Microsoft Word 17 ��K NÔNG docx SỞ GD&ĐT ĐĂK NÔNG ĐỀ CHÍNH THỨC (Đề thi có 01 trang) KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2022 – 2023 Môn thi TOÁN (Đề chung) Thời gian làm bài 120 phút (không kể thời[.]
SỞ GD&ĐT ĐĂK NƠNG ĐỀ CHÍNH THỨC (Đề thi có 01 trang) KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2022 – 2023 Mơn thi: TỐN (Đề chung) Thời gian làm bài: 120 phút (không kể thời gian giao đề) Bài (2,0 điểm) a) Tính giá trị biểu thức: A 2 18 x2 x2 x b) Rút gọn biểu thức: P x 2; x 1 x2 x 1 Bài (2,0 điểm) a) Vẽ đồ thị hàm số P : y 2x b) Giải phương trình bậc hai: x 3x Bài (2,0 điểm) 2x y a) Giải hệ phương trình bậc hai ẩn: 3x y b) Giải toán sau cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người thời gian quy định Nhờ cải tiến phương pháp nên xét nghiệm thêm 50 người Vì thế, việc xét nghiệm hoàn thành sớm kế hoạch Hỏi theo kế hoạch, thành phố Gia Nghĩa xét nghiệm người? Bài (3,0 điểm) Cho nửa đường trịn đường kính AD Lấy điểm B thuộc nửa đường tròn (B khác A D), cung BD lấy điểm C (C khác B D) Hai dây AC BD cắt điểm E Kẻ đoạn thẳng EF vng góc với AD (F thuộc AD) a) Chứng minh tứ giác ABEF nội tiếp b) Chứng minh AE.AC AF.AD c) Chứng minh E tâm đường tròn nội tiếp tam giác BFC Bài (1,0 điểm) 4x 4044 9x 2022 Cho P Tìm giá trị x để biểu thức P đạt giá trị nhỏ x 2022 HẾT Thí sinh khơng sử dụng tài liệu Giám thị khơng giải thích thêm Họ tên thí sinh:……………………………… Số báo danh:………………………………… Chữ ký giám thị 1:………………………… Chữ ký giám thị :…………………… SỞ GD&ĐT ĐĂK NÔNG KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2022 – 2023 Mơn thi: TỐN (Đề chung) Thời gian làm bài: 120 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC (Đề thi có 01 trang) HƯỚNG DẪN GIẢI Bài (2,0 điểm) a) Tính giá trị biểu thức: A 2 18 x2 x2 x x 2; x 1 x2 x1 Giải a) Tính giá trị biểu thức: A 2 18 b) Rút gọn biểu thức: P A 2 18 2.2 2 32.2 2 2 b) Rút gọn biểu thức: P Với x 2; x , ta có: P x2 x2 x x 2; x 1 x2 x1 x x x x x x x 1 x x 2x x2 x 1 x2 x 1 Bài (2,0 điểm) a) Vẽ đồ thị hàm số P : y 2x b) Giải phương trình bậc hai: x 3x Giải a) Vẽ đồ thị hàm số P : y 2x Ta có: a nên hàm số đồng biến x > nghịch biến x < * Bảng giá trị: x -2 -1 y 2x * Vẽ đồ thị hàm số: 2 b) Giải phương trình bậc hai: x 3x Ta có: a b c 3 nên phương trình có hai nghiệm x1 ; x Vậy phương trình có hai nghiệm phân biệt: x1 ; x Bài (2,0 điểm) 2x y a) Giải hệ phương trình bậc hai ẩn: 3x y b) Giải toán sau cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người thời gian quy định Nhờ cải tiến phương pháp nên xét nghiệm them 50 người Vì thế, việc xét nghiệm hồn thành sớm kế hoạch Hỏi theo kế hoạch, thành phố Gia Nghĩa xét nghiệm người? Giải 2x y a) Giải hệ phương trình bậc hai ẩn: 3x y 2x y 5x 15 x x Ta có: 3x y 2x y 2.3 y y Vậy ngiệm hệ phương trình 3;3 b) Giải toán sau cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người thời gian quy định Nhờ cải tiến phương pháp nên xét nghiệm thêm 50 người Vì thế, việc xét nghiệm hoàn thành sớm kế hoạch Hỏi theo kế hoạch, thành phố Gia Nghĩa xét nghiệm người? Gọi số người xét nghiệm theo kế hoạch x (người) x N* Thực tế, xét nghiệm x 50 (người) Theo kế hoạch, thời gian xét nghiệm xong 1000 người 1000 (giờ) x 1000 (giờ) x 50 Do cải tiến phương pháp, việc xét nghiệm hoàn thành sớm kế hoạch nên ta có phương trình: 1000 1000 1000 x 50 1000x x x 50 x x 50 1000x 50000 1000x x 50x Thực tế, thời gian xét nghiệm xong 1000 người x 50x 50000 ' 252 50000 50625 Suy phương trình có hai nghiệm phân biệt: 25 50625 25 50 625 x1 200 (thoả mãn ĐK); x 250 (loại) 1 Vậy theo kế hoạch, thành phố Gia Nghĩa xét nghiệm 200 người Bài (3,0 điểm) Cho nửa đường trịn đường kính AD Lấy điểm B thuộc nửa đường tròn (B khác A D), cung BD lấy điểm C (C khác B D) Hai dây AC BD cắt điểm E Kẻ đoạn thẳng EF vng góc với AD (F thuộc AD) a) Chứng minh tứ giác ABEF nội tiếp b) Chứng minh AE AC AF AD c) Chứng minh E tâm đường tròn nội tiếp tam giác BFC Giải B E A O F C D a) Chứng minh tứ giác ABEF nội tiếp Ta có: B thuộc nửa đường trịn (O) đường kính AD 900 (góc nội tiếp chắn đường tròn) nên ABD EFA 900 900 180 Xét tứ giác ABEF có ABE Vậy tứ giác ABEF nội tiếp đường tròn b) Chứng minh AE AC AF AD Ta có: C thuộc nửa đường trịn (O) đường kính AD 900 (góc nội tiếp chắn đường trịn) nên ACD chung AFE ACD 900 Xét AEF ADC có CAD ADC (g.g) AEF AE AF AE.AC AF.AD AD AC Vậy AE.AC AF.AD c) Chứng minh E tâm đường tròn nội tiếp tam giác BFC DFE 900 900 1800 Xét tứ giác CDFE có DCE CDE (cùng chắn cung CE) (1) nên tứ giác CDFE nội tiếp đường tròn CFE BAE (cùng chắn cung BE) (2) Theo câu a) tứ giác ABEF nội tiếp BFE BAC (cùng chắn cung BC) hay CDE BAE (3) Trong đường tròn (O): BDC BFE hay FE tia phân giác BFC (4) Từ (1), (2), (3) CFE EDF (cùng chắn cung EF) Mặt khác: FCE BDA (cùng chắn cung BA) BCA BCA hay CE tia phân giác BCF (5) Suy FCE Từ (4) (5) suy E tâm đường tròn nội tiếp tam giác BFC Câu (1,0 điểm) 4x4044 9x 2022 Cho P Tìm giá trị x để biểu thức P đạt giá trị nhỏ x 2022 Giải 2022 Đặt y x Khi đó: 4y 9y y 4y y P y2 y2 y 2 y 2 y2 y 2 7 y2 y 2 3 y 2 y2 Áp dụng bất đẳng thức Cô-si cho số dương y Ta có: y 2 y2 y 2 (vì y ) y2 4 y2 y 2 y y y 0 y2 +) y y Dấu “=” xảy y Khi đó: P 3.2 Vậy P đạt giá trị nhỏ y x 2022 x Dấu “=” xảy y _ THCS.TOANMATH.com _ ...SỞ GD&ĐT ĐĂK NÔNG KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2022 – 2023 Mơn thi: TỐN (Đề chung) Thời gian làm bài: 120 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC (Đề thi có 01 trang)... xét nghiệm xong 100 0 người 100 0 (giờ) x 100 0 (giờ) x 50 Do cải tiến phương pháp, việc xét nghiệm hoàn thành sớm kế hoạch nên ta có phương trình: 100 0 100 0 100 0 x 50 100 0x x x... nên phương trình có hai nghiệm x1 ; x Vậy phương trình có hai nghiệm phân biệt: x1 ; x Bài (2,0 điểm) 2x y a) Giải hệ phương trình bậc hai ẩn: 3x y b) Giải toán sau cách lập