Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
2,39 MB
Nội dung
áp dụng hai toán để chứng minh bất đẳng thức Mục lục STT NI DUNG MỤC LỤC TRANG A PHẦN MỞ ĐẦU I.Lý chọn đề tài 1.Cở sở lý luận 2.Cơ sở thực tiễn II Mục đích nghiên cứu III.Phương pháp nghiên cứu IV PHẠM VI NGHIÊN CỨU VÀ SỬ DỤNG B HAI BÀI TOÁN CƠ BẢN Bài I Bài II 4-14 ÁP DỤNG CHỨNG MINH BẤT ĐẲNG THỨC DẠNG DẠNG DẠNG ÁP DỤNG TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT BÀI TẬP TƯƠNG TỰ 15 C.KẾT QUẢ ĐẠT ĐƯỢC VÀ BÀI HỌC KINH NGHIỆM 1.KẾT QUẢ ĐẠT ĐƯỢC 2.BÀI HỌC KINH NGHIỆM D KẾT LUẬN 16 TÀI LIỆU THAM KHẢO 17 skkn áp dụng hai toán để chứng minh bất đẳng thức A.PHN M U I.L DO CHN ĐỀ TÀI: 1.Cơ sở khoa học: Tốn học có vai trị vị trí đặc biệt quan trọng khoa học kĩ thuật đời sống, giúp người tiếp thu cách dễ dàng môn khoa học khác có hiệu Thơng qua việc học tốn, học sinh nắm vững nội dung tốn học phương pháp giải tốn, từ vận dụng vào môn học khác môn khoa học tự nhiên Hơn Tốn học cịn sở ngành khoa học khác, tốn học có vai trị quan trọng trường phổ thơng, đòi hỏi người thầy giáo lao động nghệ thuật sáng tạo để có phương pháp dạy học giúp học sinh học giải toán Bất đẳng thức nội dung quan trọng chương trình tốn học THCS Trong q trình dạy toán THCS, qua kinh nghiệm dạy bồi dưỡng học sinh giỏi qua q trình tìm tịi thân tơi thấy hai tốn áp dụng nhiều trình chứng minh bất đẳng thức Thiết nghĩ giáo viên toán cần trang bị cho học sinh để giúp em giải tốt toán bất đẳng thức góp phần nâng cao tư tốn học, tạo diều kiện cho việc học tốn nói riêng q trình học tập nói chung Cơ sở thc tin skkn áp dụng hai toán để chứng minh bất đẳng thức Bt ng thc loại toán mà học sinh THCS coi loại tốn khó Nhiều học sinh khơng biết giải Bất đẳng thức phải đâu phương pháp giải loại toán Thực tế cho thấy tốn Bất đẳng thức có nhiều chương trình THCS, khơng trang bị số tập định gây cho học sinh nhiều khó khăn gặp giải loại tốn Các tốn có liên quan tới Bất đẳng thức có mặt đề thi kể đề thi tốt nghiệp đề thi học sinh giỏi cấp thi vào lớp 10 trung học phổ thơng Đối với giáo viên cịn thiếu kinh nghiệm giảng dạy, đặc biệt bồi dưỡng học sinh giỏi việc nắm vững phương pháp Bất đẳng thức bổ sung nhiều vào kho kiến thức Đối với học sinh khắc phục hạn chế trước giúp em có tinh thần tự tin học tập mơn tốn Với kinh quỏ trỡnh dạy học thõn xin giới thiệu bạn bè đồng nghiệp, nhà chuyên môn cấp quản lý giáo dục đề tài kinh nghiệm: “ÁP DỤNG HAI BÀI TOÁN CƠ BẢN ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC” II MỤC ĐÍCH NGHIÊN CỨU Đề tài góp phần quan trọng việc giảng dạy tốn học nói chung Bất đẳng thức nói riêng, đặc biệt việc bồi dưỡng học sinh giỏi ụn thi tuyển sinh vào lớp 10 THPT chuyờn khụng chuyờn Đề tài cũn giúp học sinh biết thêm phương pháp giải Bất đẳng thức cách nhanh chóng hiệu quả, Phát huy tính tích cực, chủ động sáng tạo học sinh trình học tập III PHƯƠNG PHÁP NGHIÊN CỨU: - Nghiên cứu hai toán quen thuộc - Thông qua nội dung phương pháp tập mẫu nhằm rèn luyện kỹ phát triển trí tuệ cho học sinh - Rèn kĩ cho học sinh qua tập tương tự IV PHẠM VI NGHIÊN CỨU VÀ SỬ DỤNG: - Hai toán - Bồi dưỡng cho giáo viên học sinh THCS B NỘI DUNG ĐỀ TÀI : HAI BÀI TỐN CƠ BẢN Bài I Víi a,b,c ,x,y > Chứng minh skkn áp dụng hai toán để chứng minh bất đẳng thức Giải Luôn với a,b,c ,x,y > dÊu “ =” xÈy Suy b¶ng sau: suy ( víi a,b,c ,x,y > 0) dÊu = xẩy Bài II áp dụng Bài I ta chøng minh (áp dụng toán I) Giải : dÊu = xÈy ( víi a,b,c ,x,y > 0) Suy b¶ng sau: dÊu = xÈy ( víi a,b,c ,x,y,z > 0) skkn áp dụng hai toán để chứng minh bất đẳng thức Nhn xét: Khi áp dụng vào chứng minh bất đẳng thức ta phải xác định rõ toán thuộc dạng tốn trên, xem có phải biến đổi tốn áp dụng khơng, biến đổi cho phù hợp… ÁP DỤNG ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC Dạng Áp dụng toỏn Bµi Cho a , b, c > 0, vµ a + b + c = chøng minh Gi¶i ¸p dơng bµi to¸n I với x, y > ta có Dấu “=” xẩy a = b = c = 1/3 NhËn xÐt :NÕu toán ta áp dụng trực tiếp từ vế trái không cho kết mà phải biến đổi mÉu ë vỊ tr¸i c+1= c+ a+b+c råi ¸p dơng x = c+a, y= b+c toán trở nên dƠ dµng Bµi 2.Cho a, b > vµ a + b =1 Tìm giá trị nhỏ Giải : ¸p dơng bµi to¸n I : với x, y > ta cú skkn áp dụng hai toán để chứng minh bất đẳng thức ( ab (a+b)2/4 ) Min A = 14 vµ chØ a = b =1/2 NhËn xÐt : §èi víi toán ta phải đa mẫu dạng (a+b)2 có kết Bài 3.Cho a, b, c,d,e > vµ a + b + c + d + e = Tìm GTNN Giải áp dụng to¸n I Nhân vế theo vế 16(a+b+c+d)(a+b+c)(a+b) 44 abcde skkn áp dụng hai toán để chứng minh bất đẳng thức Giỏ tr nh nht B = 16 a = b = 1/4; c = 1/2; d = ; e = ; Bµi 4.Cho a, b, c > CM Giải ¸p dơng bµi to¸n I: với x, y > ta có Cộng vế theo vế ta đpcm Dấu “=” xẩy a = b = c NhËn xÐt: Ta thÊy (2a+3b) + (b+2a+2c) = 2(2a+2b+c) nên phải nghĩ kết hợp hai biểu thức lại Bài Cho a, b, c > CM Giải áp dụng toán I : với x, y > skkn ¸p dơng hai toán để chứng minh bất đẳng thøc Suy ®pcm Dấu “=” xẩy a = b = c = Bµi ( Đề thi HSG tỉnh Hà Tĩnh năm 2012- 2013) Cho x, y, z > x+y+z =1 Tìm MinF biÕt F = Gi¶i Ta cã ( )- ( )= =0 suy áp dụng toán I vi x, y > ta cã 2F = MinF =1/4 vµ chi x = y= z = 1/3 Nhận xét: Đây toán để giải ta phải phối hợp hai biến biểu thức, x2 +y2, x -y có x4 - y4 nên ta nghĩ phải thêm vào để làm cho tốn gọn dễ chứng minh skkn ¸p dụng hai toán để chứng minh bất đẳng thức Dng p dng bi ton Bài 1.Cho a , b, c > vµ ab + bc + ac = 670 CM Giải áp dụng to¸n II Dấu “=” xẩy a = b = c = Nhận xét: Ta thấy tổng biểu thức mẫu khơng cho ta được điều nên ta phải nghĩ hướng tạo xuất bình phương tử, từ cho ta tổng mẫu có xuất biểu thức a3 + b3+ c3 -3abc toán quen thuộc lớp 8, phân tích thành nhân tử xuất biểu thức a+b+c ab+bc+ac nên chứng minh tốn dễ dàng Bµi Cho a,b,c > abc = cm Giải Ta có áp dụng toán II skkn áp dụng hai toán để chứng minh bất đẳng thức Du = xẩy a = b = c = Bài Cho a,b c >0 Chứng minh rng: Gii áp dụng toán II Tacú Tng tự Từ (1) (2) (3) Dấu “=” xẩy a = b = c Nhận xét: Ta thấy vai trò a, b,c toán nên ta tách 2a+b+3c = (a+b) +(a+c) + 2c áp dụng, nhiên không thấy kết liền mà phải cộng lại đặt nhân tử ta đpcm Bài (Olimpic 30/04): Cho số dương a, b, c CMR: a4 b4 c4 a b3 c bc ca a b Giải: ¸p dụng toán II Ta cú: VT 10 skkn (2) a6 b6 c6 a (b c) b (c a) c (a b) áp dụng hai toán để chứng minh bất đẳng thức (a b3 c3 ) VT Để chứng minh BĐT (2), ta phải chứng minh: a (b c) b (c a) c (a b) (a b3 c ) a b3 c3 a (b c ) b ( c a ) c ( a b ) 2(a3 b3 c ) a (b c) b (c a) c (a b) (a b3 a 2b b a ) (b3 c3 b 2c bc ) (a c a 2c ac ) (a b) (a b) (b c)2 (b c) (c a) (c a ) (luôn đúng) Dấu “ = ” xảy a = b = c Bài 5.(Đề thi HSG Tĩnh Hà Tĩnh 2011-2012) Cho a, b, c số dương thõa mãn abc =1.Chứng minh Giải ta có áp dụng tốn II Ln Dấu “=” xẩy a = b = c = Nhận xét: Đây dạng toán áp dụng cần ý đổi biến chứng minh toán phụ Dạng Áp dụng toán Bµi Cho a, b, c > 0, vµ a +b+c 11 skkn chøng minh ¸p dơng hai toán để chứng minh bất đẳng thức Giải : Cách áp dụng toán I ( víi a,b,c ,x,y > 0) Ta chứng minh Suy Ta cú Cách áp dụng toán II : ( v× a+b+c)2 Suy với x, y, z > 3(ab+bc+ac) ) Dấu “=” xẩy a = b = c = Bµi 2.Cho a , b,c > vµ a + b + c =1.CM Gii: áp dụng toán I ¸p dơng bµi to¸n II : y, z > 12 skkn 30 , x, áp dụng hai toán để chứng minh bất đẳng thức Suy ®pcm Dấu “=” xẩy a = b = c = 1/3 Nhận xét: Đây toán qua nhìn dễ nhng vào chứng minh ta gặp khó khăn không nm vững phơng pháp chứng minh Trong ta định làm xuất (a +b+c)2 cho kết đợc P DNG TèM GI TR LỚN NHẤT, NHỎ NHẤT Dạng 1: Áp dụng tìm cực trị hình học Bài Cho tam giác ABC có ba cạnh có độ dài a, b, c thỏa mãn điều kiện: 30ab + 4bc + 1977ca = 2012.abc Tìm giá trị nhỏ của: Với Giải: Ta có: Áp dụng tốn I ta có: (1) (2) (3) Từ (1), (2), (3) ta có: Vậy Q = 8048 đạt khi: Nhận xét: Bài tốn ta khơng áp dụng trực tiếp, ta nghĩ cách ghép hai A biểu thức lại với ta thấy 2p-c-a = b…nên hướng để giải dạng B1 C1 toán thuộc loại Bài 2.Cho M ABC Điểm M nằm ABC 13 skkn B A1 C áp dụng hai toán để chứng minh bất đẳng thức K , , Tìm vị trí điểm M để biểu thức: có giá trị nhỏ Giải: Ta có: MA1.BC = 2SMBC, MB1.CA = 2SMAC, MC1.AB = 2SMAB Do đó: MA1.BC + MB1.CA + MC1.AB = 2SMBC + 2SMAC + 2SMAB = 2SABC Mặt khác: = Áp dụng toán II ta có: khơng đổi Suy ra: đạt giá trị nhỏ MA1 = MB1 = MC1 khi: M tâm đường tròn nội tiếp tam giác ABC Nhận xét: Đây tốn hình học không nhận để áp dụng tốn II việc giải khó khăn tìm cực trị hình học cần lưu ý tới vận dụng bất đẳng thức Dạng 2: Áp dụng tìm cực trị cho biểu thức Q Bài Tìm giá trị nhỏ Giải: Vì x Q với x x 2x x , Áp dụng tốn I ta có: 1 x 2 2x 1 2x 2x 2 1 2x Q x x x 2 2x 1 2x Vậy giá trị nhỏ Q x Bài Cho số dương a, b, c Tìm giá trị nhỏ ca 14 skkn 8, áp dụng hai toán để chứng minh bất đẳng thức R ac bd ca bd ab bc cd d a Giải: Ta có: R (a c) (b d ) ab cd bc d a Có: a b 0, c d 0, b c 0, d a , Áp dụng toán I , ta có: (1 1)2 (1 1) R (a c) (b d ) abcd bcd a 4 R (a c) (b d ) (a c b d ) abcd bcd a abcd R a= b = c = d Vậy: giá trị nhỏ R a=b = c = d Bài Cho số thực dương x,y,z Tìm giá trị lớn của: Giải: Áp dụng toán II với số thực dương x,y,z có: Mà (**) Kết hợp (*) (**) ta B Vậy giá trị lớn B = x = y = z Bài Cho a, b, c số dương thoả mãn a + b + c = Tìm giá trị nhỏ biểu thức: Giải: Áp dụng tốn II Ta có: (a + b + c)3 a3 + b3 + c3 + 3(a + b + c)(ab + bc + ca) - 3abc a3 + b3 + c3 + Từ suy ra: - 3abc = a3 + b3 + c3 + 24abc = 1.Vậy giá trị nhỏ T khi: a = b = c = 1/3 15 skkn áp dụng hai toán để chứng minh bất đẳng thức Nhn xột: Trong bi toỏn áp dụng tốn II khơng cho kết mà ta suy nghi xem a2 +b2 +c2 +24abc có nhỏ (a+b+c)3 hay khơng, cách làm thường gặp số chứng minh bất đẳng thức Bài tập tương tự Bµi 1.Cho a, b, c > vµ a + b + c = CM áp dụng toán II : ( víi x,y,z > 0) ta có Bµi 2.Cho a,b,c > vµ ab + bc + ac =3abc Chứng minh HD áp dụng toán II: Ta cã (x+y+1)2 3(xy+ x+y) nên ta phải chứng minh Bµi Cho a, b, c > vµ a2 +b2 + c2 = chøng minh HD ¸p dơng toán I : suy đpcm Bài 4.Cho a, b, c > vµ a + b + c = chøng minh b + c HD ¸p dơng toán I vi x, y > Bi Cho số dương a, b, c thoả mãn: Tìm giá trị nhỏ biểu thức: S=a+b+c 16 skkn 16abc áp dụng hai toán để chứng minh bất đẳng thức Bi Cho s dương a, b thoả mãn: a + b = Tìm GTLN của: N a b 2a 2b Khi đẳng thức xảy tam giác có đặc điểm gì? Bài Một tam giác có diện tích S độ dài cạnh a, b, c Gọi , hb , hc độ dài đường cao tương ứng với cạnh a, b, c 1 abc hb hb hc hc 4S CMR: Bài Gọi a, b, c độ dài cạnh tam giác có p nửa chu vi S diện tích a 3b b3c c3a abc ( a b c ) ab bc ca abc CMR: Bài Một tam giác có độ dài cạnh a, b, c p nửa chu vi CMR: 1 1 1 2 p a p b p c a b c Khi đẳng thức xảy tam giác có đặc điểm gì? Bài 10 Cho số dương a, b, c, , , CMR: a2 b2 c2 a bc a b c b c a c a b C KẾT QUẢ ĐẠT ĐƯỢC VÀ BÀI HỌC KINH NGHIỆM 1.Kết đạt Đề tài giúp học sinh có thêm cách chứng minh bất đẳng thức cách hiệu Số liệu kết thực đề tài Năm học Tổng số Số học sinh vận dụng 2011-2012 30 23 2012-2013 33 28 2.Bài học kinh nghiệm Trong q trình vận dụng đề tài tơi rút kinh nghiệm : 17 skkn ¸p dơng hai toán để chứng minh bất đẳng thức Việc rèn luyện kỹ cho học sinh phải theo lộ trình *Bài tập mẫu, phân tích, hướng dẫn *Bài tập tương tự HS tự làm *Cho hs đề xuất hướng giải có *Rút phương pháp chung *Kiểm tra, sữa chữa đánh giá kết D KẾT LUẬN Thông qua sáng kiến kinh nghiệm này, mong muốn đựợc đóng góp phần nhỏ bé cơng sức mỡnh việc hướng dẫn học sinh ứng dụng khai thác bất đẳng thức làm toán, rèn luyện tính tích cực, phát triển tư sáng tạo cho học sinh, gây hứng thú cho em học toán Là giáo viên trực tiếp giảng dạy khối 8-9, áp dụng dạng tập tơi thấy hiệu học tập học sinh tăng lên rõ rệt Tôi mạnh dạn đưa vấn đề này, tập tơi đưa chưa khai thác hết triệt để tình việc làm hữu ích cho giáo học sinh Trên số kinh nghiệm trình bồi dưỡng học sinh giỏi Những kinh nghiệm mang màu sắc cỏ nhõn, chắn khụng trỏnh khỏi tồn tại, hạn chế Tôi mong đóng góp, bổ sung ý kiến đồng nghiệp, cỏc nhà chuyờn mụn, cỏc cấp quản lý giỏo dục để đề tài sớm ỏp dụng rộng rói vào thực tiễn dạy- học bất đẳng thức trường THCS Tôi xin chân thành cảm ơn ! Hà Tĩnh, ngày 25 tháng năm 2014 Chủ nhiệm đề tài: Nguyễn Duy Hưng Trường THCS Nguyễn Tuấn Thiện – Hương Sơn – Hà Tĩnh 18 skkn ¸p dơng hai toán để chứng minh bất đẳng thức TÀI LIỆU THAM KHẢO 1.Nõng cõo phỏt triển toỏn – Vũ Hữu Bỡnh – Nhà xuất GD 2.Chuyên đề Bất đẳng thức – Vừ Giang Giai- Nhà xuất Đại Học Quốc Gia Hà Nội 3.Một số đề thi HSG tốn cỏc tỉnh 19 skkn ¸p dụng hai toán để chứng minh bất ®¼ng thøc 20 skkn ... chứng minh toán phụ Dạng Áp dụng toán Bµi Cho a, b, c > 0, vµ a +b+c 11 skkn chứng minh áp dụng hai toán để chứng minh bất đẳng thức Giải : Cách áp dụng toán I ( với a,b,c ,x,y > 0) Ta chứng minh. .. thức a+b+c ab+bc+ac nên chứng minh toán dễ dàng Bµi Cho a,b,c > vµ abc = cm Giải Ta có áp dụng toán II skkn áp dụng hai toán để chứng minh bất đẳng thức Du = xy a = b = c = Bài Cho a,b c >0 Chứng. .. Khi áp dụng vào chứng minh bất đẳng thức ta phải xác định rõ toán thuộc dạng tốn trên, xem có phải biến đổi tốn áp dụng khơng, biến đổi cho phù hợp… ÁP DỤNG ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC Dạng Áp dụng