1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

PHƯƠNG PHÁP TÍNH CƠ HỌC KẾT CẤU TÀU THỦY docx

194 938 10

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 194
Dung lượng 4,97 MB

Nội dung

PHƯƠNG PHÁP TÍNH CƠ HỌC KẾT CẤU TÀU THỦY ĐẠI HỌC GIAO THÔNG VẬN TẢI TP. HỒ CHÍ MINH 6-2009 TRẦN CÔNG NGHỊ , ĐỖ HÙNG CHIẾN (trang này để trống) 2 TRẦN CÔNG NGHỊ, ĐỖ HÙNG CHIẾN PHƯƠNG PHÁP TÍNHHỌC KẾT CẤU TÀU THỦY ĐẠI HỌC GIAO THÔNG VẬN TẢI TP HỒ CHÍ MINH TP HỒ CHÍ MINH 6-2009 3 Mục lục Mở đầu 5 Chương 1 Phương pháp biến phân và trọng hàm dư 6 1. Phép biến phân 6 2. Các phương pháp nhóm trọng hàm dư 23 Chương 2 Phương pháp sai phân hữu hạn 32 1. Hàm một biến 32 2. Phương pháp lưới cho bài toán 2 chiều 37 3. Xoắn dầm 41 4. Bài toán trường 2D với biên cong 42 5. Phương pháp sai phân hữu hạn trên sở phép biến phân 44 6. Dao động dầm 51 7. Dao động tấm 52 8. Ổn định tấm 54 Chương 3 Phương pháp phần tử hữu hạn 57 1. Phương pháp phần tử hữu hạn 57 2. Thứ tự giải bài toán học kết cấu theo phương pháp phần tử hữu hạn 59 3. Ma trận cứng phần tử. Ma trận cứng hệ thống 61 4. Áp đặt tải 63 5. Xử lý điều kiện biên 65 6. Giải hệ phương trình đaị số tuyến tính 66 7. Những phần tử thông dụng trong học kết cấu 70 8. Trạng thái ứng suất phẳng. Trạng thái biến dạng phẳng 82 9. Tấm chịuu uốn 88 10. Vật thể 3D 93 11. Nén ma trận. Khối kết cấu 95 12. Sử dụng phần mềm SAP và ANSYS tính toán kết cấu 103 13. Phân tích kết cấu bằng ngôn ngữ MATLAB 112 14. Dao động kỹ thuật 142 Chương 4 Tính toán độ tin cậy 163 1. Độ tin cậy 164 2. Tính toán độ tin cậy 164 3. Xác định chỉ số an toàn, xác suất hư hoại 165 4. Phép tính thống kê và biến ngẫu nhiên 170 5. Các phương pháp tính 171 6. Phân tích những điều không chắc chắn từ tải và độ bền 181 7. Chọn hàm phân bố 182 8. Phân tích độ tin cậy hệ thống 182 9. Xác định các hệ số sử dụng 183 10. Thủ tục phân tích độ tin cậy kết cấu 189 11. Độ bền thân tàu 190 Tài liệu tham khảo 193 4 Ký hiệu chính A diện tích, area b chiều rộng, beam, width c, C hệ số, coefficient d đường kính, diameter D độ cứng tấm, flexural rigidity of plate E mộ đun đàn hồi, modulus of elasticity f hàm, function F lực, lực cắt, force, shear force G mộ đun đàn hồi (cắt ), shear modulus g gia tốc trọng trường, gravity constant h chiều cao, depth, heigh I, П, F phiếm hàm, functional I, J momen quán tính mặt cắt, moment of inertia J p momen quán tính trong hệ độc cực, polar moment of inertia K, k hệ số, coefficient K, k độ cứng L, l chiều dài, length M momen, moment m khối lượng, mass N lực dọc trục, axial force P tải, load P công suất, power p áp suất, pressure Q tải, load q tải phân bố, distributed load R hàm sai số, residual function R, r bán kính, radius S diện tích, area T, M T momen xoắn, torque, couple t chiều dày, thickness t thời gian, time U thế năng, potential energy u 0 thế năng đơn vị, strain energy per unit volume V lực cắt, shear force W trọng lượng, weight W,w công ngoại lực, work α góc nói chung, angle generally β góc nói chung, angle generally δ, Δ, w chuyển dịch vị trí, deflection δ toán tử biến phân, variational operator γ biến dạng góc, shear strain θ góc, chuyển vị góc, angle, angle deflection Π thế năng, potential energy ε biến dạng , strain σ ứng suất nói chung, stress, generally η hệ số nói chung, coefficient generally ν hệ số Poisson, Poisson’s coefficient φ, ψ vector riêng, eigenvector ρ mật độ, de nsity γ trọng lượng riêng, specific weight τ, T chu kỳ, perio ω tần số góc, circular frequency, generally ω n tần số riêng , natural frequency, generally 5 Mở đầu Cuốn sách “PHƯƠNG PHÁP TÍNH HỌC KẾT CẤU TÀU THỦY” trình bày các phương pháp tính cần cho việc xử lý những vấn đề thuộc học kết cấu. Đây là phần không tách rời của bộ sách giành cho học kết cấu tàu thủy, cần cho những người quan tâm học kết cấu tàu thủy và công trình ngoài khơi. Ba cuốn sách đã được phát hành: “Cơ học kết cấu tàu thủy”, “Sức bền tàu”, “Dao động tàu thủy” cần đến các phương pháp tính trình bày trong sách này lúc xử lý các đề tài. Các chương trong sách sẽ trình bày những đề tài được quan tâm nhiều hiện nay. Chương đầu bàn về ứng dụng phương pháp biến phân kinh điển, dùng hiệu quả hàng trăm năm trong toán và học, giải những bài toán uốn dầm, uốn tấm. Phương pháp Ritz sử dụng hàm thử và phép biến phân cùng các ứng dụng để giải bài toán học chất rắn nói chung, dầm và tấm nói riêng, là phần cần để ý của chương. Các phương pháp sử dụng hàm thử song không qua giai đoạn tính biến phân giới thiệu cùng chương mang tên gọi chung là phương pháp trọng hàm dư. Chương tiếp theo giới thiệu phương pháp sai phân hữu hạn hiện là phương pháp hữu hiệu trong toán tính và trong học. Tại chương này người đọc gặp cách xây dựng bài toán và giải bài toán học kết cấu theo cách làm quen thuộc trước nay. Phương pháp sai phân hữu hạn đang phát huy tác dụng lớn ngày nay và chắc còn tác dụng dài lâu. Bên cạnh đó những cách làm theo hướng đổi mới thủ tục tính toán cho phương pháp truyền thống trình bày trong chương này giúp bạn đọc xem xét vấn đề đầy đủ, tính thời sự. thể phát biểu rằng những cách làm mới không thay đổi nội dung phương pháp sai phân hữu hạn song làm cho nó bắt kịp tiến bộ trong lĩnh vực toán tính. Những sở của phương pháp tính phần tử hữu hạn và ứng dụng của nó xử lý những bài toán học kết cấu giới thiệu trong sách giúp bạn đọc làm quen và điều kiện nâng cao khả năng tính toán theo phương pháp rất hữu hiệu này. Chương bốn trình bày các phương pháp tính đang dùng phổ biến trong môn học “Độ tin cậy kết cấu”. Các thủ tục tính trình bày tại đây giúp người đọc xác định đúng và nhanh trong điều kiện thể các thông số liên quan độ tin cậy kết cấu dân dụng nói chung và của tàu thủy nói riêng. Mỗi chương của sách ngoài phần lý thuyết và hướng dẫn tính toán đều những ví dụ minh họa. Những người chuẩn bị sách cố ý trình bày những ví dụ độ phức tạp không cao, người đọc dễ dàng kiểm tra bằng các phép tính thủ công. Tuy nhiên, với các bài toán động lực học, khối lương tính toán thường lớn, đề nghị bạn đọc sử dụng công cụ tính thích hợp khi tìm trị riêng và vecto riêng. Những người viết 6 Chương 1 PHƯƠNG PHÁP BIẾN PHÂN VÀ TRỌNG HÀM DƯ Các bài toán học kết cấu giải theo nhiều phương pháp khác nhau. Trong chương này của sách đề cập những cách giải dựa trên các phương pháp dùng hàm thử theo nghĩa kinh điển. Các phương pháp trực tiếp tìm lời giải bao gồm: phương pháp biến phân kinh điển (Direct Variational Method) và phương pháp trọng hàm dư (Weighted Residual Method). Phương trình vi phân chính yếu trình bày trạng thái cân bằng vật rắn, xem xét trong chương: L(u) - p = 0 trong miền V, (a) và các điều kiện biên: B(u) - q = 0 trên biên S = S u + S p (b) trong đó u – là hàm chuyển vị, nếu không giải thích khác, p – tải Biểu thức (b) được hiểu cụ thể theo cách diễn giải tại hình 1.1: Điều kiện động học u = u * tại S u ; Điều kiện động lực học q = q * tại S p. L và B là những toán tử vi phân. Toán tử thường gặp thể là ∇, ∇ 2 , ∇ 4 = ∇ 2 ∇ 2 1 PHÉP TÍNH BIẾN PHÂN Phép tính biến phân liên quan vấn đề xác định cực trị, tức maximum hoặc minimum của các phiếm hàm. Phiếm hàm (functional) hiểu là hàm của các hàm. Trong chừng mức nhất định phiếm hàm có nét tương đồng với hàm số chúng ta vẫn quen, điểm khác nhau cần nhắc đến, hàm số theo nghĩa thông thường là hàm của các biến, còn hàm đóng vai trò phiếm hàm của các hàm. Việc chính của tính toán biến phân là tìm hàm, ví dụ hàm u(x), với x – biến độc lập, để phiếm hàm dưới dạng tích phân giới hạn x 1 , x 2 : ∫ = 2 1 ), ,',( x x dxxuuFI (1.1) đạt cực trị. Trong tích phân này u’ = du/dx, I và F cùng được gọi phiếm hàm. Với những vấn đề thuộc học kết cấu: I ≡ Π = U – W U – công biến dạng, W – công của ngoại lực. Nghiệm gần đúng tìm từ biểu thức: )()()( ~ xuxuxu δ += (1.2) Hình 1.1 Điều kiện biên Hình 1.2 Hàm u và biến p hân δ u 7 trong đó u(x) – nghiệm chính xác, nếu tồn tại, δu(x) tên gọi biến phân. δ là toán tử biến phân. Phép tính biến phân hàm I: ( ) () ∫∫ = dxFFdx δδ (1.3) Và () u dx d dx du δδ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ (1.4) ' ' u u F u u F F δδδ ∂ ∂ + ∂ ∂ = (1.5) Điều kiện cần để I đạt cực trị: 0' ' 2 1 2 1 == ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ = ∫∫ x x x x Fdxdxu u F u u F I δδδδ (1.6) 1.1 PHƯƠNG PHÁP RITZ Phương pháp Ritz xây dựng trên sở phép biến phân. Phương pháp Ritz 1 tìm cách thay thế biến u, thể chọn ví dụ bài toán một chiều u(x), trong phiếm hàm (1.1): ∫ = 2 1 ), ,',( x x dxxuuFI , bằng nghiệm gần đúng dưới dạng hàm xấp xỉ: ∑ = = N i ii fau 1 ~ (1.7) Hàm u, chúng ta đã gặp trong các bài toán học khác nhau, thể hiện tại (a), để tiện xem xét thể coi là hàm chuyển vị trong ví dụ tiếp theo. Hàm sở hay còn gọi hàm thử f i , i =1,2, , N phải thoả mãn các điều kiện biên (b) S = S p + S u , tức là điều kiện động lực học trên S p , và điều kiện động học tại biên S u . Hàm xấp xỉ u ~ liên tục đến bậc r -1, trong đó r – bậc đạo hàm cao nhất trong I. Thay u ~ vào I, công thức (1.1), tích phân I trở thành hàm của các ẩn a i . Phiếm hàm I tương đương hàm tổng thế năng Π gặp trong những bài toán học kết cấu Π = U – W , trong đó U – công biến dạng 2 , W – công ngoại lực 3 . Điều kiện cần để I đạt cực trị là: ni a uI i ,,2,10 )( L== ∂ ∂ (1.8) Xác định hàm I trong các bài toán học kết cấu thể tiến hành theo cách gán I bằng tổng năng lượng hệ thống Π = U – W. Công biến dạng vật thể làm từ vật liệu đàn hồi: ∫ = V T dVU }{}{ 2 1 σε , (1.9) Công do ngoại lực tác động lên vật thể: ∫ = S T dSupW }{}{ , (1.10) trong đó { ε}= [C]{σ} – vector biến dạng, { σ} = [D]{ε} – vector ứng suất, 1 Ritz W., “Über eine neue Methode zur Lösung gewissen Variations-Problem der mathematischen Physik”, J. Rein Angew. Math. (1909). 2 strain energy 3 external work due to applied loads 8 {p} – vector ngoại lực { u} – vecto chuyển vị. ∫∫ −=Π p S T V T dSupdV }{}{}{}{ 2 1 σε (1.11) Thay hàm Π của hàm u vào vị trí phiếm hàm I, xác định hàm u đảm bảo tổng thế năng đạt minimum. Từ phép biến phân xác định biểu thức δΠ: ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ −=Π ∫∫ p S T V T dSupdV }{}{}{}{ 2 1 σεδδ (1.12) Giải bài toán học vật rắn chúng ta nhận phương trình: { } ∫∫ = p S T V T dSupdVD }{}]{[}{ δεεδ (1.13) Trong đó {p} – tải bên ngoài tác động lên biên S p vật thể đang xem xét. Từ đây thể viết: δ U = δ W hoặc δ (U –W) = 0. (1.14) Trường hợp bài toán ba chiều hàm chuyển vị thể thể hiện: { } [ ] T uu wv= ⎪ ⎪ ⎭ ⎪ ⎪ ⎬ ⎫ = = = ∑ ∑ ∑ i ii i ii i ii zyxc zyxb zyxau ),,(w ),,(v ),,( θ ψ ϕ (1.15) trong đó a i , b i , c i - các hệ số cần xác định, đóng vai trò tọa độ suy rộng, ϕ i , ψ i , θ i – các hàm sở hay còn gọi hàm thử. Hàm sở thoả mãn các điều kiện biên tại S = S p + S u . Biến phân hàm chuyển vị xác định như sau: ⎪ ⎪ ⎭ ⎪ ⎪ ⎬ ⎫ = = = ∑ ∑ ∑ i ii i ii i ii zyxc zyxb zyxau ),,(w ),,(v ),,( θδδ ψδδ ϕδδ (1.16) Biết rằng ∫ = V dVuU 0 2 1 , trong đó + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ++ − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎪ ⎩ ⎪ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = 2 2 2 2 0 21 z w yx u z w yx u u ∂ ∂ ∂ ∂ ∂ ∂ ν ν ∂ ∂ ∂ ∂ ∂ ∂ vv + ⎪ ⎭ ⎪ ⎬ ⎫ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ++ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ++ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + 2 22 2 1 z u x w yx w zxy u ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ vv và: 9 ⎪ ⎪ ⎭ ⎪ ⎪ ⎬ ⎫ ∂ ∂ + ∂ ∂ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ = ∂ ∂ = ∂ ∂ = w x u zx w z u u xx u zx x δδδδγ δδδε L có thể viết: dxdyd z x u y w yz w x u z w zy u x U xyyzzxzyx ∫∫∫ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ = vvv δδτδδτδδτδσδσδσδ Thay giá trị δu, δv, δw từ biểu thức (1.16) vào phương trình xác định δU và δW tiếp tục xác định biến phân δΠ, nhận được công thức sau của phương pháp Ritz. ∑ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ Π∂ + ∂ Π∂ + ∂ Π∂ =Π i i i i i i i c c b b a a δδδδ , i=1,2,…,n (1.17) Từ biểu thức (1.17), với δ a i , δ b i , δ c i khác 0, thể viết: ni cba iii , ,2,10;0;0 == ∂ Π ∂ = ∂ Π∂ = ∂ Π∂ (1.18) Từ đây đưa đến lập hệ phương trình đại số tuyến tính chứa các ẩn a i, b i , c i . Công biến dạng dầm Thế năng dầm bị tác động bởi các lực kéo, nén, cắt, momen uốn, momen xoắn: ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ +++++= ∫∫∫∫∫∫ GA dxF k GA dxF k AE dxN EI dxM EI dxM GI dxM U z y y z z z x y t T 2 2 2 2 2 2 2 1 (1.19) trong đó M T - momen xoắn, M y , M z - momen uốn N – lực kéo, nén F y , F y – lực cắt Công biến dạng tấm chữ nhật axb, dày t. () dxdy y w x w yx w w D U ∫∫ ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −+∇= 2 2 2 2 2 2 2 2 )1(2 2 ∂ ∂ ∂ ∂ ∂∂ ∂ ν (1.20) trong đó )1(12 2 3 ν − = tE D Công biến dạng tấm tròn bán kính R, dày t ϕ ϕ ∂ ∂ ∂ ∂ ∂ϕ ∂ ν ϕ rdrd w r r w r r ww rr w r r w r r wD U ∫∫ ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ +− ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ −+ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ + ∂ ∂ = 2 2 22 2 2 2 2 2 22 2 111 )1(2 11 2 Công biến dạng vật thể 3D: ∫ = V dVuU 0 2 1 và {}{} ∫ = S T dSuFW . [...]... = x/L phương trình độ võng dầm theo cách tính trên viết lại như sau: w( x) = pL4 ⎡ 1 2 5 3 1 4 ⎤ ξ − ξ + ξ ⎥ EJ ⎢16 48 24 ⎦ ⎣ 31 2.3 PHƯƠNG PHÁP TỔNG NHỎ NHẤT CÁC BÌNH PHƯƠNG CỦA SAI SỐ Phương pháp toán tên gọi Least Squares sử dụng rất rộng rãi trong các phương pháp tính Phương pháp trọng hàm coi đây cũng là cách làm hữu hiệu khi giải bài toán phương trình vi phân Trong khuôn khổ phương pháp này... EIq L ⎛ 3π ⎞ = 0 ⎜ ⎟ ⎜ ⎟ 3π ⎝ L ⎠ ⎝L⎠ Từ hệ phương trình thể xác định: 2 a1 = 4qL4 π 5 EI a2 = 4qL4 243π 5 EI 33 Chương 2 PHƯƠNG PHÁP SAI PHÂN HỮU HẠN Phương pháp này còn tên gọi thông dụng, dễ nhớ là phương pháp lưới Phương pháp được chọn dùng khi giải phương trình vi phân thông thường và sau đó dùng cho các phương trình vi phân đạo hàm riêng Phương pháp dùng cho bài toán một chiều bằng cách... u(x) và sai phân 34 Ứng dung phương pháp sai phân hữu hạn giải phương trình vi phân Sử dụng các biểu thức ghi trong (2.5) giải bài toán phương trình vi phân thường gặp trong cơ học kết cấu Dầm thẳng, momen quán tính mặt cắt thay đổi theo luật I(x) = I0 (1 + x/L), với I0 là momen quán tính mặt cắt đầu dầm phía trái Hãy tính độ võng dầm tại vị trí ¼ chiều dài dầm, tính từ trái Phương trình vi phân uốn dầm:... Thủ tục giải bài toán cơ học kết cấu bằng phương pháp Ritz N ~ 1 Xây dựng hàm hoặc hệ hàm fi cho biến u: u = ∑ ai f i i =1 2 Xây dựng phiếm hàm I (ký hiệu tương đương Π) của u, ux, ∂Π ∂I ≡ = 0 , i=1,2,…,n và xác định ai 3 Lập hệ phương trình đại số tuyến tính ∂ai ∂ai 4 Tìm nghiệm u Phương pháp Ritz giải dầm Từ phương trình cân bằng dầm uốn, hình 1.3, thể xây dựng quan hệ: Phương trình chính: Lực... giải hệ phương trình sẽ xác định các giá trị của hệ số ai, từ đó thể viết biểu thức cho hàm độ võng dầm L 4qL4 w( x) = 5 π EI 1 kπx sin 5 L k =1, 3, k ∞ ∑ Kết quả tính theo phương pháp Galerkin trong trường hợp này trùng với kết quả tính theo phương pháp Ritz Ví dụ 7: Áp dụng công thức suy rộng của Galerkin (1.34) giải phương trình Poisson trong miền hạn chế bằng hình chữ nhật cạnh axb Phương trình... w(x), momen uốn M(x) và lựcc cắt F(x), Trong cùng hình kết quả tính theo phương pháp giải tích ghi lại tại đường cong đánh dấu A, tính theo phương án đầu trong ví dụ này đánh dấu bằng B Kết quả tính theo phương án cải tiến trùng với đường A Dao động ngang dầm Từ phương trình xác định momen uốn dầm: d 2w EI 2 = − M ( x) dx tiến hành lấy đạo hàm hai vế phương trình, nhận được các biểu thức sau: d d 2w EI... (f), hệ số đầu tiên của chuỗi dạng: ∇2 ∇2 f1(x,y) = (g) pa 2 b 2 8Dπ 4 Với trường hợp tấm hình vuông cạnh a, giá trị u tính tại tâm tấm là lớn nhất: a11 = pa 4 D Kết quả tính thể so với nghiệm “chính xác” tính bằng phương pháp giải tích umax = pa 4 0,00126 D 2.2 PHƯƠNG PHÁP TÍNH THỎA MÃN TRÊN MỘT SỐ ĐIỂM HOẶC MIỀN CHỌN LỰA umax = 0,00128 N ~ ~ Hàm u dưới dạng hàm xấp xỉ: u = ∑ ai f i , hàm sai... ⎦ Phương trình đặc trưng từ hệ phương trình trên đây dạng: 2 8β ⎞ ⎛ β ⎞⎛ β ⎞ ⎛ ⎜ 4 − ⎟⎜12 − ⎟ − ⎜ 6 − ⎟ = 0; 30 ⎠⎝ 105 ⎠ ⎝ 20 ⎠ ⎝ β= ω 2 mL4 EJ Từ đây thể nhận được: EJ ; mL4 EJ 2 ω 2 = 2520 4 ; mL ω12 = 120 2 CÁC PHƯƠNG PHÁP NHÓM TRỌNG HÀM DƯ Phương pháp hàm trọng lượng dư, gọi cách khác trọng hàm dư (weighted residual method) thích hợp giải gần đúng các bài toán phương trình vi phân tuyến tính. .. hệ phương trình đại số: 2 Thỏa mãn điều kiện: 2 ∂a1 ∂a 2 16π 2 EI L3 ⎡1 0 ⎤ ⎧ a1 ⎫ ⎡3 2⎤ ⎧ a1 ⎫ 2 ⎢0 16⎥ ⎨a ⎬ = ω mL ⎢2 3⎥ ⎨a ⎬ ⎣ ⎦⎩ 2 ⎭ ⎣ ⎦⎩ 2 ⎭ Lời giải của hệ phương trình: ω1 = ω2 = 124 L2 ⎧ a1 ⎫ ⎧ 1 ⎫ ⎨ ⎬=⎨ ⎬ ⎩a 2 ⎭ ⎩0,575⎭ 22,35 EI m L2 EI m ⎧ a1 ⎫ ⎧ 1 ⎫ ⎨ ⎬=⎨ ⎬ ⎩a 2 ⎭ ⎩− 1,4488⎭ 1.2 PHƯƠNG PHÁP RITZ GIẢI TẤM MỎNG Phương pháp Ritz áp dụng tính độ võng, momen uốn, lực cắt tấm mỏng dựa vào phương. .. ⎪1 / 105⎪ ⎩ ⎭ ⎩ ⎭ Hệ phương trình đại số [K]{u}={P} dạng: 4 4 ⎤ ⎧ u1 ⎫ ⎡4 ⎧ 1 / 30 ⎫ EJ ⎢ ⎥ ⎪u ⎪ = p L ⎪ 1 / 60 ⎪ 4 24 / 5 26 / 5 ⎥ ⎨ 2 ⎬ ⎬ 0 ⎨ L3 ⎢ ⎪u ⎪ ⎪1 / 105⎪ ⎢4 26 / 5 208 / 35⎥ ⎩ 3 ⎭ ⎣ ⎦ ⎩ ⎭ Từ đó xác định: p L {u} = 0 [4 − 4 1]T 120 p 0 L4 {w} = (4ξ 2 − 8ξ 3 + 5ξ 4 − ξ 5 ) Và 120 EJ Kết quả tính trính bày tại hình 1.6 Các hình từ trên Hình 1.6 Kết quả tính theo phương pháp Ritz xuống giới . “PHƯƠNG PHÁP TÍNH CƠ HỌC KẾT CẤU TÀU THỦY” trình bày các phương pháp tính cần cho việc xử lý những vấn đề thuộc cơ học kết cấu. Đây là phần không tách rời của bộ sách giành cho cơ học kết cấu. kết cấu tàu thủy, cần cho những người quan tâm cơ học kết cấu tàu thủy và công trình ngoài khơi. Ba cuốn sách đã được phát hành: Cơ học kết cấu tàu thủy , “Sức bền tàu , “Dao động tàu thủy . PHƯƠNG PHÁP TÍNH CƠ HỌC KẾT CẤU TÀU THỦY ĐẠI HỌC GIAO THÔNG VẬN TẢI TP HỒ CHÍ MINH TP HỒ CHÍ MINH 6-2009 3 Mục lục Mở đầu 5 Chương 1 Phương pháp

Ngày đăng: 25/03/2014, 08:20

TỪ KHÓA LIÊN QUAN