1. Trang chủ
  2. » Tất cả

(Luận văn thạc sĩ) về tính ổn định của một số lớp phương trình sai phân

128 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN LÊ TRUNG HIẾU VỀ TÍNH ỔN ĐỊNH CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH SAI PHÂN LUẬN ÁN TIẾN SĨ TOÁN HỌC Tp Hồ Chí Minh, 2015 Luan van ĐẠI HỌC QUỐC[.]

ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN LÊ TRUNG HIẾU VỀ TÍNH ỔN ĐỊNH CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH SAI PHÂN LUẬN ÁN TIẾN SĨ TỐN HỌC Tp Hồ Chí Minh, 2015 Luan van ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN LÊ TRUNG HIẾU VỀ TÍNH ỔN ĐỊNH CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH SAI PHÂN Chuyên ngành: Lý thuyết tối ưu Mã số chuyên ngành: 62 46 2001 Phản biện 1: GS.TSKH Vũ Ngọc Phát Phản biện 2: GS.TSKH Đỗ Công Khanh Phản biện 3: TS Nguyễn Đình Tuấn Phản biện độc lập 1: GS.TSKH Vũ Ngọc Phát Phản biện độc lập 2: TS Tạ Quang Sơn NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS PHẠM HỮU ANH NGỌC PGS.TS NGUYỄN NGỌC HẢI Tp Hồ Chí Minh, 2015 Luan van LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng tôi, thực Trường Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh, hướng dẫn PGS.TS Phạm Hữu Anh Ngọc PGS.TS Nguyễn Ngọc Hải, Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh Các kết Luận án viết chung với Thầy hướng dẫn trí Thầy đưa vào Luận án Các kết nêu Luận án trung thực chưa khác cơng bố cơng trình Tp Hồ Chí Minh, tháng 10 năm 2015 Tác giả Lê Trung Hiếu Luan van LỜI CẢM ƠN Luận án hoàn thành hướng dẫn PGS.TS Phạm Hữu Anh Ngọc Tác giả xin bày tỏ lòng tri ân sâu sắc đến người Thầy Trong thời gian dài, Thầy bước dẫn dắt tác giả tiếp cận thực nghiên cứu vấn đề trình bày Luận án Thầy khơng hướng dẫn cho tác giả tích lũy kiến thức, kinh nghiệm nghiên cứu khoa học mà cịn truyền cảm hứng động viên khích lệ tác giả vượt qua khó khăn chun mơn sống Làm việc với Thầy, tác giả học tinh thần trách nhiệm công việc, niềm say mê nghiên cứu phong cách làm việc khoa học, trung thực nghiêm túc Tác giả xin bày tỏ lòng biết ơn chân thành đến PGS.TS Nguyễn Ngọc Hải, người Thầy hướng dẫn thứ hai tác giả, giúp đỡ luôn động viên tác giả suốt trình học tập Tác giả xin nói lời cảm ơn chân thành tới Ban lãnh đạo Đại học Quốc gia Thành phố Hồ Chí Minh, Trường Đại học Khoa học Tự nhiên, Phịng Đào tạo Sau Đại học, Khoa Tốn-Tin học, Bộ mơn Tối ưu Hệ thống tạo điều kiện giúp đỡ tác giả suốt trình học tập, nghiên cứu hoàn thành Luận án Nhân dịp này, tác giả xin bày tỏ lòng biết ơn chân thành đến GS.TSKH Phan Quốc Khánh (Trưởng Bộ môn Tối ưu Hệ thống), PGS.TSKH Nguyễn Định, người Thầy giảng dạy cho tác giả kiến thức chuyên ngành bổ ích tạo điều kiện thuận lợi để tác giả hoàn thành Luận án Tác giả xin gửi lời cảm ơn chân thành đến GS.TSKH Đỗ Công Khanh PGS.TSKH Vũ Hoàng Linh dành nhiều thời gian đọc thảo Luận án bảo vệ cấp đơn vị chun mơn có ý kiến bổ ích giúp tác giả cập nhật cải thiện chất lượng Luận án Xin gửi lời cám ơn chân thành đến GS.TSKH Vũ Ngọc Phát, TS Tạ Quang Sơn dành nhiều thời gian đọc phản biện độc lập cho Luận án cho nhiều lời khen ngợi động viên tác giả Xin chân thành cám ơn GS.TSKH Nguyễn Khoa Sơn, GS.TSKH Vũ Ngọc Phát, GS.TS Đặng Đức Trọng, PGS.TS Nguyễn Đình Luan van Phư, PGS.TS Nguyễn Đình Huy, PGS.TS Trần Thị Huệ Nương có lời khuyên, góp ý cho tác giả lần báo cáo học thuật hội nghị khoa học Xin cám ơn Cơ Trần Thị Phượng Giang (Phịng Đào tạo Sau đại học) ln nhiệt tình giúp đỡ tác giả thủ tục học tập bảo vệ suốt khóa học Tác giả xin chân thành cám ơn Ban Giám hiệu Trường Đại học Đồng Tháp, Ban chủ nhiệm Khoa Sư phạm Toán-Tin tạo điều kiện thuận lợi cho tác giả tập trung học tập, nghiên cứu hồn thành Luận án Đặc biệt, tác giả xin cám ơn thành viên Bộ mơn Giải tích-Tốn ứng dụng ln giúp đỡ động viên, đảm nhận thay nhiều việc, giúp tác giả an tâm học tập, nghiên cứu hoàn thành Luận án Qua đây, tác giả xin gửi lời cám ơn đến TS Trần Giang Nam (Viện Toán học, cựu giảng viên trẻ Khoa Sư phạm Tốn-Tin), giới thiệu cho tác giả có hội làm việc với Thầy hướng dẫn mình, để tác giả có hội nghiên cứu khoa học cháy bỏng đam mê lĩnh vực Toán học Xin cám ơn thành viên nhóm nghiên cứu Lý thuyết điều khiển PGS.TS Phạm Hữu Anh Ngọc, anh chị nghiên cứu sinh Khoa Toán-Tin học Trường Đại học Khoa học Tự nhiên, đặc biệt NCS Cao Thanh Tình (cũng người anh đồng mơn thân thiết nhất), TS Trần Hồng Mơ, TS Phan Tự Vượng, NCS Lê Thanh Quang trực tiếp giúp đỡ động viên tác giả nhiều suốt trình học tập Cuối tơi muốn bày tỏ lịng biết ơn sâu sắc tới người thân gia đình mình, đặc biệt người Mẹ già kính yêu người Vợ hiền luôn bên cạnh tơi, động viên, chia sẻ khó khăn tơi thời gian qua Đó nguồn động lực lớn giúp tơi có đủ ý chí để vượt qua khó khăn, tập trung tối đa cho việc nghiên cứu hoàn thành tốt Luận án Tp Hồ Chí Minh, tháng 10 năm 2015 Tác giả Lê Trung Hiếu Luan van MỤC LỤC TRANG PHỤ BÌA LỜI CAM ĐOAN LỜI CẢM ƠN DANH MỤC CHỮ VIẾT TẮT VÀ KÍ HIỆU MỞ ĐẦU CHƯƠNG KIẾN THỨC CHUẨN BỊ 1.1 Một số kí hiệu qui ước 1.2 Chuẩn véctơ chuẩn ma trận 1.3 Định lý Perron-Frobenius 1.4 Định lý giá trị trung bình cho hàm giá trị véctơ CHƯƠNG ỔN ĐỊNH CỦA CÁC HỆ PHƯƠNG TRÌNH THƯỜNG 2.1 Ổn định hệ phi tuyến 2.2 Phỏng đoán loại Aizerman 2.3 Kết luận SAI PHÂN 23 23 36 38 CHƯƠNG ỔN ĐỊNH CỦA CÁC HỆ PHƯƠNG TRÌNH SAI PHÂN CĨ CHẬM 3.1 Điều kiện ổn định mũ tường minh cho hệ phụ thuộc thời gian 3.2 Ổn định mũ hệ chịu nhiễu 3.3 Thảo luận kết thu 3.4 Kết luận CHƯƠNG ỔN ĐỊNH CỦA CÁC HỆ PHƯƠNG TRÌNH SAI PHÂN VOLTERRA 4.1 Sơ lược toán ổn định hệ phương trình sai phân Volterra 4.2 Ổn định hệ phương trình sai phân Volterra tuyến tính 4.3 Ổn định hệ phương trình sai phân Volterra phi tuyến với chậm hữu hạn 4.4 Ổn định mũ hệ phương trình sai phân Volterra phi tuyến với chậm vô hạn Luan van 16 16 17 19 22 40 42 52 60 64 65 65 67 75 90 4.5 Áp dụng kết thu vào mơ hình mạng nơ ron nhân tạo 104 4.6 Kết luận 110 KẾT LUẬN VÀ KIẾN NGHỊ 112 DANH MỤC CƠNG TRÌNH CỦA TÁC GIẢ LIÊN QUAN TRỰC TIẾP ĐẾN LUẬN ÁN 115 TÀI LIỆU THAM KHẢO 117 Luan van DANH MỤC CHỮ VIẾT TẮT VÀ KÍ HIỆU Ký hiệu Ý nghĩa AS Asymptotically stable: ổn định tiệm cận ES Exponentially stable: ổn định mũ GES Globally exponentially stable: ổn định mũ toàn cục UAS Uniformly asymptotically stable: ổn định tiệm cận Z Vành số nguyên Z+ Tập hợp số nguyên không âm Z[k1 ,k2 ] Tập hợp số nguyên thuộc đoạn [k1 , k2 ], k1 , k2 ∈ Z n n := {1, 2, , n} = Z[1,n] , với n ∈ Z+ n0 n0 := {0, 1, 2, , n} = Z[0,n] , với n ∈ Z+ R Trường số thực R+ Tập hợp số thực khơng âm Rm Khơng gian véctơ thực m-chiều Rl×q Vành ma trận thực, cỡ l × q C Trường số phức K K = R K = C JF (x) Ma trận Jacobi hàm F x det(M ) Định thức ma trận vuông M M −1 Nghịch đảo ma trận vuông M |x| |x| := (|x1 |, |x2 |, , |xm |), x = (x1 , x2 , , xm )T ∈ Rm |M | |M | := (|mij |) với M = (mij ) ∈ Rl×q kxk Chuẩn vectơ x kM k Chuẩn ma trận M Im Ma trận đơn vị cấp m Số không/ vectơ không/ ma trận không Luan van x≥y xi ≥ yi (∀i ∈ m), với x = (x1 , x2 , , xm )T ∈ Rm y = (y1 , y2 , , ym )T ∈ Rm xy xi > yi (∀i ∈ m), với x = (x1 , x2 , , xm )T ∈ Rm y = (y1 , y2 , , ym )T ∈ Rm A≥B aij ≥ bij (∀i ∈ l, j ∈ q), với A = (aij ) ∈ Rl×q B = (bij ) ∈ Rl×q AB aij > bij (∀i ∈ l, j ∈ q), với A = (aij ) ∈ Rl×q B = (bij ) ∈ Rl×q σ(M ) σ(M ) = {λ ∈ C : det(λIm − M ) = 0}, phổ ma trận vuông M ρ(M ) ρ(M ) = max{|λ| : λ ∈ σ(M )}, bán kính phổ ma trận vng M lγ (Km×m ) l1 (Km×m )  P+∞ lγ (Km×m ) := (C(n))n ⊂ Km×m : n=0 kC(n)kγ n < +∞ , với γ ≥ cho trước  P+∞ l1 (Km×m ) := (C(n))n ⊂ Km×m : n=0 kC(n)k < +∞ Luan van Mở đầu MỞ ĐẦU Lý thuyết ổn định hệ động lực có lịch sử 100 năm bắt đầu kể từ nhà Toán học người Nga, Aleksandr Lyapunov (18571918) xuất cơng trình tiên phong mình: “On the stability of ellipsoidal figures of equilibrium of a rotating fluid” (năm 1884, tiếng Nga) “General problem of the stability of motion” (năm 1892, tiếng Nga) Đến lý thuyết ổn định hệ động lực có bước phát triển đạt nhiều thành tựu vượt bậc Do giao thoa ngành Tối ưu Điều khiển ngày lớn, mối quan hệ, kết hợp toán tối ưu toán điều khiển ngày trở nên rõ ràng hơn, tinh tế (xem [BLO01a], [BLO01b], [Lew03], [Lew07], [RG96], [Sha15], [XLW02]) Một số toán ổn định, ổn định vững, điều khiển hệ động lực thực chất toán tối ưu tồn cục: chẳng hạn tốn tính bán kính ổn định bán kính điều khiển hệ tuyến tính với hệ số chịu nhiễu cộng tính (xem [HP96], [HS91], [NNS06], [WH94], [Ei84]) Một vài lớp tốn ổn định hóa, tốn điều khiển hệ động lực quy việc giải toán tối ưu, toán quy hoạch tuyến tính (xem [LWYZ08], [RG96], [RHT07], [RT06], [RTB07], [VVMV08]) Đặc biệt, vấn đề ổn định nghiệm hệ động lực phần tất yếu số toán điều khiển tối ưu, chẳng hạn “bài toán điều khiển tối ưu loại H2 /H∞ ”1 hệ động lực (xem [CC93], [HB90], [HBM91], [MP05], [MZH12], [ZDG96]) Chính vậy, việc giải toán ổn định nghiệm hệ động lực bước bắt buộc số toán điều khiển tối ưu Như tác động ngược, số kết quả, phương pháp từ lý thuyết H2 /H∞ control problem Luan van ... CHƯƠNG ỔN ĐỊNH CỦA CÁC HỆ PHƯƠNG TRÌNH SAI PHÂN VOLTERRA 4.1 Sơ lược tốn ổn định hệ phương trình sai phân Volterra 4.2 Ổn định hệ phương trình sai phân Volterra tuyến tính. .. vững phương trình sai phân thu hút nhiều quan tâm nhà nghiên cứu giới Lý thuyết tổng quan ổn định phương trình sai phân tuyến tính số lớp phương trình sai phân phi tuyến (đặc biệt hệ dừng) trình. .. [UN09]) Tuy nhiên, phương pháp tiếp cận nói có hạn chế định thường phù hợp với số lớp phương trình cụ thể Khác với tốn ổn định phương trình sai phân dừng, tốn ổn định phương trình sai phân phụ thuộc

Ngày đăng: 07/02/2023, 17:38

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN