ĐỀ THITHỬĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 23 )
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I: (2 điểm) Cho hàm số
3
y x x
.
1) Khảo sát sự biến thiên và đồ thị (C) của hàm số.
2) Dựa và đồ thị (C) biện luận số nghiệm của phương trình: x
3
– x = m
3
– m
Câu II: (2 điểm)
1) Giải phương trình: cos
2
x + cosx + sin
3
x = 0
2) Giải phương rtình:
3 2 2 2 2 1 3 0
x x
.
Câu III: (1 điểm) Cho I =
ln2
3 2
3 2
0
2 1
1
x x
x x x
e e
dx
e e e
. Tính e
I
Câu IV: (1 điểm) Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tai A và
D. Biết AD = AB = a, CD = 2a, cạnh bên SD vuông góc với mặt phẳng đáy và SD = a.
Tính thể tứ diện ASBC theo a.
Câu V: (1 điểm) Cho tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức:
P =
2 2
2
1 tan 1
2 2
1 tan
2
A B
tan
C
+
2 2
2
1 tan 1
2 2
1 tan
2
B C
tan
A
+
2 2
2
1 tan 1
2 2
1 tan
2
C A
tan
B
II. PHẦN RIÊNG: (3 điểm)
A. Theo chương trình chuẩn:
Câu VI.a: (2 điểm)
1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x
2
+ y
2
– 4y – 5 = 0. Hãy viết
phương trình đường tròn (C) đối xứng với đường tròn (C) qua điểm M
4 2
;
5 5
2) Trong không gian với hệ toạ độ Oxyz, viết phương tham số của đường thẳng (d) đi qua
điểm A(1;5;0) và cắt cả hai đường thẳng
1
2
:
1 3 3
x y z
và
2
: 4
1 2
x t
y t
z t
.
Câu VII.a: (1 điểm) Cho tập hợp D = {x R/ x
4
– 13x
2
+ 36 ≤ 0}. Tìm giá trị lớn nhất và giá trị
nhỏ nhất của hàm số y = x
3
– 3x trên D.
B. Theo chương trình nâng cao:
Câu VI.b: (2 điểm)
1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) và đường thẳng
định bởi:
2 2
( ): 4 2 0; : 2 12 0
C x y x y x y
. Tìm điểm M trên sao cho từ M vẽ được
với (C) hai tiếp tuyến lập với nhau một góc 60
0
.
2) Trong không gian với hệ toạ độ Oxyz, viết phương trình đường vuông góc chung của
hai đường thẳng:
1
7 3 9
:
1 2 1
x y z
và
2
:
3 7
1 2
1 3
x t
y t
z t
Câu VII.b: (1 điểm) Giải phương trình z
3
+ (1 – 2i)z
2
+ (1 – i)z – 2i = 0., biết rằng phương trình
có một nghiệm thuần ảo.
. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 23 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số 3 y x x . 1) Khảo sát sự biến thi n và đồ. điểm) Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tai A và D. Biết AD = AB = a, CD = 2a, cạnh bên SD vuông góc với mặt phẳng đáy và SD = a. Tính thể tứ diện ASBC theo a. Câu V:. B C tan A + 2 2 2 1 tan 1 2 2 1 tan 2 C A tan B II. PHẦN RIÊNG: (3 điểm) A. Theo chương trình chuẩn: Câu VI.a: (2 điểm) 1) Trong mặt phẳng với