Tài liệu dịch ASM PIC rất hay
Dson 1 Thanh ghi (Register): Thanh ghi được đặt trong PIC, nó có thể được ghi, đọc. Hãy tưởng tượng các thanh ghi giống như các mẩu giấy mà chúng ta có thể đọc hay viết thông tin lên nó. Hình bên dưới mô tả file thanh ghi (register file) được ánh xạ vào PIC16F84. PIC được chia làm 2 phần, Bank0 và Bank1. Bank1 dùng để điều khiển các hoạt động của PIC, ví dụ như nói cho nó biết những bit nào trên PortA là đi vào (Input) và những bit nào xuất ra (Output). Bank0 dùng để thao tác trên dữ liệu, ví dụ ta muốn làm cho bit nào đó trên PortA lên mức cao, đầu tiên ta ta phải chuyển đến Bank1 để set 1 bit của 1 chân cụ thể nào đó trên PortA trở thành Output, sau đó ta chuyển đến Bank0 và gởi mức 1 tới chân đó. Những thanh ghi thông thường nhất trên Bank1 mà chúng ta sẽ sử dụng là các thanh ghi STATUS, TRISA and TRISB. Đầu tiên chúng ta hãy quay vào Bank1, thanh ghi TRISA cho phép ta chọn chân nào đó trên PortA làm ngõ Output hay Input, thanh ghi TRISB cho phép ta chọn chân nào đó trên PortB làm ngõ Output hay Input, thanh ghi STATUS cho phép chọn sử dụng Bank0 hay Bank1. STATUS: Để thay đổi từ Bank0 sang Bank1 ta sử dụng thanh ghi trạng thái STATUS, set bit5 của thanh ghi trạng thái lên1 để chọn Bank1 hoặc xoá bit5 về 0 để chọn Bank0, thanh ghi STATUS có địa chỉ 03H. TRISA và TRISB: 2 thanh ghi TRISA and TRISB đặt tại địa chỉ 85H và 86H, để lập trình cho các chân trên 2 thanh ghi này thông thường người ta gởi mức 0 hay 1 đến các bit tương ứng trên thanh ghi, có thể làm điều này trong cả 2 dạng hoặc là bằng số binary (bin) hay hex. Dùng kiểu binary thì rõ ràng hơn là kiểu hex nhưng mà trông lượm thượm hơn !. Trên PortA ta có 5 chân tương ứng 5 bit, nếu muốn đặt 1 trong 5 chân này thành Output ta phải gởi 1 đến bit tương ứng với nó, những bít này có tên bit đúng chính xác với tên của nó, nói cách khác bit0 là RA0, bit1 là RA1, bit2 là RA2…. Hãy xem ví dụ: Nếu ta muốn set RA0, RA3 và RA4 thành Output và RA1, RA2 thành Inputs, ta phải gởi 00110 (=06h), nên nhớ bit thấp nằm bên phải, xem hình: Port A Pin RA4 RA3 RA2 RA1 RA0 Bit Number 4 3 2 1 0 Binary 0 0 1 1 0 Dson 2 Tương tự chúng ta cũng làm như vậy cho TRISB. PORTA và PORTB: Để làm cho 1 trong những chân Output lên mức cao ta gởi 1 đến bit tương ứng trên thanh ghi PORTA hoặc PORTB, giống như cách làm trên thanh ghi TRISA và TRISB, có thể kiểm tra lại trên từng chân của Port. Thanh ghi W: Thanh ghi W là là thanh ghi mụch đích chung mà có thể đặt lên nó bất kỳ giá trị nào ta muốn, khi gán cho thanh ghi W một giá trị nào đó, ta có thể cộng nó với 1 giá trị khác hoặc có thể copy nó (Mov). Nếu bạn gán 1 giá trị nào đó lên thanh ghi W thì nội dung trước đó của nó sẽ bị ghi đè lên. Xem ví dụ sử dụng PortA: Đầu tiên chúng ta cần chọn Bank0 hoặc Bank1 bằng cách set trên thanh ghi STATUS, địa chỉ của STATUS là 03H và hãy set bit5 của nó lên 1 theo cách sau: BSF 03h,5 BSF có nghĩa là Bit Set F, từ F nghĩa là chúng ta sẽ sử dụng một vị trí nào đó trong memory hoặc trong thanh ghi, 2 con số “03H” sau câu lệnh BSF nghĩa là địa chỉ của thanh ghi STATUS, con số “5” tức là bit5 của nó, như vậy ý nghĩa của câu lệnh trên là set bit5 của STATUS lên 1. Bây giờ chúng ta thao tác trong Bank1. MOVLW b'00110' Ta đã đặt giá trị binary 00110 vào trong thanh ghi mụch đích chung W, chữ b có nghĩa là binary, dĩ nhiên ta cũng có thể viết lại trong dạng số hex, nó như sau: MOVLW 06h MOVLW có nghĩa là là ‘Move Literal Value Into W’ tạm dịch là di chuyển giá trị của Literal vào thanh ghi W, để rõ ràng hơn ta có thể nói là “ đặt giá trị trực tiếp sau đây (06H) vào trong thanh ghi W “ Bây giờ ta tiếp tục đặt giá trị đó vào trong thanh ghi TRISA để thiết lập trạng thái cho Port: MOVWF 85h Lệnh này có nghĩa là “MOV nội dung của W vào (thanh ghi có) địa chỉ 85h”, trong trường hợp này con trỏ địa chỉ sẽ trỏ tới TRISA, thanh ghi TRISA bây giờ chứa giá trị 00110, xem lại mô tả các câu lệnh bằng hình sau: Port A Pin RA4 RA3 RA2 RA1 RA0 Binary 0 0 1 1 0 Input/Output O O I I O Bây giờ chúng ta sẽ thiết lập các chân trên PORTA, hãy quay về Bank0 để thao tác trên các dữ liệu. BCF 03h,5 Dson 3 Lệnh BCF thì đối nghịch với BSF, nó có nghĩa là “ Bit Clear F” tạm dịch là xoá bit nào đó trong vùng memory hay trong thanh ghi nào đó, trong trường hợp này là thanh ghi STATUS (vì địa chỉ của nó là 03H) và lệnh này xoá bit5 của STATUS. Bên dưới là đoạn code: BSF 03h,5 ; vào Bank 1 MOVLW 06h ; Đặt giá trị 00110 vào W MOVWF 85h ; Move 00110 vào trong TRISA BCF 03h,5 ; Quay trở về Bank 0 Hãy đọc kỹ đoạn code trên cho đến khi nào bạn hiểu nó đang làm cái gì. Ghi lên Port: Trong phần trên chúng ta đã nói đến làm thế nào để thiết lập các chân của Port trở thành Input hay Output, trong phần này ta sẽ nói tiếp làm sao có thể gởi data tới Port và trong phần kế tiếp chúng ta sẽ kết thúc với một đoạn code làm cho đèn Led chớp tắt với cả sơ đồ mạch để có thể hiểu rõ con Pic làm việc chính xác đến mức độ nào, đừng có thử compile và nạp đoạn code vào con Pic của bạn vì nó chỉ là ví dụ mà thôi. Đầu tiên hãy setup bit2 của Port A thành Output. Bsf 03h,5 ; Vào Bank 1 Movlw 00h ; Đặt giá trị 00000 vào trong W Movwf 85h ; Copy 00000 vào trong TRISA, tất ; cả các chân bây giờ sẽ trở ;thànhOutput bcf 03h,5 ; Quay trở về Bank0 Đoạn code trên là những gì đã nói trong phần trước, chỉ khác là bây giờ ta set tất cả các chân của PortA trở thành Output bằng cách gởi giá trị 0 đến thanh ghi w (thanh ghi W là loại thanh ghi có 3 trạng thái tri-state register). Bây giờ những gì mà ta muốn con Pic phải làm là bật tất cả Led lên, để làm điều này ta phải gởi mức 1 đến các chân Led, hãy xem làm như thế nào đây: movlw 02h ; Ghi 02h vào thanh ghi W. nó là 00010 nếu ; viết theo dạng binary, như vậy nó đặt 0 vào ; bit 2 (chân 18) trong khi giữ các chân khác ở ; ;mức 0. movwf 05h ;Bây giờ copy nội dung của W (02H) vào ;PortA (địa chỉ là 05H). Con Led bây giờ đã bật on, chúng ta thử tắt nó xem: movlw 00h ; Ghi 00h vào thanh ghi W. nó là 00000 nếu ; viết theo dạng binary, như vậy nó đặt 0 vào ; tất cả các chân. movwf 05h ; Bây giờ copy nội dung của W ( 02H) vào ; PortA Bây giờ Led đã bị tắt. Để làm cho led sáng, tắt liên tục chúng ta phải làm cho chương trình quay trở lại điểm bắt đầu bằng cách đặt nhãn cho chương trình và nói cho nó biết đó là điểm bắt đầu mà nó phải quay lại thực hiện lần nữa. Rất đơn giản, hãy đặt 1 cái nhãn có tên là START ngay tại điểm bắt đầu của đoạn code. Dson 4 Start movlw 02h ; Write 02h to the W register. In binary ; this is 00010, which puts a ‘1’ on pin2 ; while keeping the other pins to ‘0’ movwf 05h ; Now move the contents of W (02h) ; onto the PortA, whose address is 05h movlw 00h ; Write 00h to the W register. This puts a ; 0’ on all pins. movwf 05h ; Now move the contents of W (0h) onto ; the Port A, whose address is 05h goto Start ; Goto where we say Start Bây giờ hãy xem lại đoạn code: Bsf 03h,5 Movlw 00h Movwf 85h bcf 03h,5 Start movlw 02h Movwf 05h Movlw 00h Movwf 05h Goto Start Chúng ta chỉ nhìn thấy toàn những con số, bạn muốn hiểu được nó thì phải nhớ hết tất cả những địa chỉ của các thanh ghi, các Port …. Nhưng ngay cả khi bạn nhớ được tất cả thì một đoạn code ngắn nhất như trên cũng có thể làm bạn bối rối, để giải quyết vấn đề này hãy gán cho các con số địa chỉ bằng 1 cái tên bằng lệnh EQU. EQU đơn giản là thay một cái gì đó bằng một cái gì đó !, nó không phải là câu lệnh của con PIC mà nó là câu lệnh của assembler, với lệnh EQU bạn có thể gán bất kỳ địa chỉ thanh ghi nào bằng 1 cái tên gợi nhớ hoặc gán một cái tên cho một hằng số trong đoạn chương trình. Hãy thử gán vài hằng số bằng những cái tên bạn sẽ thấy nó dể đọc đến như thế nào. STATUS equ 03h ; this assigns the word STATUS to the value of 03h, ; which is the address of the STATUS register. TRISA equ 85h ; This assigns the word TRISA to the value of 85h, ; which is the address of the Tri-State register for ; PortA PORTA equ 05h ;This assigns the word PORTA to 05h which is the ; address of Port A. Bây giờ hãy thiếp lập các giá trị hằng số và đặt chúng vào chương trình, các giá trị hằng số phải được định nghĩa trước khi đặt vào chương trình và hãy nhớ phải luôn đặt chúng vào vị trí bắt đầu của chương trình. Bây giờ hãy xoá hết các ghi chú sau các câu lệnh, bạn thử nhìn xem có dể dàng hiểu được đoạn code trên khi không có các dòng ghi chú: STATUS equ 03h TRISA equ 85h PORTA equ 05h Dson 5 Bsf STATUS,5 movlw 00h movwf TRISA bcf STATUS,5 Start movlw 02h Movwf PORTA movlw 00h movwf PORTA goto Start Hy vọng rằng bạn có thể hiểu được đoạn code trên ngay cả khi không có các ghi chú cho các câu lệnh. Delay Loops. Có một chút rắc rối về đoạn code chớp tắt đèn led mà ta đã xem bên trên. Mỗi lệnh thực thi mất 1 chu kỳ xung clock, nếu ta sử dụng thạch anh 4MHz thì mỗi lệnh mất 4/4MHz hay 1us, trong đoạn code trên, ta sử dụng 5 lệnh như vậy mất 5us để thực thi hoàn toàn, quá nhanh để mắt người có thể nhìn thấy đèn led chớp tắt trong khỏang thời gian ngắn ngủi như vậy, cái mà ta cần là làm cho khoảng thời gian giữa sáng và tắt của led kéo dài ra, nói cách khác là làm trễ (Delay). Cơ bản của 1 chương trình Delay là cho đếm ngược lại giá trị đã đặt trước đó, và khi nó đến zero (0) thì ta cho dừng bộ đếm, giá trị zero báo cho biết dừng chương trình delay và sẽ tiếp tục thực thi lại nếu ta muốn. Đầu tiên chúng ta phải định nghĩa một hằng số dùng trong bộ đếm, tạm thời chúng ta gọi là hằng số COUNT, kế đến chúng ta phải xác định bộ đếm sẽ thực hiện đếm bao nhiêu, số lớn nhất mà ta có thể dùng cho bộ đếm là 255 hoặc số hex là FFh. Lệnh EQU gán 1 giá trị cho 1 thanh ghi, điều này có nghĩa là bất kỳ con số nào mà ta gán cho COUNT thì COUNT sẽ có giá trị bằng với nội dung của địa chỉ đó. Nếu thử gán giá trị FFh cho COUNT ta sẽ nhận được thông báo lỗi khi compile chương trình bởi vì địa chỉ FFH đã được dùng cho mụch đích khác và chúng ta không thể truy cập tới nó, như vậy chúng ta phải gán một con số như thế nào cho hợp lệ ?, bạn đừng lo lắng, sẽ có cách giải quyết. Nếu chúng ta gán COUNT cho 1 địa chỉ nào đó, ví dụ 08h, nó sẽ trỏ tới vị trí thanh ghi mụch đích chung, nhưng mà giá trị mặc nhiên sau khi mở nguồn của những vị trí không dùng đến là FFh vì vậy nếu COUNT trỏ tới 08h thì nó sẽ có giá trị FFh. Bây giờ tôi lại đang nghe bạn “khóc” rằng làm sao mà gán COUNT bằng một số nào đó có giá trị trùng với 1 trong các địa chỉ của các thanh ghi đã sử dụng?, không sao, nếu vậy thì điều mà chúng ta phải làm là MOV giá trị của bạn tới vị trí này, giả sử nếu bạn muốn COUNT có giá trị là 85h, chúng ta không thể làm: COUNT EQU 85h Bởi vì 85h là vị trí của thanh ghi xuất (out) 3 trạng thái (Tri-State register) của PORTA. Cái mà chúng ta phải làm là: Movlw 85h ; Đầu tiên đặt giá trị 85h vào thanh ghi W. Movwf 08h ; Kế đến copy giá trị tới thanh ghi 08h. Bây giờ, khi chúng ta nói: COUNT equ 08h Thì COUNT sẽ tương đương với giá trị 85h. Thật là quỷ quyệt, có phải không ?! Dson 6 Tiếp tục, đầu tiên ta định nghĩa cho một hằng số COUNT equ 08h kế đến giảm COUNT xuống 1 cho đến khi nó = 0, chỉ cần 1 lệnh đơn để làm việc này với sự hỗ trợ của lệnh GOTO và một cái nhãn, lệnh đơn được dùng là: DECFSZ COUNT,1 Lệnh DECFSZ sẽ giảm thanh ghi ( trong trường hợp này là COUNT) xuống một đơn vị được điền sau dấu phẩy (,), trong ví dụ này đơn vị là 1. Nếu nó giảm tới zero chương trình sẽ bỏ qua lệnh kế tiếp để nhảy đến thực thi lệnh thứ 2. Mất nhiều lời để giải thích cho 1 lệnh đơn có phải không?, hãy xem cái gì xảy ra khi ta đặt nó vào chương trình. COUNT equ 08h LABEL decfsz COUNT,1 Goto LABEL Carry on here. : : : Điều mà chúng ta phải làm đầu tiên là gán hằng số COUNT = 255, kế đến đặt 1 cái nhãn ngay bên cạnh lệnh defsz. Lệnh decfsz COUNT,1 sẽ giảm giá trị của COUNT xuống 1 và lưu giá trị đã giảm trở vào trong COUNT, nó cũng sẽ kiểm tra xem COUNT = 0 chưa, nếu chưa nó sẽ cho chương trình thực thi lệnh kế tiếp, trong ví dụ này nó sẽ thực thi lệnh GOTO để quay về lại điểm bắt đầu ( là LABEL), nếu COUNT = 0 thì nó sẽ cho chương trình bỏ qua lệnh kế tiếp và nhảy đến lệnh thứ 2, trong ví dụ này chương trình sẽ nhảy đến nơi có chữ ‘Carry on here’. Như bạn đã thấy, chúng ta đã làm cho chương trình lưu lại một thời gian trước khi nó tiếp tục làm việc gì đó tiếp theo, cái này gọi là vòng trễ (Delay loop), nếu chúng ta muốn thời gian trễ lớn hơn chúng ta phải làm một vòng trễ kiểu khác, nhưng mà cũng dể dàng để hiểu ra rằng có nhiều Loop hơn thì thời gian sẽ trễ lâu hơn, chúng ta cần ít nhất là 2 Loop như trên nếu muốn nhìn thấy đèn Led chớp. Bây giờ hãy đặt chúng vào trong chương trình và kết thúc chương trình, nhớ thêm các ghi chú. ;*****Set up the Constants**** STATUS equ 03h ;Address of the STATUS register TRISA equ 85h ;Address of the tristate register for Port A PORTA equ 05h ;Address of Port A COUNT1 equ 08h ;First counter for our delay loops COUNT2 equ 09h ;Second counter for our delay loops ;****Set up the Port**** bsf STATUS,5 ;Switch to Bank 1 movlw 00h ;Set the Port A pins movwf TRISA ;to Output. Dson 7 bcf STATUS,5 ;Switch back to Bank 0 ;****Turn the LED on**** Start movlw 02h ;Turn the LED on by first putting movwf PORTA ;it into the w register and then ;on the Port ;****Start of the delay loop 1**** Loop1 decfsz COUNT1,1 ;Subtract 1 from 255 Goto Loop1 ;If COUNT is zero, carry on. Decfsz COUNT2,1 ;Subtract 1 from 255 Goto Loop1 ;Go back to the start of our loop. ;This delay counts down from ;255 to zero, 255 times ;****Delay finished, now turn the LED off**** movlw 00h ;Turn the LED off by first putting movwf PORTA ; it into the w register and then onthe Port ;****Add another delay**** Loop2 decfsz COUNT1,1 ;This second loop keeps the Goto Loop2 ;LED turned off long enough for decfsz COUNT2,1 ;us to see it turned off goto Loop2 ; ;****Now go back to the start of the program goto Start ;go back to Start and turn LED ;on again ;****End of the program**** end ;Needed by some compilers, ;and also just in case we miss ;the goto instruction. Bạn có thể cpmpile chương trình này và nạp nó vào con PIC, dĩ nhiên là bạn sẽ muốn thử cho nó hoạt động, ở đây có sẵn sơ đồ mạch cho bạn. Xin chúc mừng, bạn vừa mới viết xong 1 chương trình cho con PIC và đã làm cho nó hoạt động theo mong đợi. Cho đến bây giờ bạn đã học được 7 trong số 35 lệnh của con PIC rồi đấy, nhưng mà như vậy bạn vẫn chưa thể điều khiển được các Port I/O của nó. Tại sao bạn không thử thay đổi Delay Loop cho nó nhanh hơn để biết giá trị Delay Loop tối thiểu mà mắt người có thể nhìn thấy đèn Led chớp tắt và thay đổi tốc độ chớp tắt của Led, ví dụ mỗi lần là 1 giây. Trong trường hợp này bạn cần phải thử thay đổi các giá trị hằng số COUNT khác nhau của mỗi Delay Loop. Trong phần tiếp theo chúng ta sẽ bàn đến cái gì gọi là thủ tục con (subroutine) để giúp chúng ta tiếp tục viết các chương trình nhỏ và thông thường nhất. Thủ tục con (subroutine): Dson 8 Một thủ tục con là một phần của một đoạn code hay một phần của một chương trình mà bạn có thể gọi nó thực thi bất kỳ lúc nào cần thiết. Một thủ tục con được sử dụng khi mà bạn muốn thực thi một chức năng nào đó nhiều hơn 1 lần, tức là làm đi làm lại chức năng đó, ví dụ như Delay Loop. Cái thuận tiện của một thủ tục con là bạn có thể thay đổi giá trị bên trong nó sau mỗi lần thực thi, ví dụ bạn có thể thay đổi 10 lần gía trị của nó nếu cần thiết, nhưng quan trọng nhất của một thủ tục con là bạn có thể tiết kiệm bộ nhớ chương trình chiếm đóng trong con Pic. Hãy xem một subroutine sau: ROUTINE COUNT equ 255 LABEL decfsz COUNT,1 Goto LABEL RETURN Đầu tiên chúng ta phải đặt cho subroutine một cái tên, tôi chọn tên ROUTINE, sau đó viết đoạn chương trình mà tôi muốn nó thực hiện, tôi viết lại chương trình Led chớp tắt như phần trên, cuối cùng tôi kết thúc subroutine bằng lệnh RETURN. Bạn có thể đặt subroutine này bất cứ nơi nào trong chương trình chính (MAIN) và khi muốn nó thực thi bạn chỉ cần gọi nó bằng lệnh CALL theo sau là tên của subroutine. Subroutine sẽ thực thi đoạn code bên trong nó cho đến khi nó gặp lệnh RETURN thì dừng lại, chương trình sẽ tự động quay về chương trình chính đúng tại nơi mà nó gọi subroutine và thực thi lệnh kế tiếp sau lệnh CALL. Bạn có thể CALL nhiều lần để thực thi cùng một subroutine nếu bạn muốn, đó là lý do tại sao người ta sử dụng subroutine để giảm độ dài của chương trình. Tuy nhiên có hai thứ mà bạn phải nghĩ đến, thứ nhất là bất kỳ hằng số nào cũng phải được khai báo trước khi bạn sử dụng nó nhưng mà trong trường hợp subroutine bạn có thể khai báo ngay trong bản thân nó hoặc ngay tại đầu chương trình chính như thông thường, tuy nhiên tôi lại khuyên bạn nên khai báo mọi thứ tại đầu chương trình chính vì như bạn đã biết, để mọi thứ ở cùng một nơi thì dể tìm kiến hơn, có phải không?. Vấn đề thứ hai rất quan trọng là bạn phải bảo đảm đặt subroutine sau lệnh RETURN của chương trình chính trừ phi trong chương trình chính bạn dùng lệnh GOTO để nhảy qua subroutine, nếu không nó sẽ thực thi bất kỳ lệnh nào mà nó bắt gặp bất kể bạn có muốn hay không bởi vì con Pic không phân biệt được đâu là chương trình chính đâu là subroutine. Hãy xem lại đoạn chương trình chớp Led nhưng mà lần này ta sử dụng subroutine cho Delay Loop bạn sẽ thấy chương trình đơn giản đến mức nào và xem subroutine làm việc ra sao. ;*****Set up the Constants**** STATUS equ 03h ;Address of the STATUS register TRISA equ 85h ;Address of the tristate register for Port A PORTA equ 05h ;Address of Port A COUNT1 equ 08h ;First counter for our delay loops COUNT2 equ 09h ;Second counter for our delay loops ;****Set up the Port**** Dson 9 bsf STATUS,5 ;Switch to Bank 1 movlw 00h ;Set the Port A pins movwf TRISA ;to Output. Bcf STATUS,5 ;Switch back to Bank 0 ;****Turn the LED on**** Start movlw 02h ;Turn the LED on by first putting it movwf PORTA ;into the w register and then on the Port ;****Add a delay call Delay ;****Delay finished, now turn the LED off**** movlw 00h ;Turn the LED off by first putting it movwf PORTA ;into the w register and then on the Port ;****Add another delay**** call Delay ;****Now go back to the start of the program goto Start ;go back to Start and turn LED on again ;****Here is our Subroutine Delay Loop1 decfsz COUNT1,1 ;This second loop keeps the LED Goto Loop1 ;turned off long enough for us to Decfsz COUNT2,1 ;see it turned off Goto Loop1 ; Return ;****End of the program**** end ;Needed by some compilers, and ;also ;just in case we miss the goto instruction. Rõ ràng kích thước chương trình đã giảm đi nhiều khi sử dụng subroutine cho Delay Loop, mỗi lần ta muốn thực hiện Delay để làm cho Led ON hoặc cho Led Off, ta chỉ cần gọi subroutine Delay. Tại điểm kết thúc subroutine chương trình sẽ quay trở về ngay sau dòng lệnh CALL. Nếu không sử dụng subroutine chương trình chớp Led trên có thể cần đến 120byte bộ nhớ chương trình, nhưng khi sử dụng subroutine nó chỉ còn cần 103byte, thật ra số byte chênh lệch như vậy cũng không phải là vấn đề quan trọng lắm, nhưng mà bạn chỉ có 1024byte để chứa chương trình trong con Pic thì việc tiết kiệm được số byte như vậy quả là không uổng công nặn óc để làm subroutine, có phải không Trong phần kế tiếp chúng ta sẽ tìm hiểu làm sao mà đọc được Port. Đọc Port (Reading from the I/O Ports): Cho đến bây giờ bạn đã có thể ghi lên Port để làm cho Led chớp tắt, còn tiếp theo chúng ta sẽ tìm cách đọc lại nội dung trên chân I/O của Port. Trước tiên cần kết nối các chân Port tới mạch bên ngoài và theo dõi hoạt động tại đây. Dson 10 Nếu bạn còn nhớ những thứ đã nói đến trong các phần trước, để setup I/O Port chúng ta phải chuyển từ Bank0 sang Bank1, hãy làm cái này trước: STATUS equ 03h ;Address of the STATUS register TRISA equ 85h ;Address of the tristate register for Port A PORTA equ 05h ;Address of Port A Bsf STATUS,5 ;Switch to Bank 1 Để gán cho Port trở thành Output, chúng gởi 0 vào thanh ghi TrisA và để nó trở thành Input ta phải gởi 1 đến thanh ghi TrisA, quá đơn giản !. Movlw 01h ;Set the Port A pins Movwf TRISA ;to Input. Bcf STATUS,5 ;Switch back to Bank 0 Bây giờ chúng ta đặt bit0 của PortA trở thành Input, cái mà ta phải làm bây giờ là kiểm tra lại xem chân này đang ở mức cao hay thấp (mức1 hay mức 0), để làm được điều này ta sử dụng lệnh BTFSC và lệnh BTFSS. Lệnh BTFSC có nghĩa là làm động tác thử xem 1 bit được chỉ định trên thanh ghi có = 0 hay không, nếu là 0 thì bỏ qua lệnh kế tiếp. Lệnh BTFSS thì ngược lại, nó có nghĩa là làm động tác thử xem 1 bit được chỉ định trên thanh ghi có = 1 hay không, nếu là 1 thì bỏ qua lệnh kế tiếp. Chúng ta sẽ sử dụng lệnh nào?, cái này còn tuỳ thuộc vào bạn mong đợi chương trình đọc được cái gì trên Port. Ví dụ: Nếu bạn đang mong đợi ngõ Input là 1 thì hãy dùng lệnh BTFSS, hãy xem cái này: Code here : BTFSS PortA,0 Goto start Carry on here : : Chương trình sẽ chỉ nhảy đến dòng “Carry on here” nếu bit0 của PortA = 1. Bây giờ bạn hãy viết lại chương trình đèn Led chớp ở 1 tốc độ cố định, nhưng mà nếu đóng 1 cái Switch nào đó thì đèn Led sẽ chớp chậm hơn ½ Bạn hoàn toàn có thể tự làm được mà, đừng có nhìn vào đoạn Code bên dưới xem sao. Chúng ta sử dụng cùng một mạch giống như phần trên nhưng mà thêm một cái Switch có một đầu nối vào chân RA0 của con Pic còn đầu kia mắc lên nguồn. ;*****Set up the Constants**** STATUS equ 03h ;Address of the STATUS register TRISA equ 85h ;Address of the tristate register for Port A PORTA equ 05h ;Address of Port A COUNT1 equ 08h ;First counter for our delay loops COUNT2 equ 09h ;Second counter for our delay loops ;****Set up the Port**** bsf STATUS,5 ;Switch to Bank 1 movlw 01h ;Set the Port A pins: movwf TRISA ;bit 1to Output, bit 0 to Input. [...]... RETURN ; End of subroutine END ; Dson 21 Bảng dữ liệu ( Data Table): Có một điểm rất đặc biệt trong tập lệnh mà nó cho phép bạn truy xuất dữ liệu theo kiểu tra bảng (data table) Một bảng dữ liệu thông thường là một danh sách liệt kê các giá trị của dữ liệu, mỗi giá trị được đọc phụ thuộc vào việc phải thoả mãn vài tiêu thức nào đó Ví dụ, bạn có một con Pic và bạn muốn đếm số lần ngõ vào Input được nâng... movlw 03 Khi con Pic thực thi lệnh này nó tăng PC lên và vì vậy nó đọc tiếp lệnh kế, ở đây con Pic lại thấy lệnh movwf 0C, nó lại tăng PC lên một lần nữa, lần này nó thấy lệnh decfsc 03, nếu nội dung trong địa chỉ 0C không = 0 con Pic sẽ tăng PC lên 1 và đọc lệnh kế tiếp, lệnh Goto loop nói con Pic hãy quay lại vị trí 0002 Nếu nội dung trong 0C là 0 thì con Pic nói PC phải tăng lên 2 hay nói cách khác... chân này lên cao hay xuống thấp, nó biết cần phải dừng chương trình chính lại khi nào để quay ra phục vụ thủ tục của Interrupt Bây giờ chúng ta cần nói cho con Pic biết sẽ khởi động Interrupt bằng cạnh lên (từ 0V lên 5V) hay cạnh xuống ( từ 5V xuống 0V) của tín hiệu vào chân Interrupt Nói cách Dson 24 khác, ta muốn con Pic phục vụ Interrupt khi tín hiệu vào thay đổi từ thấp lên cao hay từ cao xuống... và BTFSS Bên trong con Pic có một thứ gọi là ‘Fuses’ tạm dịch là cầu chì, nó không giống như cầu chì fuses bảo vệ của ổ điện nhà mà nó giống như một cái Switch điện tử được đóng hay mở bởi lập trình viên Làm sao mà những cái Fuses này được đóng hay mở để cho WDT hoạt động, có 2 cách để làm Cách thứ nhất là viết 2 dòng lệnh tại phần đầu chương trình để nói cho Pic biết enable hay disable cái fuses nào... gian bắt đầu tính, con Pic sẽ đếm số lần ngõ Input vào được nâng lên mức cao trong thời gian 1 giây, sau 1 giây nó hiễn thị con số nó đếm được tương ứng với số lần ngõ vào Input được nâng lên mức cao Cái này rất tiện dụng bởi vì chúng ta không biết được hiện tại con số đếm đã là bao nhiêu cho đến khi con Pic dừng lại, bằng cách sử dụng bảng tra dữ liệu chúng ta có thể cho phép con Pic quýêt định con số... tiên chúng ta phải nói cho con Pic nhảy (jump) đến địa chỉ 0004h và tách riêng chương trình Interrupt ( bắt đầu tại 0004h) với các chương trình khác, điều này thì rất dễ làm có phải không ? (dầu tiên chúng ta khởi động chương trình bằng lệnh ORG, lệnh này nghĩa là Origin, or start tạm dịch là điểm khởi đầu hay điểm khởi động, theo sau ORG là một địa chỉ xác định Bởi vì con Pic khởi động tại 0000h nên... của con Pic và mass trên mạch điện để thay thế các tụ điện mắc trong mạch dao động, như vậy điện trở và điện dung tản mạn trên mạch tạo thành khung dao động RC, nó có thể sẽ bị thay đổi tuỳ theo cấu hình của mạch điện Thứ hai có một mạch chống rung cho các cái Switch, cái này thật sự cần thiết, vì khi bạn ấn Switch nó sẽ bị rung, lúc đóng lúc hở và con Pic có thể hiểu nhầm rằng bạn đã ấn Switch rất nhiều... Enable tạm dịch là chân cho phép sử dụng toàn bộ Interrup Nếu set bit này lên 1 con Pic sẽ cho phép sử dụng Interrupt Bit4 của INTCON gọi là INTE có nghĩa là INTerrupt Enable tạm dịch là cho phép Interrupt, set bit này lên 1 sẽ cho phép chân RB0 trở thành chân Interrupt Bit3 còn gọi là bit RBIE nếu được set=1 sẽ báo cho con Pic biết ta sẽ sử dụng từ bit4 cho đến bit7 của PortB Bây giờ thì con Pic đã biết... bám theo chương trình một khi những cái nhãn nhận dạng không cho phép sử dụng trong BASIC Con Pic có sử dụng những cái nhãn để nhảy qua lại các vị trí hay không?, chúng ta dùng những cái nhãn nhận dạng vì vậy chúng ta biết những thứ gì, ở đâu và nói cho con Pic biết con đường nó phải đi Cái mà thực sự con Pic đã dùng đó là bộ đếm dòng lệnh bên trong còn gọi là bộ đếm chương trình Program Counter Program... Loop 03,0 Trong đoạn code trên, con Pic sẽ đi ra khỏi Loop nếu bit0 trong thanh ghi STATUS ( hay cờ Carry) bị xoá về 0, nói cách khác nếu cờ Carry=0 lệnh GOTO sẽ được thực hiện Lệnh BTFSS: Lệnh này có nghĩa là “Bit Test Register F, And Skip If Set” tạm dịch là kiểm tra bit trong thanh ghi F và bỏ qua lệnh kế nếu=1 Nó giống như là lệnh BTFSC nhưng mà chỉ khác là con Pic sẽ bỏ qua lệnh kế tiếp nếu bit=1