Chứng minh bài toán Ferma lớn
Trang 2TABLE DES MATIERES
2 - Une preuve élémentaire de l’infinité des nombres
premiers jumeaux (p,p+2) et des paires voisines de nombres premiers jumeaux (p,p+2; p+6,p+8) …
3 - Essai d’une preuve élémentaire de la conjecture de
Goldbach
Le détail du déroulement de ces recherches
peut être trouvé dans mon autobiographie
“ Méditation posthume ”, 2007
Trang 3à la mémoire de mes parents Hân-Đoàn
Que ces recherches tombent aux mains d’un examinateur de haute responsabilité, qui n’est point allergique sur des preuves dites élémentaires, et surtout , sur des chercheurs au nom des amateurs
This is the researche’s recapitulation of an amateur in almost the spare
time of his life The review is recapituled and written at the age of 79 by this homo sapiens- demens with a view to submit to the professionals Unprofessional and amateur, sapiens and demens this is the trait general
of the author, on which the reader necessitate to meditate
Let these researches fall into the hand of one reviewer of high responsibility, who is not allergic to all elementary proofs for the difficult mathematic problems, and more particularly , to all researchers named unprofessional
Let these works are coming with the curious and meditative readers
Let me express my heartfelt gratitude to this reviewer and to these readers
*
Trang 6AN ELEMENTARY PROOF OF
THE FERMAT’S LAST THEOREM
N V TU -YEN
( Vietnam )
ABSTRACT- To examine the structural properties of the solutions ,
if existent , of the Diophantine equation : ( 0 ) a
pair of the two procedures ( I )
where x , ; x odd, even and
n n n
z y
i x i n n i
i n n
n
x x C x e e
1
)(
i n n
n
y y C y e e
1
)(
+
∈ Z
n
The fives structural properties of these procedures reveal a
secret that if the eq.( 0 ) has solution, then the existence of one
consecutive solution as a first and smallest one is unavoidable
From this the Fermat’s last theorem is proved simply by the
well- known fact in the number theory that when any
consecutive solution does not exist for the equation ( 0 )
3
≥
n
INTRODUCTION
Although the Fermat’s last theorem had been proved in 1994 by
the English mathematician A.Wiles, the question: “Is it possible to
prove this theorem in an elementary way using only the
mathematical knowledge in Fermat’s times ? ” posed during the
whole last 371 years had been left unsolved In honour of
Fermat and of so many people, known and unknown after him,
who had essayed to prove this famous theorem, I introduce here
an elementary answer to this question
I TWO PROCEDURES PROPOSED FOR THE PROOF
1 -Two procedures to find the triplet- solution (x, y, z) of eq.( 0 )
Assuming that there is a solution ( x, y, z ) of the eq
( 0 ) Then we have : x, y, z and from this,
Noting that the n- dimensional cubes are always represented correspondingly by the 3-
dimensional right prisms with squares as their bases and
as their altitudes, we conclude the identical parity
of x, y and z for all n Now let x be odd, y be even then z and
will be odd and will be even For solving ( 0 ) we
consider constantly its two of three unknowns, say x and z as
positive intergers to find the third interger y, or y and z as
positive intergers to find the third interger x of the triplet-
solution With this aim, two following procedures are proposed to
,y and z x
2 2
Trang 7x x C x e e
x
1
)(
i n n
( ( II ) with y,e y ∈ Z+, y even , e y odd ;
Clearly, in the procedure ( I ) because then if there
i
i x i n i n
1 1
, or in the procedure ( II ) because
i
i y n i n
1 1
1
we have certainly a solution ( x, y, z ) of the equation ( 0 )
2 - The use of procedures ( I ) and ( II )
Using ( I ) : For all odd x successively in their increasing order
taking by turns each even beginning with , we
calculate ( I ) If for some odd x and some even , we have
i
i x i n
i
n
1 1
then the triplet obtained ( x, y, z = x+ )
is one solution of ( 0 )
x
e
Using ( II ) : For all even y successively in their increasing
order taking by turns each odd beginning with = 1 , we
calculate ( II ) If for some even y and some odd , we have
i
i y i n i
n
1 1
then the triplet obtained ( x, y, z = y+ )
Let ( x, y, z ) be a solution of ( 0 ) Then there are an even
number e x = z−x and an odd number e y =z− y Intuitively
the solution equivalence of ( I ), ( II ) and ( 0 ) is evident from
the fact that, by using ( I ) only if we have then ( I ) and
( 0 ) will become identity, and by using ( II ) only if we have
then ( II ) and ( 0 ) will become identity More rigorously
the proof of this solution -equivalence can be represented as
follows : Putting two integers : x , z = x+ of this solution into
( I ), we have with the same third integer y in
the solution of ( 0 ) Now let ( ) be a solution of ( I )
1,y ,z x
1 1
n n
i
i x i n i n
1 1
1 1
Trang 8have with In other words,
( ) is also a solution of the equation ( 0 )
n n n
z y
2,y ,z x
n n
i
i y i n i n
1 1
2 2
also a solution of the equation ( 0 )
4 - Definitions connected with the procedures
Suppose that ( 0 ) or ( I ) and ( II ) have some solution (x,y,z)
Then we have x, y, z, and n and, evidently,
Definition1 Solution in the form (x,y,z) is called explicit solution
Definition 2 Solution in the form (e , x e y) is called implicit solution
Definition 3 Solution is called irreducible if its greatest common
divisor equals 1, i e gcd (x,y,z) = gcd (e , x e y) = 1
Definition 4 Solution is called k- proportional if its greatest
common divisor equals k, i e gcd (x,y,z) = gcd (e , x e y) = k
Definition 5 Solution is called generating if it is found by using
2
min =
= x
x e
e in ( I ) and by using e y=e ymin =1 in ( II ) Their
implicit forms are (e xmin,e y) and (e x,e ymin) respectively
Definition 6 Solution is called combining if its implicit form is
(e , x e y) where there are e x ≠e xmin and e y ≠e ymin
Definition 7 Solution is called the first or the smallest if its
explicit form is ( ), and its implicit form is
( ) Here “ first ” is clear from the use of procedures ( I )
and ( II ) stated above, and “ smallest ” will be evidenced by the
property 2 presented below
min min min,y ,z x
min
min, y
x e
e
Definition 8 Solution ( x, y, z ) is called consecutive if its explicit
form is (x, x+1, x+2) and its implicit form is ( ) This is
evident from the procedures ( I ) and ( II ) that : x+2 = y+1 = z,
i e there is ( x, y, z ) = ( x, x+1, x+2 )
min min, y
x e e
Furthermore : Z denotes the set of all positive integers; +
R denotes the set of all real numbers ( )
)!
(
!
i n i
In the procedure ( I ) with , for each odd x and each
even , there is always an
R e
x C y
n n
i
i x i n i
Trang 9particular case when then the triplet numbers (x, y, z=x+ ) obtained is a solution of ( 0 ) Similarly in the procedure ( II ) with for each even y and each odd , there is always
R e
y C
x
n n
i
i y i n i
1 Two ways to determine each solution
Property 1 - If the equation ( 0 ) has some solution then this
solution can be found by two ways : Either by using the procedure ( I ) or by using the procedure ( II )
Proof - Suppose the equation ( 0 ) has a solution (x, y, z) in
explicit form and ( ) in implicit form We will prove that if this solution is found by the procedure ( I ) then it will be found
by the procedure ( II ) and vice versa In fact if by using ( I ) :
we obtain a solution (x, y, z) but by using ( II ) we obtain an other one, say (x’, y, z), satisfying
.Then this leads to a contradiction that Hence x’ = x Similarly if by using ( II ) : + but by using( I )we obtain an other one, say (x,
contradiction that Hence y’ = y
y
x e
e ,
n n
n
n
y x
y
n n n
n
y y x z
n n n n
x x y z e
(
n n n n
y x y
Property 2 - The values of each real triplet (x, y, z) of the
equation ( 0 ) is directly proportional to e xmin =2 in ( I ) and to
min R e
x C y
n n
i
i x i n i
Trang 10on the real number line, say (X, Y, Z = X+ ) where
Z-X (3a) Evidently, X , Z and in general,
X
C
Y
n n
i
i x i n
(4a) But from (1a), there is
x k z k x z k e
k
e x = x xmin = x( − )= x − x (5a) From (3a) and (5a) we
have Z =k x z (6a) and X =k x x (7a) Noting e x = and
putting (7a) into (4a) we get Y =
min
x
x e k
n n
i
i x i n i n
x C x e k
1 1
In comparison (8a) with (2a) we get Y = k xy ∈R (9a)
Therefore if by procedure ( I ) using we get a triplet of
real numbers (x,y,z) positioned on the number line R, then when
x k e
e = this triplet will be shifted forward and get a
new position at (X, Y, Z)= (x, y, z) = ( ) This
conclusion is evidently true also in the case where , i e
when (x, y, z) is a solution of the equation ( 0 )
2 ) In the procedure ( II ) when using for each even y we
obtain a triplet of real numbers (x’, y’, z’= y’+ ) where =
i
i y i n i
min
'
(2b) Now when using e y =k y e ymin we will obtain a new triplet
on the real number line R, say (X’, Y’, Z’= Y+e y) , where
i
i y i n i
n Y e
C
1 1
min k z y k z k y
e
k
e y = y y = y − = y − y (5b) From (3b) and (5b) we
have Z’ = k yz’ (6b) and Y’ = k yy’ (7b) Noting e y =k y e ymin and
putting (7b) into (4b) we get X’ =
n n
i
i y i n i n
y C y e k
1 1
In comparison (8b) with (2b) we get X’ = k yx’ (9b)
Therefore if by procedure ( II ) using we get a triplet of
real numbers (x’, y’, z’) positioned on the number line R, then
when using this triplet will be shifted forward and get
a new position at (X’, Y’, Z’)= (x’,y’,z’) = ( )
This conclusion is evidently true also in the case where x’
i e when (x’, y’, z’) is a solution of the equation ( 0 )
3- Decisive role of and in the existence or the non-
existence of solution of the equation ( 0 )
min
x
Trang 11Property 3 - The equation ( 0 ) has no solution when either using
in the procedure ( I ) we have no any or using
in the procedure ( II ) we have no any
Proof - As evidenced by the argumentation in the proof of
property 2, we see that :
1 ) By the use of procedure ( I ) to find the solution ( x, y, z ) of
eq ( 0 ) with , because the two variables x and z are always
chosen as positive integers, the triplet obtained ( x, y, z ) will be a
solution of ( 0 ) if and only if the third variable calculated as
min
x
e
n n
i
i x i n
and > 1, a - proportional triplet (X,Y,Z)=
( ) will be obtained where X, Z
i
i x i n i
n
x C x e
k
1 1
will be positive integer if and only if the variable y in (2a)
calculated by using is a positive integer
Therefore if using in the procedure ( I ) we find no any
then there will be no any to find the
solutions of the equation ( 0 ) for the procedure ( II ) Thus,
without using the procedure ( II ) it can be concluded in this case
that the equation ( 0 ) has no solution
2 ) By the use of procedure ( II ) to find the solution ( x’, y’, z’)
of eq ( 0 ) with , because the two variables y’ and z’ are
always chosen as positive integers, the triplet obtained ( x’, y’, z’ )
will be a solution of ( 0 ) if and only if the third variable
i
i y i n i
n y e C
1 1
Now when using all other odd greater than , say
where is odd integer greater than 1, a -
proportional triplet (X’, Y’, Z’) = ( ') can be obtained
where Y’ and Z’ are positive integers and X’ =
n n
i
i y i n
Trang 12be positive integer if and only if the variable x’ in (2b) calculated
by using e ymin is a positive integer
Therefore if using in the procedure ( II ) we find no any x’
Property 4 - If the equation ( 0 ) has some irreducible solution
then this solution will be found either by the procedure ( I ) at
Proof - From the property 2, the existence of some solution (x,
y, z) of ( 0 ) is uniquely depended on its existence either by the procedure ( I ) at or by the procedure ( II ) at Now at
the procedure ( I ) or at ( ) in the procedure ( II ) Hence after eliminating the common factors of proportionality
or we get always an irreducible solution (x, y, z) of the equation ( 0 )
z k y k x
k x , x , x
z k y k x
*5 Generating characteristic of the set { } found by using
in the procedure ( II ) and the set { } found by using
in the procedure ( I )
i x
About the last fifth property I would like to note that this
property does not play any role for the proof of the Fermat’s last theorem It is introduced here to understand the creation of the combining solutions, found by each pair of the Cartesian product
{ } x { } In other words for an elementary proof presented in
this paper only four properties given above are necessary and sufficient
x e
e min,,e
e
Trang 132 ) Each pair ( ) of the Cartesian product { } x { }
where i, j = 2, 3, , n , corresponds with one solution of the
equation ( 0 ), which is either irreducible if gcd ( ) = 1 or
k – proportional if gcd ( ) = k
j y i
x e
j y i
x e
e ,
j y i
x e
e ,
Proof - 1 ) The affirmation is evident by the fact that there are
always gcd (e xmin,e y j) = 1 for all j and gcd ( e x i,e ymin) = 1 for all i
2 ) Suppose that the implicit pair ( ) at some i,
j = 2,3, , n does not correspond with a solution, irreducible or
proportional , of the equation ( 0 ) Then when using the
But this leads to , which contradicts the given
As the same, when using the procedure ( II ) with
we have no any But this leads to , which contradicts the given Hence each combining pair ( ) at any i and j must be
corresponding with one triplet of positive integers ( ),
which satisfies the equality ( 0 )
j y i
x e
e ,
j j
j y z
For resuming, we present here a distribution’s picture of the
considered solutions in the form of a ( n x n ) matrix as follows :
Table 1 Representation of the solutions in the procedures (I), (II)
III APPLICATION OF THE PROPOSED PROCEDURES
TO FIND THE PYTHAGOREAN TRIPLETS
Before presenting a proof of the Fermat’s last theorem I would
like to illustrate an application of the two proposed procedures (I )
and ( II ) for finding all triplet – solutions of the Pythagorean case
n = 2, which are represented in form of a square matrix with
infinitely many rows and columns ( see Table 1 )
Table 2 Pythagorean triplets found by ( I ) and ( II )
Trang 14e yj
xi e 12 2
3 2
5 2
7 2
9
2.1.1 3, 4, 5 15, 8, 17 35, 12, 37 63, 16, 65 99, 20,101
2.2.2 5, 12, 13 21, 20, 29 45, 28, 53 77,36,85 117, 44, 125 2.3.3 7, 24, 25 27, 36, 45 55, 48, 73 91, 60, 109 135, 72, 153
2.4.4 9, 40, 41 33, 56, 65 65, 72, 97 105, 88, 137 153,104,185
2.5.5 11, 60, 61 39, 80, 89 75, 100, 125 119,120,169 171,140,221
2.6.6 13,84,85 45,108,117 85,132,157 133,156,205 189,180,261
2.7.7 15,112,113 51,140,149 95,168,193 147,196,245 207,224,305
2.8.8 17,144,145 57,176,185 105,208,233 161,240,289 225,272,353
2.9.9 19,180,181 63,216,225 115,252,277 175,288,337 243,324,405
Let i , j be the i- th row and the j- th column respectively, then the Pythagorean triplets ( ) and the sets { } , { } are firstly represented here by the following formulas, which are easily verified by the identity :
j j j y z x , , e x i j y e 2 2 2 ij ij ij y z x + = x j =(2j−1)[2(i+ j)−1] y j =2i(2j+i−1) z j =(2j−1)[2(i+ j)−1]+2i2= 2
) 1 2 ( ) 1 2 ( 2i j+i− + j− {e x i} = { 2} and { } = { } with i , j = 1, 2, 3, ,
2i e y j (2j−1)2 ∞
From the Table 2 it is easy to verify all the five properties presented above In particular, the property 5 shows us the capacity for finding the existent solutions of the eq ( 0 ) by the generating sets { }e x i given by using e ymin =1 in the procedure (II) and { }e y j given by using e xmin =2 in the procedure ( I ), with considering each and each of them as an indivisible unit such as This important fact is evidenced from the irreducibility of all the pairs
i x
min min y
x and e
e
) , ( )
, (e xmin e y j and e x i e ymin
IV - PROOF OF THE FERMAT’S LAST THEOREM
1 - Lemma The Diophantine equation ( 0 ) for x,
y, z, n
n n n
z y
+
∈ Z has solution if and only if it has a consecutive
solution as the smallest one
Proof - First of all, remember some facts given above From
the definition 8, a consecutive solution must be either of the implicit form ( ) or of the explicit form ( x, x+1, x+2 ) Then from the use of the procedures ( I ) and ( II ); and the property 2 , this consecutive solution must be either the first and the smallest one found by the procedure ( I ) using , or the
min min, y
x e e
e
Trang 15first and the smallest one found by the procedure ( II ) using Following the property 1, this solution is also the first and the smallest one found by both procedures ( I ) and ( II ) simultaneously
( 0 ) is empty This means that there does not exist any solution
or ( x, x+1, x+2 )
1 1
1,y ,z
2 - The Fermat’s last theorem The Diophantine equation
( 0 ) has no non- zero positive integer solution for x,
Proof - The lemma established the equivalence between the
statement of this theorem and the non- existence of the consecutive solution for the equation ( 0 ) But the non- existence
of the consecutive solution for all n > 2 of the equation ( 0 ) had been easily and beautifully proved long ago in the number theory
in form of an exercise, for example in [ 1 ] ( Chapter 2, section
18, exercise 5 ) For convenience let us copy out this proof
“ Exercise 5 - If n is a natural number greater than 2, then the equation : has no solution in natural number
n n
n
x x
x +( +1) =( +2)
Solution -1 ) n is an odd number greater than 2 Putting
This proves that is
a divisor of the number 2, which by y = x+1 > 1, is impossible
n n
n
y y
y =( +1) −( −1)
22
2
2 1 1− 3 3 − − 2 2 =
y C y
C y
shows that whence y > 2n The second equality shows that y is a divisor of 2n This is a contradiction ”
02
2
2 1 1 − 3 3 − − 1 =
y C y
C y
C
022
2 1 2 3 4
1− − − − − − =
−
n y
C y
ny y
3 Corollary –
Trang 161 ) For positive integers x, e x and n, the n- th root
n n
is not an integer when n > 2
2 ) The Diophantine equation in three unknowns x, y and e x :
n i
i n i
( IV ) has no non- zero positive
integer solution when n ∈ Z and n > 2 +
Proof - 1) and 2) : Evidently, if +
i
i x i n i n
1
1
This contradicts the Fermat’s last theorem
n n n n
x x y z
e
( x, y and z ∈ Z+
3 ) : This assertion is directly resulted from both
assertions 1 ) and 2 ) above
* * *
Acknowlegment - I would like to express my deep gratitude
to all mathematicians - referees for their important contribution to
evaluate this proof and to bring this paper to the readers
To them I would like to express my heartfelt thankfulness
References
[ 1 ] W Sierpin’ski , Elementary theory of numbers , Polski
Academic Nauk, Warzawa , 1964
-
Author’s Address
N.V TU -YEN E- mail : thyen28@gmail.com
NHA E 1 , P 406 VAN CHUONG
Trang 18
PREMIERS JUMEAUX ( p, p+2 ; p+6, p+8 )
( Vietnam )
*
two sieves for sifting the twin- primes (p, p+2) and the neighbouring pairs of twin- primes (p,p+2 ; p+6,p+8) are proposed From the structure of these sieves, after the Legendre’s manner of deducing the density- limit of the primes
, the formulas describing the density- limits of the twin- primes and of the neighbouring pairs of twin- primes
)
( p
D∞
)2,
∞ p p
D
)8,6
;2,
;2,
∞ p p p p
had been used to prove the infinity of the twin- primes and the neighbouring pairs of twin- primes If the proof proposed here is an accepted one, it will
be reasonable to place both these proved here conjectures into the Arithmetic’s edifice already constructed as one Corollary of the Euclid’s theorem on the infinitude of the primes
*
premiers ( p ), deux cribles pour cribler les nombres premiers jumeaux ( p,p+2 )
et les paires voisines de nombres premiers jumeaux ( p,p+2 ; p+6,p+8 ) sont proposés De la structure de ces cribles et suivant la déduction connue de
des paires voisines de nombres premiers jumeaux
)
( p
D∞
)2,
∞ p p D
)8,6
;2,
∞ p p p p D
respectives sont établies en même forme comme celle de nombres premiers :
)1(3
égale 1 pour des nombres premiers, égale 2 pour des nombres premiers jumeaux et égale 4 pour des paires voisines de nombres premiers jumeaux Enfin ces deux dernières formules ont utilisées effectivement pour démontrer l’infinité des nombres premiers jumeaux et l’infinité des paires voisines de nombres premiers jumeaux Si la preuve proposée ici est acceptable, il serait raisonnable de placer ces deux anciennes conjectures comme un corollaire du théorème d’Euclide de l’infinitude des nombres premiers dans l’édifice d’ Arithmétique déjà construit
i
*
MOTS CLEFS - Crible d’Ératosthène ; Suite binaire ; Bande criblée ; Bande
criblante ; Bande résultante ; Nombre premier jumeau ; Paire de nombres premiers jumeaux ; Densité et Densité limite
*
1
Trang 19PRÉLIMINAIRE
Dans cet article le crible d’Ératosthène sera concrétisé par un système de 3 composants : D’abord une bande criblée comportant une suite infinie de bits 1 qui représentent les nombres naturels que l’on devrait les faire trier, puis une infinité des bandes criblantes donnant pour chacune une suite binaire de période avec étant le i-ième nombre premier, ó les bits 0 codant les multiples de et les bits 1 codant ses non- multiples, et enfin, une bande résultante qui est la suite binaire restée de la bande criblée après le triage Cette approche est en fait une concrétisation des concepts comme fonction crible, fonction Ératosthène , rappelés dans les ouvrages d’Informatique, par exemple [2]
on a une suite infinie des bits 1, donnant une bande criblée pour trier tous les nombres premiers à partir de 9 Les bandes criblantes sont placées en lignes horizontales de l’ordre croissant de haut en bas avec le premier bit 0, ou le premier trou, situé à l’extrémité gauche de valeur , mais plus simplement pour écrire le schéma du crible, de valeur suivant
la propriété 1 ci- après :
la bande criblante
1 +
i
p
i
p
Preuve - Car tous les nombres considérés sont impairs, en
supposantp i = k2 +1 et p i+1 =2(k+m)+1, avec entiers positifs k
et m, la différence entre ces deux premiers bits 0, ou trous, est
2
Trang 20nombres impairs consécutifs, c’est à dire à 2 unités de nombres
naturels, la propriété 1 est évidente ∗ ( Symbole ∗ utilisé dans
cet article pour noter la fin d’une preuve )
Utilisant les composants du crible et la propriété 1 décrits au-
dessus, un schéma du crible d’Ératosthène pour déterminer les
nombres premiers à partir de 9 est présenté ci- après
2 - Schéma 1 : Crible 1 d’Ératosthène pour nombres premiers
Remarques - 1) Car 37 < , il est nécessaire et suffisant
d’utiliser seulement 3 bandes criblantes dans le crible,
parmi lesquelles celle de
2 2
4 =7
p
3 2
1,p et p p
respectivement ) La dernière ligne est la bande résultante Sur la
bande résultante de cet exemple on trouve 8 bits 1 correspondant
8 nombres premiers notés à la 1
è è
2) Les points dans chaque bande criblante notent ses périodes p i
3) L’usage seul des bandes criblantes ‘ premières ’ pour trier les
nombres premiers (p), premiers jumeaux (p,p+2) et les paires
voisines de nombres premiers jumeaux (p,p+2 ; p+6,p+8)
eux-mêmes n’est pas un cercle vicieux car un système de n bandes
criblantes ‘premières’ , i = 1, 2, , n est capable toujours de
trouver un bon nombre d’autres nombres premiers plus grands
que , qui sont prêts à continuer sans cesse le criblage
I - Schémas du crible d’ Ératosthène utilisés
1 - Cas des nombres premiers jumeaux ( p,p+2 )
En utilisant la bande criblante p2 =3, ‘011011011 ’ pour la
bande criblée, qui se compose seulement des nombres impairs
3
Trang 21jumeaux ‘011’, on voit bien qu’à partir de 9, il serait possible d’en trouver un nombre premier jumeau si tous les deux bits 1 d’une période 3, ‘011’, restaient conservés sans être annulés par des bandes criblantes du crible En codant chaque période 3,
Dans ce cas, parce que la longueur de chaque période de la bande criblée était diminuée 3 fois, toutes les bandes criblantes
à partir de
i
p p3 =5 devraient se rétrécir en une même échelle
1/3 d’après la propriété 2 suivante :
1 ) Propriété 2 - Pour cribler les nombres premiers jumeaux
(p,p+2), la i- ième bande criblante à partir de est une suite binaire périodique infinie de période bits binaires commencée par
i
p bits 1, puis continue par
)}
232
bits 1 Ici [ ]x est la partie entière de x
Preuve - L’action d’annulation des bits 1 causée par la bande
criblante sur la bande criblée à l’échelle 1 : 1 comme
‘011011011 ’ est représentée par une suite binaire périodique infinie de période bits, ó il y a périodes 3, ‘011’, sur la bande criblée et 3 périodes sur la bande criblante Dans chaque période commune de la bande criblante il y a 4 bits 0 pour la diviser en 3 périodes , parmi lesquels deux bits
0 à ses deux extrémités sont déjà cọncidés avec ceux de la bande criblée qui n’annulent aucun bit 1 des périodes 3, ‘011’, et seulement deux bits 0 à l’intérieur de chaque période jouent
le rơle des trous, dits ‘ trous actifs ’, pour faire annuler deux bits
1 situés à deux périodes 3, ‘011’ distinguées, c’est à dire ces deux trous actifs annulent deux paires possibles de nombres premiers jumeaux sur la bande criblée On voit bien qu’à l’échelle rétrécie 1/3, la période commune bits de la bande criblante devient bits, ó chacune de ses trois périodes composantes possède
4
Trang 22i p p
p3 4
n i
i p p p
Période : 10101 ; Période p3 =5 p5 =11 : 11101110111 ; etc
2) Schéma 2 : Crible 2 d’Ératosthène pour les nombres premiers jumeaux (p, p+2)
la première ligne divisent 3 et sont codés par des bits 0, leur deux impairs consécutifs ó le deuxième est écrit à la ligne sont des non- multiples de
2 =
p et codés par des bits 1 On voit donc que tous les bandes considérées et leur écarts des bits binaires aux extrémités gauches dans ce crible sont rétrécies à l’échelle 1/3 Dans cet exemple sur la bande résultante on trouve 6 bits 1 correspondant 6 nombres premiers jumeaux qui sont les deux nombres impairs consécutifs après ceux notés à la 1ère ligne dans leurs mêmes colonnes respectivement Ce sont : 11,13 ; 17,19 ; 29,31 ; 41,43 ; 59,61 et 71,73
5
Trang 232) et 3) sont identiques à celles du Crible 1 précédent
2 - Cas des paires voisines de nombres premiers jumeaux
( p, p+2 ; p+6, p+8 )
1 ) Propriété 3 - Pour cribler les paires voisines de nombres
premiers jumeaux (p,p+2 ;p+6,p+8), la i- ième bande criblante
à partir de a une période de bits binaires avec 4 bits 0 actifs inclus, qui comporte :
Preuve - L’action d’annulation des bits 1 séparés sur la
bande criblée non- codée ‘011011011 ’ causée par la bande criblante est représentée par une suite binaire périodique infinie
de période bits ó il y a périodes 6 bits binaires
‘011011’ sur la bande criblée et 6 périodes bits binaires sur la bande criblante Dans chaque période commune il y a 7 bits 0 pour la diviser en 6 périodes ó deux bits 0 situés à ses deux extrémités et 1 bit 0 à son point médian sont toujours cọncidés avec ceux de la bande criblée qui n’annulent pas aucun bit 1 de la période 6 ‘011011’ Alors restent sur chaque période
de la bande criblante du crible, 4 bits 0 ‘actifs’ ou trous, pour faire annuler 4 bits 1 distinguées de la bande criblée, et
Évidemment à l’échelle 1/6, la longueur d’une période
bits de la bande criblante devient celle d’une période bits et chacune de ses 6 périodes composantes rétrécies possède
Trang 24ó 3 bits 0 cọncidents notés par (0) ne seront comptés pas dans
les p i bits, d’ó une répartition de (p i −4) bits 1 dans ces 6
intervalles doive être réalisée En notant que cette période est un
palindrome ou une symétrie centrale et que le bit central (0) se
trouve à la médiane d’une période 6, ‘011011’, de la bande
criblée, tandis que deux autres bits (0) situés aux extrémités de
chacune période de la bande criblante sont toujours cọncidés
avec deux bits 0 de la bande criblée, nous déterminons les bits 1
restés pour ces 6 intervalles de ( II ) selon un ordre suivant :
pour le 2ème et le 5ème intervalle chacun *
D’après ces formules chaque période de la bande criblante
prend une suite binaire concrète pour chaque , par exemple :
2 ) Schéma 3 : Crible 3 d’Ératosthène pour les paires voisines
de nombres premiers jumeaux (p,p+2 ; p+6,p+8)