1. Trang chủ
  2. » Khoa Học Tự Nhiên

a handbook of essential mathematical formulae

81 309 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 81
Dung lượng 389,79 KB

Nội dung

[...]... inverse matrix , A 1 , exists 1 and is given by A 1 = det A adj A, where adj A is the transposed matrix of cofactors The inverse matrix has the property AA−1 = A 1 A = I If det A = 0 then A is said to be singular A is called an orthogonal matrix if AT = A 1 For a 2 × 2 matrix a b c d −1 = 1 ad − bc d −b −c a For an n × n matrix det A = det AT and det (kA) = kn det A The rank of a matrix, A, is the largest... a1 2 x2 + a1 3 x3 = h1 a2 1 x1 + a2 2 x2 + a2 3 x3 = h2 a3 1 x1 + a3 2 x2 + a3 3 x3 = h3 ∆1 = h1 a1 2 a1 3 h2 a2 2 a2 3 , h3 a3 2 a3 3 ∆= a1 1 a1 2 a1 3 a2 1 a2 2 a2 3 a3 1 a3 2 a3 3 a1 1 h1 a1 3 a2 1 h2 a2 3 , a3 1 h3 a3 3 ∆2 = ∆3 = a1 1 a1 2 h1 a2 1 a2 2 h2 a3 1 a3 2 h3 The solution is x1 = ∆1 /∆, 2.2 x2 = ∆2 /∆, x3 = ∆3 /∆ Matrices The m × n matrix is written as  a1 1  a2 1  A=   a1 2 a2 2 ··· ··· a1 n a2 n am1 am2 · · · amn... of straight lines if af 2 + bg2 + ch2 = 2f gh + abc a parabola if h2 = ab an ellipse if h2 < ab a hyperbola if h2 > ab a rectangular hyperbola if a + b = 0 1.9 Mensuration Circle, radius r: perimeter is 2πr, area is πr 2 For a segment of angular width θ (radians), arc length is rθ and area is 1 r 2 θ 2 Ellipse, axes 2a and 2b: perimeter is approximately 2π (a2 + b2 ) /2, area is πab Cylinder , radius... a1 ˆ + a2 ˆ + a3 k, ı j ˆ b = b1ˆ + b2ˆ + b3 k ı j a. b = a1 b1 + a2 b2 + a3 b3 a b = Magnitude: |a| = a = ˆ ˆ k ı j ˆ a1 a2 a3 b1 b2 b3 = −b a a2 + a2 + a2 1 2 3 Unit vector in the direction of the vector a is ˆ = a 1 a= |a| a1 a2 a3 b1 b2 b3 c1 c2 c3 a (b×c) = (a b) c = = [a b c] a × (b×c) = (a. c) b − (a. b) c (a b) × c = (a. c) b − (b.c) a (a b) (c×d) = a. c a. d b.c b.d (a b) × (c×d) = [a b c] c − [a b... second moments of a plane area A about an axis are given respectively by r 2 dA rdA and A A where r is the distance from the axis of the element dA 28 The moment of inertia, I, of a body, of density ρ and volume V , about an axis is given by r 2 ρdV V where r is the distance from the axis of the element dV Parallel axes theorem If IG is the moment of inertia about an axis through the centroid and I is the... the moment of inertia about a parallel axis distance d away, then I = IG + md2 Table of moments of inertia 1 Uniform Body mass m Axis M .of I Perpendicular to bar through one end Perpendicular to bar through centroid ma2 3 4ma2 3 2 Rectangular lamina sides 2a and 2b Parallel to side 2b through centroid Perpendicular to plane through centroid ma2 3 m (a2 + b2 ) 3 3 Rectangular solid edges 2a and 2b, depth... a3 3 a1 1 a1 2 · · · a1 n a2 1 a2 2 · · · a2 n n×n:∆= an1 an2 · · · ann 2×2 : a c a1 1 a2 1 a3 1 a2 1 a2 2 a3 1 a3 2 The minor , αij , of the element aij is the (n − 1)th order determinant formed from ∆ by omitting the row and the column containing aij The cofactor , Aij , of the element aij is given by Aij = (−1)i+j αij The value of the n × n determinant is ∆ = ai1 Ai1 + ai2 Ai2 + + ain Ain (expansion... 4ax Parametric equation: x = at2 , y = 2at 2 Ellipse (ǫ < 1); foci at ( a , 0), directrices x = a/ ǫ Major axis of length 2a, minor axis of length 2b 1 x2 y 2 Cartesian equation: 2 + 2 = 1 with b = a 1 − ǫ2 2 a b Parametric equation: x = a cos θ, y = b sin θ 3 Hyperbola (ǫ > 1); foci at ( a , 0), directrices at x = a/ ǫ 1 x2 y 2 Cartesian equation: 2 − 2 = 1 with b = a ǫ2 − 1 2 a b Parametric equation:... inequality If x > −1 then (1 + x)n ≥ 1 + nx Arithmetic mean 1 2 (x + y) Geometric mean 1 2 (x + y) ≥ √ xy √ xy Triangle inequality |x + y| ≤ |x| + |y| |x| − |y| ≤ ||x| − |y|| ≤ |x − y| Cauchy Schwarz inequality |u.v| ≤ u v Minkowski inequality u + v ≤ u + v 9 Chapter 2 Determinants and Matrices 2.1 Determinants b = ad − bc d a1 2 a1 3 a2 1 a2 3 a2 2 a2 3 +a1 3 a1 2 3×3 : a2 2 a2 3 = a1 1 a3 1 a3 3 a3 2 a3 3 a3 2 a3 3 a1 1... = f (x)dx (add arbitrary constant where necessary) x √ x2 ± a2 −x √ a2 − x2 √ √ x2 ± a2 a2 − x2 eax (a cos bx − b sin bx) eax cos bx eax (a sin bx + b cos bx) eax sin bx 4.3 a2 ln |x + x2 ± a2 | (4.31) 2 a2 x a2 − x2 + sin−1 (4.32) 2 a x 2 x 2 x2 ± a2 ± eax (a cos bx + b sin bx) a2 + b2 eax (a sin bx − b cos bx) a2 + b2 (4.33) (4.34) Definite integrals Wallis’s formulae (reduction formulae also hold

Ngày đăng: 27/03/2014, 11:58

TỪ KHÓA LIÊN QUAN