1. Trang chủ
  2. » Tất cả

Luận văn đánh giá tác động của biến đổi khí hậu đến ngập lụt lưu vục sông nhật lệ, tỉnh quảng bình

96 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 96
Dung lượng 10,41 MB

Nội dung

Trang iii .vi vii 1.1 .5 1.2 .7 1.3 13 1.4 14 1.5 Tình hình l l t h th ng sông Nh t G 16 .20 2.1 20 2.2 23 2.2.1 23 2.2.2 25 2.3 .27 2.3.1 27 2.3.2 28 2.4 .29 2.4.1 29 2.4.2 32 2.4.3 .33 2.4.4 36 2.4.5 .38 2.4.6 .41 2.4.7 Ph 43 2.4.8 46 -i- 2.4.9 51 2.4.10 55 57 3.1 57 3.1.1 .58 3.1.2 59 3.2 62 3.3 .65 3.4 68 3.5 .74 76 78 83 -ii- Hình 1.1 Cá -2010 .5 Hình 1.2 Hình 1.3 Bi i t n su t toàn c u Hình 1.4 14 Hình 2.1 c sơng Nh t L 26 Hình 2.2 28 Hình 2.3 29 Hình 2.4 31 Hình 2.5 33 Hình 2.6 37 Hình 2.7 -HMS .38 Hình 2.8 .40 Hình 2.9 42 Hình 2.10 44 Hình 2.11 - 45 Hình 2.12 .52 Hình 2.13 .54 Hình 2.14 HEC-RAS 55 Hình 3.1 1976 58 -iii- Hình 3.2 NSE 0.77) .58 Hình 3.3 59 Hình 3.4 NSE 0.83) 59 Hình 3.5 Landsat ch 60 Hình 3.6 61 Hình 3.7 61 Hình 3.8 62 Hình 3.9 63 Hình 3.10 h trung bình 64 Hình 3.11 .65 Hình 3.12 66 Hình 3.13 .67 Hình 3.14 .68 Hình 3.15 70 Hình 3.16 RCP8.5 71 -iv- Hình 3.17 RCP8.5 72 RCP8.5 73 Hình 3.18 Hình - 83 Hình -4.474 84 Hình .85 Hình .85 Hình Hình 86 Xu 86 Hình 87 Hình .87 Hình 21) 88 Hình 10 21) 88 -v- .16 25 32 .47 - 51 69 69 .83 -vi- CN CS CSDL DEM E21 GCM GIS Global Climate Model: mơ hình khí HEC IPCC KNK KTTV M21 MAE NN&PTNN NSE OAGCM Intergovernmental Panel on Climate Change: Khí nhà kính - Ocean-Atmosphere Global Climate Model: Mơ hình kh RCM RCP RMSE Rx1day Rx3day SCS Representative Concentration Pathways: K Root Mean Square Error: S Soil Conservation Server SRES SST TIN TN&MT Triangle Inregurlar Network UNDP -vii- , [39] Các s [39, 42] Ng , , Handmer J cs (2012) [33] Kundzewicz cs (2013) [41] L , - [42] Trong liên quan mùa C Nina, hay n nguyên nhân quan [39] có liên quan , -1- V nh m n m b t xu th m bi it nh báo, d báo thách th c m i c n c gi i quy c gi i quy t s góp ph phó, gi m thi nhà ho c ng ng b t l i c khoa h c cho nh nhà quy t sách công tác xây d ng chi c c, mb is c bi dài ( c phát tri n kinh t i dân s ng tr c ti p ) gió mùa, hàng n B B [18] ng c bi iv ch y; n ng p l l n, t n su t pl t sâu, di n ng p th i gian ng p l t T ng c a ng p l n kinh t -xã h ng i ph i xem xét s : ng dịng i có th i, di n tích m t t s n xu t….b ơng trình mơ khác T Nam cơng trình [8, 12-16, 22] Tuy nhiên, cơng trình [12-16] C cơng trình [8, 22] [22] - -2- tác 3.5 Th o lu n V k (hay phút) Do Tuy nhiên, HECngày khác Ngoài ra, t khác s D M gia l s % 76.3% ( ) cho g Tuy nhiên, có nghiê l l 100% ( RCP8 tro , K ) k lịng sơng M c Thanh Xuân cs [22] 7.6% -74- [22] A2 Tuy [22] nguyên , hay k t n - - Các [27, 31, 40] trên, c T q trình -75- tốn - nhân v KNK RCP4.5 RCP8.5, s d ng mơ hình th h p v i -HMS mơ hình th y l c HEC-RAS k t GIS, lu n ng p l c hi ng c a c sơng, l y ví d sơng Nh t L nghiên : 1) HEC-HMS, GeoRAS HEC-RAS HEC- tính tốn 0.83 2) 3) ngày ã gia , -76- m t ràng, trung bình ng trung bình 49.2%, 63.1%, lên 74.3%, 98.8%, và nh tích Tính trung bình : gia Các Các k kéo gia ng nhanh t t nghiê , hay -77- liên ngành tốn liên quan mơ hình hóa cho khơng trá Hồng Thái Bình (2009), -Tám Lu- , , , NXB Tài nguyên 008), Bình) , cs (2007), Trung, cs (2011), , Chính, (2013), sơng Ba in -78- 10 (2014), , tr 380-391 11 cs (2010), , 12 , 13 14 011), , 15 16 17 QGHN 18 cs (2010), Nghi , 19 20 21 (2011), , B -79- 22 23 Hans Estrup Andersen, Brian Kronvang, Søren E Larsen, Carl Christian Hoffmann, Torben Strange Jensen, and Erik Koch Rasmussen (2006), Climatechange impacts on hydrology and nutrients in a Danish lowland river basin, Science of The Total Environment, No.365(1–3), pp 223-237 24 NigelW Arnell and SimonN Gosling (2014), The impacts of climate change on river flood risk at the global scale, Climatic Change, pp 1-15 25 NigelW Arnell and Ben Lloyd-Hughes (2014), The global-scale impacts of climate change on water resources and flooding under new climate and socioeconomic scenarios, Climatic Change, No.122(1-2), pp 127-140 26 M J Booij (2005), Impact of climate change on river flooding assessed with different spatial model resolutions, Journal of Hydrology, No.303(1–4), pp 176198 27 Shaochun Huang & Fred F Hattermann & Valentina Krysanova & Axel Bronstert (2013), Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model, Climatic Change, No 116, pp 33 28 US Army Corps of Engineers Hydrologic Engineering Center (2000), HEC-HMS Technical Reference Manual 29 US Army Corps of Engineers Hydrologic Engineering Center (2010), HEC-RAS 4.1 Hydraulic Reference Manual 30 King County (2010), the Climate Change Impacts on River Flooding Report: State-of-the-Science and Evidence of lacal Impacts 31 Samiran Das and Slobodan P Simonovic (2012), Assessment of Uncertainty in Flood Flows under Climate Change Impacts in the Upper Thames River Basin, Canada, British Journal of Environment and Climate Change, No.2(4) 32 Christian Dobler, Gerd Bürger, and Johann Stötter (2012), Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed, Journal of Hydrology, No.460–461(0), pp 29-39 33 J Handmer, Z.W Kundzewicz Y Honda, N Arnell, G Benito, J Hatfield, I.F Mohamed, P Peduzzi, S Wu, B Sherstyukov,, and and Z Yan K Takahashi (2012), Changes in impacts of climate extremes: human systems and ecosystems In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V Barros, T.F Stocker, D Qin, D.J Dokken, K.L Ebi, M.D Mastrandrea, K.J Mach, G.-K Plattner, S.K Allen, M Tignor, and P.M Midgley (eds.)] A Special Report of Working Groups I and II of the -80- Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp 231-290 34 Pin-Han Kuo Hsiao-Wen Wang, Jenq-Tzong Shiau (2013), Assessment of climate change impacts on flooding vulnerability for lowland management in southwestern Taiwan, Nat Hazards, No.68, pp 19 35 IPCC (1994), Technical Guidelines for Assessing Climate Change Impacts and Adaptaions 36 IPCC (2007), The Fourth Assessment Report 37 IPCC (2013), The 5th Assessment Report 38 IPCC (2013), Summary for Policymakers In: Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D Qin, G.-K Plattner, M Tignor, S.K Allen, J Boschung, A Nauels, Y Xia, V Bex and P.M Midgley (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 39 S N Jonkman (2005), Global Perspectives on Loss of Human Life Caused by Floods, Natural Hazards, No.34(2), pp 151-175 40 A L Kay, H N Davies, V A Bell, and R G Jones (2009), Comparison of uncertainty sources for climate change impacts: flood frequency in England, Climatic Change, No.92(1-2), pp 41-63 41 Zbigniew W Kundzewicz, Shinjiro Kanae, Sonia I Seneviratne, John Handmer, Neville Nicholls, Pascal Peduzzi, Reinhard Mechler, Laurens M Bouwer, Nigel Arnell, Katharine Mach, Robert Muir-Wood, G Robert Brakenridge, Wolfgang Kron, Gerardo Benito, Yasushi Honda, Kiyoshi Takahashi, and Boris Sherstyukov (2013), Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, No.59(1), pp 1-28 42 ZbigniewW Kundzewicz, Yukiko Hirabayashi, and Shinjiro Kanae (2010), River Floods in the Changing Climate—Observations and Projections, Water Resources Management, No.24(11), pp 2633-2646 43 Hyun-Han Kwon, Bellie Sivakumar, Young-Il Moon, and Byung-Sik Kim (2011), Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation-runoff model, Stochastic Environmental Research and Risk Assessment, No.25(4), pp 567-581 44 David Labat, Yves Goddéris, Jean Luc Probst, and Jean Loup Guyot (2004), Evidence for global runoff increase related to climate warming, Advances in Water Resources, No.27(6), pp 631-642 45 David R Legates, Harry F Lins, and Gregory J McCabe (2005), Comments on “Evidence for global runoff increase related to climate warming” by Labat et al, Advances in Water Resources, No.28(12), pp 1310-1315 46 Bernhard Lehner, Petra Döll, Joseph Alcamo, Thomas Henrichs, and Frank Kaspar (2006), Estimating the Impact of Global Change on Flood and Drought -81- 47 48 49 50 Risks in Europe: A Continental, Integrated Analysis, Climatic Change, No.75(3), pp 273-299 Michael D Dettinger and Henry F Diaz (2000), Global Characteristics of Stream Flow Seasonality and Variability, Jounal of Hydrometeology, No.1, p 22 NewZealand Ministry for the Environment (2010), Tools for Estimating the Effects of Climate Change on Flow Nicola Ranger, Stéphane Hallegatte, Sumana Bhattacharya, Murthy Bachu, Satya Priya, K Dhore, Farhat Rafique, P Mathur, Nicolas Naville, Fanny Henriet, Celine Herweijer, Sanjib Pohit, and Jan Corfee-Morlot (2011), An assessment of the potential impact of climate change on flood risk in Mumbai, Climatic Change, No.104(1), pp 139-167 Mukta Sapkota, Toshio Hamaguchi, and Toshiharu Kojiri (2011), Effects of Climate Change in Red River Discharges and Flooding Risk in Hanoi, Vietnam, Proceeding of Annual Conference, No 24, pp 148-148 51 Sangam Shrestha (2014), Assessment of Climate Change Impacts on Flood Hazard Potential in the Yang River Basin, Thailand, in Climate Change Impacts and Adaptation in Water Resources and Water Use SectorsSpringer International Publishing pp 43-66 52 Slobodan P Simonovic and Lanhai Li (2004), Sensitivity of the Red River Basin Flood Protection System to Climate Variability and Change, Water Resources Management, No 18, p 21 53 Jean-Luc Probst and Yves Tardy (1989), Global runoff fluctuations during the last 80 years in relation to world temperature change, American Journal of Science, No 289, p 18 54 Jean-Luc Probst and Yves Tardy (1987), Long range streamflow and world continental runoff fluctuations since the beginning of this century, Juornal of Hydrology, No 94, p 22 -82- 700 2- 600 Q-H 1976 500 400 300 200 100 0 200 Hình TT 400 600 800 1000 1200 - Xã Tính toán An Ninh 1,573 1,458 2,030 2,142 582 416 49 45 332 27 794 413 775 409 Duy Ninh 795 745 Gia Ninh 1,100 747 10 151 93 11 39 64 1,034 942 13 979 648 14 1,281 1,585 15 H 1,599 1,188 700 238 12 Hàm Ninh 16 -83- 17 787 694 18 783 440 19 480 681 20 1,212 388 21 914 337 22 968 932 310 231 24 730 924 25 596 921 26 Tân Ninh 1,092 1,191 27 1,196 833 28 762 620 29 TT 437 413 1,098 1,307 1,107 1,104 32 Võ Ninh 867 1,251 33 469 444 23 TX 30 31 Hình h ( t ) a=-4.474 [10] -84- PRCPTOT, Hình Hình R1day a=3.115 [10] -85- góc a=0.672 [10] Hình -86- 2011 2009 2007 2005 2011 2009 2007 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1963 1961 1600 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1961-2012 2000 1800 - 1400 1200 1000 800 600 400 200 Hình 450 1965-2012 400 350 300 250 200 150 100 50 Hình Hình L tr -872011 2007 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 250 -2012 200 150 100 50 Hình Hình 10 L ( L -88- ) ... hồn h o, giá tr r ng giá tr quan tr c NSE = ch c xác b ng v i giá tr trung bình c a quan tr c NSE < xu t hi n giá tr trung bình quan tr c t NSE g n th hi xác c nh ng giá tr c 0) tính tốn Giá tr... d n th c hi n nghiên c u sông Mã, sông C , sông Gianh, sông Nh t L , sông B n H i, sông Th ch Hãn Cá -th y l c h l t h p mơ hình th y xây d ng b c nh báo, d báo ng p c sông Tuy nhiên, nghiên c... n c a sông n (xã Tr lên b ng sông Gianh nh ng c c p n l sơng cịn ón ng Xn, Qu ng Ninh) Ba d Sông l a Qu ng Ninh) m t vùng núi có l l n, nên v mùa l sông n ng tr n vùng b n Tiêm huy vào sông Nh

Ngày đăng: 23/02/2023, 15:24