit packaging, W119–W128 valve spring design, W94–W101 torsionally stressed cylindrical shaft, W87–W94 Materials selection charts, W89–W91 Matrix phase, G7 definition, 579 fiber-reinforced composites, 596–597 Matthiessen’s rule, 675, G7 Mean stress (fatigue), 229, 234–235 Mechanical properties, see also specific mechanical properties grain size and, 201 variability, 161–163 Mechanical twin, 94, 187 See also Twinning Mechanics of materials, 136 Medium carbon steels, 360, 362 Meissner effect, W48–W49 Melamine-formaldehyde, repeat unit structure, A37 Melting (polymers), 545 Melting point (temperature): and bonding energy for selected materials, 28 ceramics, 472 factors that affect (polymers), 547 glasses, 473, G7 polymers, 546–547, A41 Melt spinning, 568 Mercury: bonding energy and melting temperature, 28 superconducting critical temperature, W50 Mer unit, 492 Metal alloys, see Alloys Metallic bonding, 29–30, G7 Metallic glasses, 412, 674 Metallographic examination, 98 failed automobile axle, W103–W104 Metal-matrix composites, 603–605, G7 Metals, see also Alloys; Crystalline materials corrosion, see Corrosion costs, A31–A33 crystal structure, see Crystal structures defined, 5–6, G7 density values, A3–A5 elastic modulus values, 137, A6–A8 as electrical conductors, 670 electrical resistivity values, A26–A28 electron band structure, 670 fabrication, 382–387 fracture toughness for selected, 219, A16 linear coefficient of thermal expansion values, W5, A17–A18 optical properties, W62–W63 oxidation, 651–654 Poisson’s ratio for selected, 137, A10 shear moduli, 137 specific heat values, W5, A24–A25 strengthening, see Strengthening of metals thermal conductivity values, W5, A21–A22 Metastability, G8 of microstructures, 324 Metastable states, 256 Methane, 28, 491 Methyl alcohol, 493 Methylene chloride, W115 Methyl group, 492, 495 Mica, 429 dielectric constant and dielectric strength, 704 Microconstituents, see also specific microconstituent phases: definition, 280, G8 in eutectic alloys, 279–280 in steel alloys, 295–299 Microcracks, 215 in ceramics, 443–444 Microelectromechanical systems (MEMS), 12, 468–469, G8 Microelectronics, 698–700 materials selection for, W119–W128 Microindentation hardness tests, 158 Micron, 97 Microscopic techniques, useful resolutions ranges, 102 Microscopy, 97–102, G8 Microstructure, 97, G8 austenite, 291 bainite, 329 bonded ceramic abrasive, 466 brass during recrystallization and grain growth, 195–196 carbon-black-reinforced rubber, 582 carbon nanotube, 433 cast irons, 367–368, 370 cemented carbide, 582 coarse and fine pearlite, 328 compacted graphite iron, 368 craze in poly(phenylene oxide), 533 development in eutectic alloys, 276–282 development in iron-carbon alloys, 293–300 development in isomorphous alloys: equilibrium cooling, 264–266 nonequilibrium cooling, 266–268 eutectic (lead-tin), 279 ferrite (␣), 291 glass-ceramic, 460 glass fracture surface, 446 gray cast iron, 367 hypereutectoid steel alloy, 299 hypoeutectoid steel alloy, 252, 296 influence of cooling rate, 393 integrated circuit, 124, 665, 699 magnetic storage disk, W45–W46 martensite, 332 metastable, 256 microscopic examination, 97–103 pearlite, 294, 328 1496T_ind_I0-I22 1/13/06 22:28 Page I13 Index • I13 pearlite partially transformed to spheroidite, 311 polycrystalline metal before and after deformation, 186 porcelain, 481 precipitation-hardened aluminum alloy, 405 single-phase iron-chromium alloy, 100 sintered ceramic, 483 size ranges, various elements, 102 spheroidite, 330 spherulite (natural rubber), 489 stress corrosion in brass, 647 TEM (high resolution)—single crystals of (Ce0.5Zr0.5)O2, 95 tempered martensite, 344 Microvoids, 210, 532–533 Miller-Bravais index system, 54 Miller indices, 55–58, G8 Minority charge carriers, 683 Mirror region (ceramics), 445, 446 Mist region (ceramics), 446, 447 Mixed dislocations, 89, 91, 177, G8 See also Dislocations Mobility, of charge carriers, 673–674, G8 influence of dopant content, 688 influence of temperature, 688–689 ionic, 701 values for selected semiconductors, 680 Modulus of elasticity, 137–140, G8 anisotropy, 66, 167 artificial hip alloys, W113 atomic bonding and, 139, 167–168 bone, W109 carbon nanotubes, 433 copper reinforced with tungsten, 581 directionality dependence for cubic crystals, 167 influence of porosity on, in ceramics, 451 ranges for material types (bar chart), relation to shear modulus, 141 selected ceramics, 448, A8 selected fiber-reinforcement materials, 596, A9 selected metals, 137, A6–A8 selected polymers, 526, A8–A9 temperature dependence: elastomers, 542 metals, 139 and thermal fatigue, 237 and thermal stresses, W12–W13 values for various materials, A6–A9 Modulus of resilience, 149–150 Modulus of rupture, 447 See also Flexural strength Mohs hardness scale, 155, 159 Molarity, 625, G8 Molding, plastics, 565–567, G8 Mole, 17, G8 Molecular chemistry, polymers, 493–497, G8 Molecular configurations, polymers, 503–506 Molecular mass, 497 Molecular materials, 32 Molecular shape, polymers, 500–501 Molecular structure, polymers, 501–503, G8 Molecular weight, G8 influence on polymer melting/glass transition temperatures, 547–548 influence on mechanical behavior, polymers, 538–539 number-average, 498, 499 weight-average, 498, 499–500 Molecular weight distribution, 497–498 Molecules, polar, 31–32, G9 Molybdenum, 378, 380 atomic radius and crystal structure, 41 density, A4 modulus of elasticity, A7 Poisson’s ratio, A10 properties as wire, 596 slip systems, 180 thermal properties, A18, A22, A25 yield strength, tensile strength, ductility, 148 Moment of inertia, 448, 458, 601–602, W88 Monel, 380 Monoclinic crystal system, 46, 47 Monomers, 492, G8 MOSFET transistors, 697–698, G8 Mullite, 442, 465 flexural strength, 448 modulus of elasticity, 448 Multiphase transformations, see Phase transformations Muntz metal, 373 Muscovite (mica), 429 N Nanotechnology, 12 Nanotubes, carbon, 12, 433 Natural aging, 407, G8 Natural rubber (polyisoprene), 505, 553 degradation resistance, 656 melting and glass transition temperatures, A41 stress-strain behavior, 543 thermal properties, W5 NBR, see Nitrile rubber (NBR) Necking, 145 complex stress state in, 152 criterion for, 171 in ductile fracture, 209–210 polymers, 527 Néel temperature, W32 Neodymium-iron-boron magnets, W43–W44 Neoprene rubber, 553, 656 Nernst equation, 628 Network formers (glass), 427 Network modifiers (glass), 427 Network polymers, 502, 503, G8 Network solids, 434 Neutrons, 16 Nichrome, 677 Nickel, 380 atomic radius and crystal structure, 41 Curie temperature, W32 elastic and shear moduli, 137 as ferromagnetic material, W26, W27 magnetization curves (single crystal), W37 Poisson’s ratio, 137 recrystallization temperature, 198 slip systems, 180 thermal properties, W5 thoria-dispersed (TD), 584 yield and tensile strengths, ductility, 148 Nickel ferrite, W30 Niobium, 378 Niobium alloys, as superconductors, W49, W50 Nitinol, 348 Nitrile rubber (NBR), 509 characteristics and applications, 552, 553 degradation resistance, 656 Noble metals, 380 Nodular iron, see Ductile iron Noncrystalline materials, 39, 71–72, G8 Nondestructive evaluation, see Nondestructive testing Nondestructive inspection, see Nondestructive testing Nondestructive testing, 220 1496T_ind_I0-I22 1/13/06 22:28 Page I14 I14 • Index Nonequilibrium cooling, 300 Nonequilibrium phases, 322 Nonequilibrium solidification, 266–268 Nonferrous alloys, 372–382, G8 See also specific nonferrous alloys Nonsteady-state diffusion, 114–118, G8 Nonstoichiometry, 435 Normalizing, 337, 389, G8 Notches, effect of, 216, 532 Notch toughness, 150, 223 n-p-n Junction transistors, 696 n-Type semiconductors, 682–683, G8 Nucleation, 313–320, G8 heterogeneous, 319–320 homogeneous, 313–319 Nucleation rate, 317 temperature dependence, 316, 317 homogeneous vs heterogeneous, 320, 321 Nucleus, phase particle, 315 Number-average molecular weight, 498–500 Nylon, fatigue behavior, 534 Nylon 6,6: degradation resistance, 656 density, 526, A5 dielectric constant and dielectric strength, 704 electrical conductivity, 700 mechanical properties, 526, A8, A10, A14, A17 melting and glass transition temperatures, 547, A41 repeat unit structure, 497, A39 thermal properties, W5 Nylons, trade names, characteristics, and applications, 550 O Octahedral position, 423, W29, G8 Ohm’s law, 666, 667, G8 Oil, as quenching medium, 395–396 Opacity, W61, G8 in insulators, W71 in semiconductors, W65–W67 Optical fibers, 469, W80–W82 Optical flint glass, composition and properties, 462, W64 Optical microscopy, 98, 99, 100, 102 Optical properties, W58 of metals, W62–W63 of nonmetals, W63–W70 Ordered solid solution, 282, 373 Organic light-emitting diodes, W74 Orientation polarization, 708, 709, G9 Orthorhombic crystal system, 46, 47 Osmium, 380 Overaging, 403, G8 Overvoltage, 631, 633–635 Oxidation, 623, 651–654, G8 kinetics, 653–654 metals, 651–654 Ozone, degradation of polymers, 657–658 P Palladium, 114, 380 Paraffins, 491 Paramagnetism, W25, W36, G8 Parisons, 473, 567 Particle-reinforced composites, 580–584, G8 Particulate magnetic recording media, W45–W46 Pascal-seconds, 450 Passivity, 638–640, G8 Pauli exclusion principle, 21, G8 Pearlite, 294, G8 coarse, 327, 328, G2 colonies, 294 as composite, 578 in failed automobile axle, W104 fine, 327, 340, G5 formation of, 295, 325–328, 337, 347 hardness vs transformation temperature, 342 mechanical properties, 339–341, 347 Pentane, 491 Performance (materials), Performance index, W89–W93 Periclase, 464, 465, see Magnesium oxide Periodic table, 23–24, G9 Peritectic reaction, 285, G9 Permalloy (45), magnetic properties, W41 Permanent dipoles, 31–32, 708–709 Permeability (in polymers), 515 Permeability coefficient, 515–516 Permeability, magnetic, W22, W23, W59, W64, G9 Permittivity, 27, 703–704, W59, W64, G9 Perovskite structure, 422, 712, W49 PET, see Polyester(s) Phase boundaries, 96 Phase diagrams, 256–257, 258–264, G9 binary eutectic systems, 269–282 binary isomorphous systems, 258–269 ceramic systems, 287, 439–442 congruent phase transformations, 286 definitions/basic concepts, 253–256 eutectoid and peritectic reactions, 284–285 intermediate phases in, 282–284 interpretation of, 260–262 pressure-temperature (unary), 256–258 specific: aluminum-copper, 308, 404 aluminum oxide-chromium oxide, 439 cast iron, 370 copper-beryllium, 413 copper-nickel, 259 copper-silver, 269, 289 copper-zinc, 283, 285 halfnium-vanadium, 287 iron-carbon (graphite), 366 iron-iron carbide, 290 lead-tin, 271, 276–280 magnesium-lead, 284 magnesium oxide-aluminum oxide, 440 nickel-titanium, 286 silica-alumina, 442 sugar-water, 254 tin-bismuth, 275 tin-gold, 308 water (pressure-temperature), 257, 309 water-sodium chloride, 272 zirconia-calcia, 441 ternary, 287 Phase equilibria, 255–256, G9 Phases, 254–255, G9 Phase transformation diagrams: continuous cooling, G2 metals, 335–339, 355 glass-ceramic, 462 isothermal, 325–335, G6 Phase transformation rate, 323 martensitic transformation, 331 temperature dependence, 321–322 Phase transformations, G9 athermal, 332 classification, 312–313 shape-memory effect, 348–350 Phenol, 493 Phenol-formaldehyde (Bakelite): in billiard balls, 523, 552 dielectric constant and dielectric strength, 704 electrical conductivity, 700 mechanical properties, 526 repeat unit structure, 497, A37 thermal properties, W5 1496T_ind_I0-I22 1/13/06 22:28 Page I15 Index • I15 Phenolics, trade names, characteristics, applications, 551 Phenyl group, 492, 493, 495 Phonons, W3, W9, W10, G9 Phosphorescence, W72, G9 Photoconductivity, W72, G9 Photomicrographs, 97, G9 Photonic signal, W79 Photons, W3, W60, G9 Pickling, of steels, 648 Piezoelectricity, 712–713, G9 Piezoelectric ceramics, 712 as Materials of Importance, 470 properties and applications, 470 in smart materials/systems, 12 Pilling-Bedworth ratio, 652, G9 selected metals, 653 Pitting corrosion, 643–644, W111, G9 Plain carbon steels, 332, 360, G9 Planar atomic density, 61 Planck’s constant, W60, G9 Planes, see Crystallographic planes Plane strain, 218, G9 Plane strain fracture toughness, 218, G9 ceramic-matrix composites, 605, 606 selected materials, 219, A16–A17 Plaster of paris, 385, 467, 478 Plastic deformation, 143–153, G9 ceramics, 449–450 dislocation motion and, 175–188 in fracture, 216 influence on electrical conductivity, 676 polycrystalline materials, 185 semicrystalline polymers, 535, 537–538 twinning, 185, 187 Plasticizers, 563–564, G9 Plastics, 549, G9 characteristics and applications, 549–552 in composites, 581 forming techniques, 565–567 Platinum, 380 atomic radius and crystal structure, 41 electrical conductivity, 674 Plexiglas, see Poly(methyl methacrylate) Plywood, 610 p-n-p Junction transistors, 696–697 p-n Junctions: for light-emitting diodes, W73 for rectification, 694–696 Point coordinates, 49–51 Point defects, 81–88, 434–437, G9 Poise, 450 Poisson’s ratio, 141–142, G9 selected metals, 137 values for various materials, A10–A11 Polarization, 706–707, G9 See also Electronic polarization; Ionic polarization; Orientation polarization Polarization (corrosion), 631–635, G9 corrosion rates from, 635–638 Polar molecules, 31–32, G9 Polar moment of inertia, W88 Polyacetylene, repeat unit structure, 702 Polyacrylonitrile (PAN): carbon fibers, 598 repeat unit structure, 509, A38 Poly(alklylene glycol), as a quenching agent, 395 Poly(amide-imide) (PAI), repeat unit structure, A38 Polybutadiene, see Butadiene Poly(butylene terephthalate) (PBT), repeat unit structure, A38 Polycarbonates: density, 526 degradation resistance, 656 mechanical properties, 526 melting and glass transition temperatures, 547, A41 plane strain fracture toughness, 219 reinforced vs unreinforced properties, 594 repeat unit structure, 497, A38 trade names, characteristics, applications, 550 Polychloroprene, see Chloroprene; Chloroprene rubber Polychlorotrifluoroethylene, repeat unit structure, A38 Polycrystalline materials, 64, 65, G9 plastic deformation, 185, 186 Polydimethylsiloxane, 554 degradation resistance, 656 repeat unit structure, 554, A38 Polyester(s): degradation resistance (PET), 656 density (PET), 526 fatigue behavior (PET), 534 mechanical properties (PET), 526 melting and glass transition temperatures (PET), 547, A41 in polymer-matrix composites, 600 recycle code and products (PET), W142 repeat unit structure (PET), 497, A39 trade names, characteristics, applications, 551 Polyetheretherketone (PEEK), 600 degradation resistance, 656 melting and glass transition temperatures, A41 repeat unit structure, A38 Polyetherimide (PEI), 600 Polyethylene, 493, 494, 496 crystal structure of, 509 degradation resistance, 656 density, 511–512, 526, A5 dielectric constant and dielectric strength, 704 electrical conductivity, 700 fatigue behavior, 534 index of refraction, W64 mechanical properties, 526 melting and glass transition temperatures, 547, A41 recycle codes and products, W142 single crystals, 512 thermal properties, W5 trade names, characteristics, applications, 550 ultrahigh molecular weight, see Ultrahigh molecular weight polyethylene Poly(ethylene terephthalate) (PET), see Polyester(s) Poly(hexamethylene adipamide), see Nylon 6,6 Polyimides: glass transition temperature, A41 for integrated circuit fabrication, W127 polymer-matrix composites, 600 repeat unit structure, A39 Polyisobutylene: melting and glass transition temperatures, A41 repeat unit structure, 509, A39 Polyisoprene, see Natural rubber (polyisoprene) Polymer-matrix composites, 597–603, G9 Polymerization, 493–494, 561–563 degree of, 498–499 Polymer light-emitting diodes, W74 Polymers, 8–9, 492, G9 See also Plastics additives, 563–565 classification (molecular characteristics), 506 coefficient of thermal expansion values, W5, A19–A20 1496T_ind_I0-I22 1/13/06 22:28 Page I16 I16 • Index Polymers (Continued ) conducting, 701–702 costs, A35 crosslinking, see Crosslinking crystallinity, 508–512, G2 crystallization, 544–545 crystals, 512–514 defined, 8, 492 defects in, 514–515 deformation (semicrystalline): elastic, 535, 536 plastic, 535, 537, 538 degradation of, 655–659 density, 510 density values, 526, A5–A6 diffusion in, 515–516 ductility values, 526, A14–A15 elastic modulus values, 526, A8–A9 elastomers, 541–543, 552–554 electrical properties, 700, 701–702, 704, A28 fibers, 554–555 fracture mechanics, 533 fracture toughness values, 219, A17 glass transition, 545–546 glass transition temperatures, 547, A41 as insulators, 700–701, 711 for integrated circuit fabrication, W126–W127 ladder, 658 as light-emitting diodes, W74 liquid crystal, 557–559 mechanical properties, 524–535 factors that affect, 538–540 values of, 526, A8–A9, A10, A14–A15, A17 melting of, 545 melting temperatures, 547, A41 miscellaneous applications, 555–556 miscellaneous mechanical characteristics, 533–534 molecular chemistry, 493–497 molecular configurations, 503–506 molecular shape, 500–501 molecular structure, 501–503 molecular weight, 497–500 natural, 490 opacity and translucency, W71 Poisson’s ratio values, A10 radiation effects, 657 refraction indices, W64 semicrystalline, 510, 513, 535–538, 539 specific heat values, W5, A25–A26 spherulites in, 489, 513–514, 538, 540 stereoisomerism, 504 stress-strain behavior, 524–527 swelling and dissolution, 655–656 tensile strength values, 526, A14–A15 thermal conductivity values, W5, A22–A23 thermal properties, W7, W11 thermoplastic, see Thermoplastic polymers thermosetting, see Thermosetting polymers types of, 490 viscoelasticity, 527–532 weathering, 658–659 yield strength values, 526, A14–A15 Poly(methyl methacrylate): density, A6 electrical conductivity, 700 fatigue behavior, 534 fixation agent for artificial hip, W114 index of refraction, W64 mechanical properties, 526 melting and glass transition temperatures, A41 plane strain fracture toughness, 219, A17 relaxation modulus, 572 repeat unit structure, 497, A39 stress-strain behavior as function of temperature, 526 trade names, characteristics, applications, 550 Polymorphic transformations, in iron, 290–291 Polymorphism, 46, G9 Poly(paraphenylene terephthalamide), see Aramid Poly(phenylene oxide) (PPO), repeat unit structure, A39 Poly(phenylene sulfide) (PPS), 600 melting and glass transition temperatures, A41 repeat unit structure, A39 Polypropylene, 495 degradation resistance, 656 density, 522, A6 fatigue behavior, 534 index of refraction, W64 kinetics of crystallization, 545 mechanical properties, 526 melting and glass transition temperatures, 547, A41 recycle code and products, W142 repeat unit structure, 496, A40 thermal properties, W5 trade names, characteristics, applications, 551 Polystyrene: degradation resistance, 656 density, A6 dielectric properties, 704 electrical conductivity, 700 fatigue behavior, 534 index of refraction, W64 mechanical properties, 526 melting and glass transition temperatures, 547, A41 plane strain fracture toughness, 219, A17 repeat unit structure, 496, A40 thermal properties, W5 trade names, characteristics, applications, 551 viscoelastic behavior, 529–531 Polysulphides, for integrated circuit fabrication, W127 Polytetrafluoroethylene, 495 degradation resistance, 656 density, A6 dielectric constant and dielectric strength, 704 electrical conductivity, 700 fatigue behavior, 534 index of refraction, W64 mechanical properties, 526 melting and glass transition temperatures, 547, A41 repeat unit structure, 496, A40 thermal properties, W5 Polyurethane, for integrated circuit fabrication, W127 Poly(vinyl acetate), repeat unit structure, A40 Poly(vinyl alcohol), repeat unit structure, A40 Poly(vinyl chloride): density, A6 mechanical properties, 526 melting and glass transition temperatures, 547, A41 recycle code and products, W142 repeat unit structure, 496, A40 Poly(vinyl fluoride): melting and glass transition temperatures, A41 repeat unit structure, A40 Poly(vinylidene chloride): melting and glass transition temperatures, A41 repeat unit structure, A40 1496T_ind_I0-I22 1/13/06 22:28 Page I17 Index • I17 Poly(vinylidene fluoride): glass transition temperature, A41 repeat unit structure, A40 Porcelain, 477 dielectric constant and dielectric strength, 704 electrical conductivity, 700 microstructure, 481 Porosity: ceramics, 451–452 formation during sintering, 482–483 influence on flexural strength, ceramics, 451–452 influence on modulus of elasticity, ceramics, 451 influence on thermal conductivity, W11 optical transluency and opacity, W71 refractory ceramics, 464 Portland cement, 467 Portland cement concrete, 583 Posttensioned concrete, 584 Powder metallurgy, 386, G10 Powder pressing, ceramics, 481–483 Powder x-ray diffraction techniques, 69–70 Precipitation-hardenable stainless steels, 365 Precipitation hardening, 402–407, G10 heat treatments, 402–403 mechanism, 404–407 Prepreg production processes, 608–609, G10 Pressing: ceramics, powdered, 481–483 glass, 473 Prestressed concrete, 584, G10 Primary bonds, 26–30, G10 Primary creep, 238 Primary phase, 279, G10 Principal quantum number, 19, 20 Principle of combined action, 578, G10 Process annealing, 388, G10 Processing, materials, Proeutectoid cementite, 298–299, G10 Proeutectoid ferrite, 296, G10 Propane, 491 Properties, G10 categories of, Proportional limit, 143, 144, G10 Protons, 16 PTFE, see Polytetrafluoroethylene p-Type semiconductors, 684–685, G10 Pultrusion, 607–608 Purple plague, W125 Pyrex glass: composition, 462 index of refraction, W64 joined to low-expansion alloys, W8 mechanical properties, A8, A10, A14 thermal properties, W5 thermal shock, W14 Pyroceram: composition, 462 flexural strength, 448 modulus of elasticity, 448 Poisson’s ratio, A10 Q Quantum mechanics, 17, G10 Quantum numbers, 19–20, G10 magnetic, 20, W24 Quartz, 427, 477 hardness, 452 index of refraction, W64 as piezoelectric material, 712 Quenching media, 395–396 R Radiation effects, polymers, 657 Random copolymers, 507, 508, G10 Range of stress, 228, 229 Recombination, electron-hole, 694, W67 in light-emitting diodes, W73 Recovery, 195, G10 Recrystallization, 195–199, 388, G10 effect on properties, 197 kinetics for copper, 323 Recrystallization temperature, 197–198, G10 dependence on alloy content, 197–198 dependence on percent cold work, 198 selected metals and alloys, 198 Rectification, 695–696 Rectifying junctions, 694–696, G10 Recycling: issues in materials science and engineering, W140–W143 of beverage cans, W135 of composite materials, W142–W143 of glass, W141 of metals, W140–W141 of plastics and rubber, W141–W142 Recycling codes and products, W142 Reduction (electrochemical), 623, G10 Reduction in area, percent, 148 Reflection, W65, G10 Reflectivity, W60, W65 Refraction, W57, W63–W64, G10 index of, W63, G6 Refractories (ceramics), 461, 464–465, G10 corrosion, 654–655 Refractory metals, 378 creep resistance, 243 Reinforced concrete, 583–584, G10 Reinforcement efficiency, table of, 594 Relative permeability, W22, W23, G10 Relative permittivity, see Dielectric constant Relaxation frequency, 710, G10 Relaxation modulus, 528–531, G10 Relaxation time, 572 Remanence (remanent induction), W35, G10 Repeated stress cycle, 228, 229 Repeat units, 492 bifunctional and trifunctional, 495 table of, 496–497, A37–A40 Residual stresses, 388, G10 See also Thermal stresses glass, 474 martensitic steels, 343 Resilience, 149, G10 Resin, polymer, 597 Resistance (electrical), 666 Resistivity, see Electrical resistivity Resolved shear stresses, 181, G10 Retained austenite, 331 Reverse bias, 694–695, G10 Reversed stress cycle, 228, W98 Rhodium, 380 Rhombohedral crystal system, 46, 47 Rochelle salt, 712 Rock salt structure, 419–420, 422 Rockwell hardness tests, 131, 155–157 Rolling, of metals, 383, 384, G11 Rouge, 467 Rovings, 608 Rubbers, 501, 508 natural, see Natural rubber (polyisoprene) synthetic, 508, 552–554 trade names, characteristics, and applications, 553 Rubbery region, polymers, 530 Ruby, see also Aluminum oxide lasers, W75–W76 optical characteristics, W70 Rule of mixtures, G11 composites, 580–581, 589, 591, 592, 593, 602 electrical resistivity, 676 1496T_ind_I0-I22 1/13/06 22:28 Page I18 I18 • Index Rupture, 238, G11 Rupture lifetime, 239 extrapolation of, 241–242 Rust, 624 Ruthenium, 380 S Sacrificial anodes, 650, G11 Safe stress, 163, G11 Safety factors, 163, 221, W88 Samarium-cobalt magnets, W43 Samarium-iron garnet, W54 Sand casting, 384–385 Sandwich panels, 611–612, G11 Sapphire, see also Aluminum oxide optical transmittance, W70 Saturated hydrocarbons, 491, G11 Saturation, extrinsic semiconductors, 687 Saturation magnetization, W26, W31, W35, G11 temperature dependence, W33 SBR, see Styrene-butadiene rubber Scaling, 651 Scanning electron microscopy, 100–101, G11 Scanning probe microscopy, 12, 80, 101, G11 Scanning tunneling microscope, 433 Schmid factor, 203 Schottky defect, 435, 438, G11 equilibrium number, 436 Scission, 657, G11 Scleroscope hardness, 159 Screw dislocations, 89, 90, 91, 175–176, 177, G11 See also Dislocations in polymers, 515 Seawater, as corrosion environment, 649 Secant modulus, 138 Secondary bonds, 30–32, G11 Secondary creep, 238 Segregation, 268 Selection of materials, see Materials selection Selective leaching, 645–646, G11 Self-diffusion, 111, G11 Self-interstitials, 82, G11 SEM, see Scanning electron microscopy Semiconductor devices, 694–700 Semiconductor lasers, W77–W78 Semiconductors: band structure, 670–671 carbon nanotubes as, 433 in computers, 698 costs, A34 defined, 11, 668, G11 extrinsic, 682–685, G4 fullerenes as, 434 intrinsic, 679–682, G6 intrinsic carrier concentration, 680, 686 light absorption, W65–W67 n-type, 682–684, G8 p-type, 684–685, G10 temperature dependence: electron concentration, n-type Si, 687 electron mobility, Si, 689 hole mobility, Si, 689 intrinsic carrier concentration of Ge, 686 intrinsic carrier concentration of Si, 686 Semicrystalline polymers, 510–511 deformation mechanisms: elastic, 535, 536 plastic, 535, 537, 538 Sensors, 11–12 Severity of quench, 395 Shape memory: alloys, 12, 348–350 phase transformations, 248–250 Shear deformation, 134, 154 Shear modulus, 140 performance of torsionally stressed shaft, W93 relationship to elastic modulus, 141 selected metals, 137 spring design, W94–W95 Shear strain, 136, G11 Shear strength, W88 Shear stress, 136, G11 resolved, 181 resolved from tensile stress, 136–137 springs, W88 Shear tests, 136 Shot peening, 236, W100 Shrinkage, clay products, 479–480 Shrink-wrap polymer films, 541 Silica, 7, 426–427 crystalline and noncrystalline structures, 71 fibers for optical communications, 469, W80–W82 fused, see Fused silica as refractory, 465 Silica-alumina phase diagram, 442 Silica glasses, 427 viscosity, 472 Silicates: glasses, 427 layered, 429–430 tetrahedral structure, 426 types and structures, 426–430 Silicon: bonding energy and melting temperature, 28 conduction in, 681 cost, A34 electrical characteristics, 680 electron concentration vs temperature, n-type, 687 electron/hole mobility vs impurity concentration, 688 electron/hole mobility vs temperature, 689 fracture toughness, 468 intrinsic carrier concentration vs temperature, 686 linear coefficient of thermal expansion, W121 in MEMS, 468 vacancy (surface), 80 wafer, W119 Silicon carbide: as abrasive, 466 flexural strength, 448 hardness, 452 modulus of elasticity, 448 properties as whiskers and fibers, 596 as refractory, 465 Silicon dioxide, see Silica Silicone rubber, 553–554 characteristics and applications, 553 degradation resistance, 656 Silicones: for integrated circuit fabrication, W127 Silicon nitride: ceramic ball bearings, 469–470 compressive strength, 469 flexural strength, 448 fracture strength distribution, 444 hardness, 469 modulus of elasticity, 448 properties as a whisker, 596 Silly putty, 528 Silver, 380 atomic radius and crystal structure, 41 electrical conductivity, 674, 677 slip systems, 180 thermal properties, W5 Simple cubic crystal structure, 74 Single crystals, 63, G11 slip in, 181–183 Sintered aluminum powder (SAP), 584 Sintering, 482–483, G11 SI units, A1–A2 Ski, cross-section, 577 1496T_ind_I0-I22 1/13/06 22:28 Page I19 Index • I19 Slip, 144, 176, G11 compared to twinning, 187 polycrystalline materials, 185–186 single crystals, 181–183 Slip casting, 478–479, G11 Slip direction, 179 Slip lines, 183, 185, 186 Slip plane, 176, 179–180 Slip systems, 179–181, G11 selected metals, 180 Small-angle grain boundaries, 93, 189 Smart materials, 11–12 Societal considerations, materials science, W137–W143 Soda-lime glasses: composition, 462 dielectric properties, 704 electrical conductivity, 700 thermal properties, W5 thermal shock, W14 viscosity, 472 Sodium chloride: bonding energy and melting temperature, 28 bonding energy determination, 36 ionic bonding, 27 structure, 420 Sodium-potassium niobate, 470 Sodium-silicate glass, 428 Softening point, 473, G11 Soft magnetic materials, W38–W41, G11 properties, W41 Soils, as corrosion environments, 649 Solder bumps, W128 Soldering, 275, 386, G11 integrated circuit packaging, W128 Solders, lead-free, 275 Solid-solution strengthening, 190–191, 268, G11 Solid solutions, G11 in ceramics, 437–438 intermediate, 282, 286, G6 interstitial, 84, 437, G6 in metals, 83–85 ordered, 282, 373 terminal, 282, G13 Solidus line, 259, 260, 270, G11 Solubility limit, 254, G12 factors that influence for solid phase, 84 Solutes, G12 defined, 83 Solution heat treatment, 403, G12 Solvents, G12 defined, 83 Solvus line, 270, G12 Sonar, use of piezoelectric ceramics in, 470 Specific heat, W2, G12 values for selected materials, W5, A24–A26 Specific modulus, 375, 585, G12 selected fiber-reinforcement materials, 596 Specific strength, 375, 585, G12 selected fiber-reinforcement materials, 596 Sphalerite structure, 420, 422 Spheroidite, 329–330, G12 hardness and ductility, 341 Spheroidization, 390, G12 Spherulites, in polymers, 489, 513–514, G12 alteration during deformation, 538 photomicrograph of polyethylene, 514 transmission electron micrograph, 489 Spinel, 423, 440 flexural strength, 448 index of refraction, W64 modulus of elasticity, 448 structure, 423 thermal properties, W5 Spin magnetic moment, 20, W24 Spinnerets, 568 Spinning, polymer fibers, 568, G12 Spring design, materials selection, W94–W101 Stabilized zirconia, 441, 605 Stabilizers, 564, G12 Stacking faults, 96 Stainless steels, 364–365, G12 See also Ferrous alloys; specific steels for artificial hips, W112–W113 compositions, properties, and applications for selected, 365 creep resistance, 243 electrical conductivity, 674 passivity, 639 thermal properties, W5 weld decay, 644–645 Standard deviation, 161, 163 Standard emf series, 626–628 Standard half-cells, 626, 627, G12 Static fatigue, 443 Steady-state creep rate, 239 Steady-state diffusion, 112–114 Steatite, dielectric properties, 704 Steels, 293 See also Alloy steels; Stainless steels AISI/SAE designation scheme, 362 classification, 332, 360 costs, A31–A32 elastic and shear moduli, 137 electrical conductivity, 674 fatigue behavior (1045), 248 heat treatments, 388–401 impact energy, 227 magnetic properties, W43 overview of types, 360–365 plane strain fracture toughness, 219, A16 Poisson’s ratio, 137 properties as wires (fiber reinforcement), 596 for springs, W98–W99, W133 thermal properties, W5 yield and tensile strengths, ductility (1020), 148 Step reaction polymerization, see Condensation polymerization Stereoisomerism, G12 polymers, 504–505 Sterling silver, 83, 380 Stiffness, see Modulus of elasticity Stoichiometry, 435, G12 Stone age, Strain, 135 See also Stress-strain behavior engineering, 135, G12 lattice, 178, 190–191, 407, G7 shear, 136, G11 true, 151, G13 Strain hardening, 154, 191–194, 383, G2, G12 corrosion and, 640 influence on electrical resistivity, 675, 676 influence on mechanical properties, 192, 193 recrystallization after, 195–198 Strain-hardening exponent, 152, 193 determination of, 172 selected metal alloys, 152 Strain point (glass), 473, G12 Strength, 144 flexural, 447–449, G5 fracture, 145 ranges for material types (bar chart), shear, W88 for a torsionally stressed shaft, W87–W93 Strengthening of metals: grain size reduction, 188–190 mechanism, 188 solid-solution strengthening, 190–191 strain hardening, see Strain hardening 1496T_ind_I0-I22 1/13/06 22:28 Page I20 I20 • Index Stress, see also Stress-strain behavior critical (for fracture), 216 effect on creep, 240–241 engineering, 134, G12 mean (fatigue), 228, 229, 234–235 normal (resolved from pure tensile), 136–137 range (fatigue), 228, 229 residual, see Residual stresses safe, 163, G11 shear, 136, 137, 181, G11 shear (resolved from pure tensile), 136–137 thermal, see Thermal stresses true, 151, G13 working, 163 Stress amplitude, 228, 229, W100 Stress concentration, 215–216, 223, 235, G12 polymers, 532 Stress concentration factor, 216 Stress corrosion cracking, 621, 646–647, W111, G12 in ceramics, 443 Stress raisers, 216, 235, G12 in ceramics, 443–444, 451 Stress ratio, 229 Stress relaxation measurements, 528 Stress relief annealing, 388, G12 Stress state, geometric considerations, 136–137 Stress-strain behavior: alloy steel, 167 brass, 146 ceramics, 447–449 composite, fibrous (longitudinal), 587 elastic deformation, 137–140 cast iron (gray), 168 natural rubber, vulcanized and unvulcanized, 543 nonlinear (elastic), 138 plastic deformation, 144–149 polymers, 524–527 shape-memory alloy, 350 for steel, variation with percent cold work, 193 true, 152 Striations (fatigue), 232–233 Structural clay products, 461, 463, 476, G12 Structural composites, 610–612, G12 Structure, atomic, 16–22 definition, G12 Structures, crystal, see Crystal structures Styrene, 509 Styrene-butadiene rubber (SBR), 508 characteristics and applications, 552–553 degradation resistance, 656 Styrenic block copolymers, 559–560 Styrofoam, W12 Substitutional impurity defects, 84 Substitutional solid solutions, 84, 437, G12 Superalloys, 380 creep resistance, 243 fiber reinforcement, 604 Superconductivity, W47–W50, G12 applications, W49–W50 Superconductors, W47 critical properties, W50 high-temperature, W49, W50 types I and II, W48–W49 Supercooling, 317, 324, G12 degrees for homogeneous nucleation, 318 Superficial Rockwell hardness tests, 155–157 Superheating, 324, G12 Super Invar, W5 as low-expansion alloy, W8 Supermalloy, magnetic properties, W41 Surface energy, 92, 314, 319 Susceptibility, magnetic, W23 Symbols, list, xxiii–xxv Syndiotactic configuration, 504, G12 Synthetic rubbers, 508, 552–553, 656 Systems: definition, 253, G12 homogeneous vs heterogeneous, 255 T Talc, 429 Tangent modulus, 138 Tantalum, 378, 380 Tape automated bonding, W127–W128, G13 Tape casting, 484 Tarnishing, 651 Tear strength, polymers, 534 Teflon, see Polytetrafluoroethylene TEM, 92, 95, 99–100, G13 Temperature gradient, W9 thermal stresses, W13 Temper designation, 375, G13 Tempered martensite, 343–345, W103, G13 hardness vs carbon content, 343 mechanical properties: vs tempering temperature, 345, 346 dependence on cylinder diameter, 399–400, 401 Temper embrittlement, 346 Tempering: glass, 444, 475, 487 steels, 343–345 Tennis balls (nanocomposites in), 612–613 Tensile strength, 145, G13 artificial hip materials,W111,W113 carbon nanotubes, 433 correlation with hardness, 160 fibrous composites, 592 fine pearlite, 340 influence of recrystallization on, 197 selected fiber-reinforcement materials, 596 selected metals, 148 selected polymers, 526 ranges for material types (bar chart), tempered martensite, 345 values for various materials, A11–A15 wire, as a function of diameter, W98 Tensile test apparatus, 133–135 Tensile tests, 133–135 See also Stress-strain behavior on failed automobile axle, W107 Terephthalic acid (structure), 562 Terminal solid solutions, 282, G13 Ternary phase diagrams, 287 Tertiary creep, 238 Tetragonal crystal system, 46, 47 Tetrahedral position, 423, W29, G13 Textile fibers, 554–555 Texture: magnetic, 65–66, W40 rolling (sheet, BCC iron), W40 Thermal conduction, W3, W7, W9 Thermal conductivity, W7, W9–W12, G13 influence of impurities, W10 of leadframe materials, W122 selected materials, W5, A21–A23 Thermal diffusivity, W17 Thermal expansion, W4–W7 linear coefficient of, 237, W4, W12–W14, G13 relation to bonding, W6 selected materials, W5, W112, A17–A20 volume coefficient of, W5 Thermal fatigue, 237, G13 Thermally activated processes, 321, G13 Thermal properties, W2 See also specific thermal properties selected materials, W5, A17–A26 1496T_ind_I0-I22 1/13/06 22:28 Page I21 Index • I21 Thermal protection system (Space Shuttle), W1 Thermal shock, 475, W7, G13 brittle materials, W13–W14 maximum temperature change without, W18 Thermal shock resistance, W13 Thermal stresses, 237, W12–W14, G13 avoidance at metal-to-glass junctions, W8 glass, 475 Thermal tempering (glass), 475, G13 Thermoplastic elastomers, 559–560, G13 Thermoplastic polymers, 506–507, G13 characteristics and applications, 550–551 degradation resistance, 656 forming techniques, 565–567 Thermosetting polymers, 506–507, G13 characteristics and applications, 551 degradation resistance, 656 forming techniques, 565–567 Thin film magnetic recording media, W46–W47 Thoria-dispersed (TD) nickel, 584 Tie lines, 260, G13 Tilt boundaries, 93, 94 Time-temperature-transformation diagrams, see Isothermal transformation diagrams Tin, 380, 382 allotropic transformation for, 48 crystal structures, 48, 75 recrystallization temperature, 198 superconducting critical temperature, W50 Tin cans, 651 Tin-gold phase diagram, 308 Titanium: atomic radius and crystal structure, 41 elastic and shear moduli, 137 Poisson’s ratio, 137 slip systems, 180 superconducting critical temperature, W50 yield and tensile strengths, ductility, 148 Titanium alloys, 377–378 for artificial hips, W112–W114 plane strain fracture toughness, 219 properties and applications of, 379 Tool steels, 362, 364 Top-down science, 12 Torque, 134, W88 Torsion, 136 Torsional deformation, 134, 154 Torsional tests, 136 Torsionally stressed shaft, case study, W87–W94 Toughness, 150, G13 Tows, 608 Trade names: selected elastomers, 553 selected plastics, 550–551 trans, 505, G13 Transdermal patch, W134 Transducers, 470, 712 Transfer molding, plastics, 565 Transformation rate, 323, G13 temperature dependence, 321 Transformation toughening, 605 Transformer cores, 65, W40 Transgranular fracture, 212–213, G13 Transient creep, 238 Transistors, 696–698 Transition metals, 23 Transition temperature, ductilebrittle, see Ductile-to-brittle transition Translucency, W61, G13 insulators, W71 Transmission (of light), W68–W69 Transmission electron microscopy, 92, 95, 99–100, G13 Transmissivity, W60 Transparency, W61, G13 Transverse bending test, 447–448 equation for maximum deflection, 458, 601 Transverse direction, 587, G13 Transverse loading, composites, 591, 592 Triclinic crystal system, 46, 47 anisotropy in, 65 Tridymite, 427 Trifunctional (polymers), 495, G13 Trigonal crystal system, see Rhombohedral crystal system Triple point, 258 True stress/strain, 151–152, G13 T-T-T diagrams, see Isothermal transformation diagrams Tungsten, 378, 380 atomic radius and crystal structure, 41 bonding energy and melting temperature, 28 diffraction pattern, 79 elastic and shear moduli, 137 Poisson’s ratio, 137 properties as wire, 596 recrystallization temperature, 198 slip systems, 180 superconducting critical temperature, W50 thermal properties, W5 Tungsten carbide: as abrasive, 466 hardness, 452 Turbine blades, 243 Twin boundaries, 94 Twinning, 185, 187 compared to slip, 187 role in shape-memory effect, 348–349 Twins, 94 Twisting moment, W88 U Undercooling, see Supercooling UHMWPE (Ultrahigh molecular weight polyethylene), 557, G13 for artificial hips, W114 properties as a fiber, 596 Unary phase diagrams, 256–258 Uniaxial powder pressing, 481–482 Unidirectional solidification, 243 Uniform corrosion, 640 Unit cells, 40–41, G14 See also Crystal structures crystal systems, 46, 47 Units: electrical and dielectric parameters, 707 magnetic parameters, W23 SI, A1–A2 Unsaturated hydrocarbons, 491, G14 UNS designation scheme, 362 Upper critical temperature, 389, G14 Upper yield point, 143, 144 V Vacancies, 81–82, G14 in ceramics, 434 diffusion, 112, 438, G14 equilibrium number, 81 in polymers, 514, 515 Valence band, 670, G14 Valence electrons, 21, G14 Valve spring design, W94–W101 van der Waals bonding, 30–32, G14 in clays, 429 gecko lizards, 15 hydrocarbons, 491 in polymers, 502, 538 Vibrational heat capacity, W2–W3 Vibrations, atomic, 96, W2–W3 Vickers hardness tests, 156, 158 1496T_ind_I0-I22 1/13/06 22:28 Page I22 I22 • Index Video cassette recorders, W44, W134 Vinyl esters, polymer-matrix composites, 600 Vinyls, 551 Viscoelastic creep, 531 Viscoelasticity, 140, 527–531, G14 Viscoelastic relaxation modulus, 528–531, G10 Viscosity, 450, 487, G14 temperature dependence for glasses, 472 Viscous flow, 144 in ceramics, 450 in polymers, 530 Visible spectrum, W59 Vision (glass ceramic), 463 Vitreous silica, see Fused silica Vitrification, 480, G14 Volatile organic compound (VOC) emissions, 555 Volume defects, 96 Volume expansion coefficient, W5–W6 Volume fraction (phase), 264 Vulcanization, 503, 542–543, G14 Vycor, 462 W Wallner line, 447 Water: as corrosion environment, 649 bonding energy and melting temperature, 28 desalinization of, 516 hydrogen bonding in, 32, 33 phase diagram (pressuretemperature), 257, 309 as quenching medium, 395–396 volume expansion upon freezing, 33 Wave-mechanical atomic model, 18, 19, G14 Weathering, of polymers, 658–659 Weight-average molecular weight, 498 Weight percent, 85–86, G14 Weld decay, 645, G14 Welding, 386–387, G14 Wetting, 319 Whiskers, 216, 595, G14 White cast iron, 368, 371, G14 Whitewares, 461, 463, G14 Wiedemann-Franz constant, W9, W16 values of, for metals, W5 Wiedemann-Franz law, W9 Wire bonding, W120, W124–W125 Wires, 595, 596 Wood: as composite, 578 cost, A36 density, A6 electrical resistivity, A29 modulus of elasticity, A9 specific heat, A26 tensile strength, A15 thermal conductivity, A23 thermal expansion coefficient, A20 Work hardening, see Strain hardening Working point (glass), 473, G14 Working range, 472 Working stress, 163 Wrought alloys, 373, G14 Wüstite, 435, 719, 721 X X-ray diffraction, 38, 66–70 X-rays, W58, W59 Y Yielding, 144, G14 Yield point phenomenon, 143, 144 Yield strength, 143, 144, 525, G14 artificial hip materials, W111, W113 dependence on grain size (brass), 189 fine pearlite, 340 precipitation-hardened aluminum alloy, 406 selected metals, 148 selected polymers, 526 in shear, spring design, W95 tempered martensite, 345 values for various materials, 219, A11–A15 Young’s modulus, see Modulus of elasticity Yttrium barium copper oxide, W49, W50 Yttrium iron garnet (YIG), W30 Z Zinc: atomic radius and crystal structure, 41 recrystallization temperature, 198 slip systems, 180 Zinc alloys, 382 Zinc blende structure, 420–421, 422 Zinc telluride, electrical characteristics, 680 Zirconia: flexural strength, 448 modulus of elasticity, 448 as refractory, 465 stabilized, 441 transformation toughening, 605 Zirconia-calcia phase diagram, 441 Zirconium: alloys, 382 slip systems, 180 1496T_ifc 12/31/05 10:22 Page Characteristics of Selected Elements Element Symbol Atomic Number Aluminum Argon Barium Beryllium Boron Bromine Cadmium Calcium Carbon Cesium Chlorine Chromium Cobalt Copper Fluorine Gallium Germanium Gold Helium Hydrogen Iodine Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Neon Nickel Niobium Nitrogen Oxygen Phosphorus Platinum Potassium Silicon Silver Sodium Sulfur Tin Titanium Tungsten Vanadium Zinc Zirconium Al Ar Ba Be B Br Cd Ca C Cs Cl Cr Co Cu F Ga Ge Au He H I Fe Pb Li Mg Mn Hg Mo Ne Ni Nb N O P Pt K Si Ag Na S Sn Ti W V Zn Zr 13 18 56 35 48 20 55 17 24 27 29 31 32 79 53 26 82 12 25 80 42 10 28 41 15 78 19 14 47 11 16 50 22 74 23 30 40 Atomic Weight (amu) Density of Solid, 20ЊC (g/cm3) Crystal Structure, 20ЊC Atomic Radius (nm) Ionic Radius (nm) Most Common Valence Melting Point (ЊC) 26.98 39.95 137.33 9.012 10.81 79.90 112.41 40.08 12.011 132.91 35.45 52.00 58.93 63.55 19.00 69.72 72.64 196.97 4.003 1.008 126.91 55.85 207.2 6.94 24.31 54.94 200.59 95.94 20.18 58.69 92.91 14.007 16.00 30.97 195.08 39.10 28.09 107.87 22.99 32.06 118.71 47.87 183.84 50.94 65.41 91.22 2.71 — 3.5 1.85 2.34 — 8.65 1.55 2.25 1.87 — 7.19 8.9 8.94 — 5.90 5.32 19.32 — — 4.93 7.87 11.35 0.534 1.74 7.44 — 10.22 — 8.90 8.57 — — 1.82 21.45 0.862 2.33 10.49 0.971 2.07 7.27 4.51 19.3 6.1 7.13 6.51 FCC — BCC HCP Rhomb — HCP FCC Hex BCC — BCC HCP FCC — Ortho Dia cubic FCC — — Ortho BCC FCC BCC HCP Cubic — BCC — FCC BCC — — Ortho FCC BCC Dia cubic FCC BCC Ortho Tetra HCP BCC BCC HCP HCP 0.143 — 0.217 0.114 — — 0.149 0.197 0.071 0.265 — 0.125 0.125 0.128 — 0.122 0.122 0.144 — — 0.136 0.124 0.175 0.152 0.160 0.112 — 0.136 — 0.125 0.143 — — 0.109 0.139 0.231 0.118 0.144 0.186 0.106 0.151 0.145 0.137 0.132 0.133 0.159 0.053 — 0.136 0.035 0.023 0.196 0.095 0.100 ϳ0.016 0.170 0.181 0.063 0.072 0.096 0.133 0.062 0.053 0.137 — 0.154 0.220 0.077 0.120 0.068 0.072 0.067 0.110 0.070 — 0.069 0.069 0.01–0.02 0.140 0.035 0.080 0.138 0.040 0.126 0.102 0.184 0.071 0.068 0.070 0.059 0.074 0.079 3ϩ Inert 2ϩ 2ϩ 3ϩ 1Ϫ 2ϩ 2ϩ 4ϩ 1ϩ 1Ϫ 3ϩ 2ϩ 1ϩ 1Ϫ 3ϩ 4ϩ 1ϩ Inert 1ϩ 1Ϫ 2ϩ 2ϩ 1ϩ 2ϩ 2ϩ 2ϩ 4ϩ Inert 2ϩ 5ϩ 5ϩ 2Ϫ 5ϩ 2ϩ 1ϩ 4ϩ 1ϩ 1ϩ 2Ϫ 4ϩ 4ϩ 4ϩ 5ϩ 2ϩ 4ϩ 660.4 Ϫ189.2 725 1278 2300 Ϫ7.2 321 839 (sublimes at 3367) 28.4 Ϫ101 1875 1495 1085 Ϫ220 29.8 937 1064 Ϫ272 (at 26 atm) Ϫ259 114 1538 327 181 649 1244 Ϫ38.8 2617 Ϫ248.7 1455 2468 Ϫ209.9 Ϫ218.4 44.1 1772 63 1410 962 98 113 232 1668 3410 1890 420 1852 1496T_ibc 12/27/05 13:36 Page Power W ϭ 0.239 cal/s W ϭ 3.414 Btu/h cal/s ϭ 14.29 Btu/h cal/s ϭ 4.184 W Btu/h ϭ 0.293 W Btu/h ϭ 0.070 cal/s Viscosity Pa-s ϭ 10 P P ϭ 0.1 Pa-s Temperature, T T(K) ϭ 273 ϩ T(ЊC) T(ЊC) ϭ T(K) Ϫ 273 T(K) ϭ [T(ЊF) Ϫ 32] ϩ 273 T(ЊF) ϭ [T(⌲) Ϫ 273] ϩ 32 5 T(ЊC) ϭ [T(ЊF) Ϫ 32] T(ЊF) ϭ [T(ЊC)] ϩ 32 Specific Heat J/kg-K ϭ 2.39 ϫ 10Ϫ4 cal/g-K cal/g-ЊC ϭ 4184 J/kg-K J/kg-K ϭ 2.39 ϫ 10Ϫ4 Btu/lbm-ЊF Btu/lbm-ЊF ϭ 4184 J/kg-K cal/g-ЊC ϭ 1.0 Btu/lbm-ЊF Btu/lbm-ЊF ϭ 1.0 cal/g-K Thermal Conductivity cal/cm-s-K ϭ 418.4 W/m-K W/m-K ϭ 2.39 ϫ 10Ϫ3 cal/cm-s-K W/m-K ϭ 0.578 Btu/ft-h-ЊF Btu/ft-h-ЊF ϭ 1.730 W/m-K cal/cm-s-K ϭ 241.8 Btu/ft-h-ЊF Btu/ft-h-ЊF ϭ 4.136 ϫ 10Ϫ3 cal/cm-s-K Periodic Table of the Elements Metal IA Key 29 Atomic number H Cu Symbol 1.0080 IIA 63.54 Li He IIIA Intermediate 9.0122 12 IVA VA VIA VIIA Atomic weight Be 6.941 11 Nonmetal 4.0026 10 B VIII C N O F Ne 10.811 13 12.011 14 14.007 15 15.999 16 18.998 17 20.180 18 Na Mg 22.990 19 24.305 20 IIIB IVB VB VIB Al 21 22 23 24 25 26 27 28 29 30 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.098 40.08 44.956 47.87 50.942 51.996 54.938 55.845 58.933 58.69 63.54 65.41 69.72 72.64 74.922 78.96 79.904 83.80 VIIB IB IIB Si P S Cl Ar 26.982 31 28.086 32 30.974 33 32.064 34 35.453 35 39.948 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 55 87.62 56 88.91 91.22 72 92.91 73 95.94 74 (98) 75 101.07 76 102.91 77 106.4 78 107.87 79 112.41 80 114.82 81 118.71 82 121.76 83 127.60 84 126.90 85 131.30 86 Cs Ba 132.91 87 137.34 88 Fr Ra (223) (226) Rare earth series Actinide series Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 178.49 104 180.95 105 183.84 106 186.2 107 190.23 108 192.2 109 195.08 110 196.97 200.59 204.38 207.19 208.98 (209) (210) (222) Rf Db Sg Bh Hs Mt Ds (261) (262) (266) (264) (277) (268) (281) 57 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.12 140.91 144.24 (145) 150.35 151.96 157.25 158.92 162.50 164.93 167.26 168.93 173.04 174.97 89 Actinide series 58 La 138.91 Rare earth series 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr (227) 232.04 231.04 238.03 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262) ... 1.2 Materials Science and Engineering • 1.2 MATERIALS SCIENCE AND ENGINEERING Sometimes it is useful to subdivide the discipline of materials science and engineering into materials science and materials. .. Perspective Materials Science and Engineering Why Study Materials Science and Engineering? Classification of Materials Advanced Materials 11 Modern Materials? ?? Needs 12 References 13 Atomic Structure and. .. F and J Hashemi, Principles of Materials Science and Engineering, 4th edition, McGraw-Hill Book Company, New York, 2006 Van Vlack, L H., Elements of Materials Science and Engineering, 6th edition,

Ngày đăng: 02/04/2014, 15:47

TỪ KHÓA LIÊN QUAN