1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Luận văn thạc sĩ HUS tìm hiểu về phương trình tích phân fredholm với nhân dạng chập trên khoảng hữu hạn

41 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 672,44 KB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN  NGUYỄN THỊ MINH THÚY TÌM HIỂU VỀ PHƯƠNG TRÌNH FREDHOLM VỚI NHÂN DẠNG CHẬP TRÊN KHOẢNG HỮU HẠN LUẬN VĂN THẠC SĨ TOÁN HỌC Hà Nội - 2018 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN  NGUYỄN THỊ MINH THÚY TÌM HIỂU VỀ PHƯƠNG TRÌNH FREDHOLM VỚI NHÂN DẠNG CHẬP TRÊN KHOẢNG HỮU HẠN Chun ngành: Tốn giải tích Mã số: 60 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Cán hướng dẫn: TS Lê Huy Chuẩn Hà Nội - 2018 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ▲❮■ ❈❷▼ ❒◆ ✣➸ ❤♦➔♥ t❤➔♥❤ ✤➲ t➔✐ ❧✉➟♥ ✈➠♥ ✈➔ ❦➳t t❤ó❝ ❦❤â❛ ❤å❝✱ ✈ỵ✐ t➻♥❤ ❝↔♠ ❝❤➙♥ t❤➔♥❤ ❡♠ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ tợ trữớ ỹ t ✤✐➲✉ ❦✐➺♥ ❝❤♦ ❡♠ ❝â ♠ỉ✐ tr÷í♥❣ ❤å❝ t➟♣ tèt tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ ❡♠ ❤å❝ t➟♣ t↕✐ tr÷í♥❣✳ ❊♠ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ì♥ tỵ✐ t❤➛② ▲➯ ❍✉② ❈❤✉➞♥ ✤➣ t➟♥ t➻♥❤ ❣✐ó♣ ✤ï ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ự trỹ t ữợ t t tốt ỗ tớ ①✐♥ ❜➔② tä ❧á♥❣ ❝↔♠ ì♥ tỵ✐ t❤➛② ❝ỉ ❦❤♦❛ ❚♦→♥ ✲ ❈ì ✲ ❚✐♥ ❤å❝✱ ❜↕♥ ❜➧ ✤➣ ❣✐ó♣ ✤ï ✈➔ t↕♦ ✤✐➲✉ ❦✐➺♥ ❝❤♦ ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳ ❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦ ❍➔ ◆ë✐✱ ♥❣➔② ✷✽ t❤→♥❣ ✶✶ ♥➠♠ ✷✵✶✽ ❍å❝ ✈✐➯♥ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚❤ó② ✶ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ▼ö❝ ❧ö❝ ▲❮■ ❈❷▼ ❒◆ ▲❮■ ▼Ð ✣❺❯ ✶ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ L2(0, w) ✶ ✸ ✹ ✶✳✶ ❳➙② ❞ü♥❣ t♦→♥ tû ♥❣❤à❝❤ ✤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✷ ỹ tỗ t trú t tỷ ✤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ Pữỡ tr t ợ ✈➳ ♣❤↔✐ ✤➦❝ ❜✐➺t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✷ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ p L (0, w) ✷✳✶ ❚➼♥❤ ❝❤➜t t♦→♥ tû t➼❝❤ ♣❤➙♥ ợ tr Pữỡ tr t ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ ✳ ✳ ✳ ✳ ✳ ✳ Pữỡ tr t ợ ♣❤↔✐ ✤➦❝ ❜✐➺t ✳ ✳ ✳ ✳ ✷✳✷✳✷ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ✈ỵ✐ ✈➳ ♣❤↔✐ tr♦♥❣ ❦❤ỉ♥❣ Wp2 (0, w) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸ ❱➼ ❞ö →♣ ❞ö♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳✳ ✳✳✳✳ ✳✳✳✳ ❣✐❛♥ ✳✳✳✳ ✳✳✳✳ Lp (0, w) ❑➌❚ ▲❯❾◆ ✷✶ ✷✶ ✷✺ ✷✺ ✷✽ ✸✷ ✸✽ ✷ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ▲❮■ ▼Ð ✣❺❯ ◆❤✐➲✉ ✈➜♥ ✤➲ tr♦♥❣ t♦→♥ ❤å❝✱ ❝ì ❤å❝✱ ✈➟t ❧➼ ✈➔ ❝→❝ ♥❣➔♥❤ ❦➽ t❤✉➟t ❦❤→❝ ❞➝♥ ✤➳♥ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥✳ ▼ư❝ t✐➯✉ ❝õ❛ ❧✉➟♥ ✈➠♥ ❧➔ t➻♠ ❤✐➸✉ ✈➲ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ ❝â ❞↕♥❣ w k(x − t)f (t)dt = φ(x), µf (x) + tr♦♥❣ ✤â µ ❧➔ sè ♣❤ù❝ ✈➔ k(x) ∈ L(0, w)✳ ✣➸ ♥❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣ tr➻♥❤ ♥➔②✱ t❛ s➩ ①➨t t♦→♥ tû t➼❝❤ ♣❤➙♥ ❝â ❞↕♥❣ w d Sf = dx s(x − t)f (t)dt ✈➔ ①➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❧♦↕✐ ✶ t÷ì♥❣ ù♥❣ Sf = φ(x) ❇➡♥❣ ❝→❝❤ ❝❤å♥ x s(x) = k(u)du + µ+ (x > 0), k(u)du + µ− (x < 0), x s(x) = = à+ + , ữỡ tr tr tr t ữỡ tr r ợ ❝❤➟♣ ❜❛♥ ✤➛✉✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ❧✉➟♥ ✈➠♥ ❧➔ tr➻♥❤ ❜➔② ❧↕✐ ♠ët sè ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣ tr➻♥❤ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣✳ ❇è ❝ư❝ ❝õ❛ ❧✉➟♥ ✈➠♥ ỗ ữỡ ã ữỡ tr➻♥❤ ❜➔② t➼♥❤ ❦❤↔ ♥❣❤à❝❤ ❝õ❛ t♦→♥ tû S tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ L2(0, w)❀ ❝➜✉ tró❝ ❝õ❛ t♦→♥ tû ♥❣❤à❝❤ ✤↔♦ ✈➔ ①➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ L2(0, w) ợ t ã ữỡ ❝õ❛ ❧✉➟♥ ✈➠♥ tr➻♥❤ ❜➔② ✈➲ t➼♥❤ ❝❤➜t ❝õ❛ t♦→♥ tû S tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ Lp(0, w)✱ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ Wp2(0, w) ✈➔ ❝✉è✐ ❝ị♥❣ ❧➔ ♠ët ✈➼ ❞ö ♠✐♥❤ ❤å❛✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ❧✉➟♥ ✈➠♥ ✤÷đ❝ tr➻♥❤ ❜➔② ❞ü❛ t❤❡♦ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪✳ ✸ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✶ ❚♦→♥ tû t➼❝❤ 2♣❤➙♥ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ L (0, w) ✶✳✶ ❳➙② ❞ü♥❣ t♦→♥ tû ♥❣❤à❝❤ ✤↔♦ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ t❛ ♥❣❤✐➯♥ ❝ù✉ ✈➲ t➼♥❤ ❦❤↔ ♥❣❤à❝❤ ❝õ❛ t♦→♥ tû S tr♦♥❣ ✈ỵ✐ t♦→♥ tû S ❝â ❞↕♥❣ L2 (0, w) w d Sf = dx s(x − t)f (t)dt, f (x) ∈ L2 (0, w), ✭✶✳✶✮ w tr♦♥❣ ✤â s(x) t❤✉ë❝ L2(−w, w) ✈➔ ❤➔♠ sè g(x) = s(x − t)f (t)dt ❧➔ ♠ët ❤➔♠ sè ❧✐➯♥ tư❝ t✉②➺t ✤è✐✳ ❚♦→♥ tû S ✤÷đ❝ ữ tr t tỷ t ợ ♥❤➙♥ ❞↕♥❣ ❤✐➺✉✳ ✣➸ t➻♠ ✤÷đ❝ t♦→♥ tû ♥❣❤à❝❤ ✤↔♦ ❝õ❛ t♦→♥ tû S t❛ ♣❤↔✐ t➻♠ ❤➔♠ sè N1(x), N2(x) t❤ä❛ ♠➣♥ SN1 (x) = M (x), SN2 (x) = 1, ✈ỵ✐ ❧➔ ❤➔♠ ❤➡♥❣ ❜➡♥❣ ✈➔ M (x) = s(x), ≤ x ≤ w ❑❤✐ ✤â✱ t♦→♥ tû ♥❣❤à❝❤ ✤↔♦ T = S −1 ✤÷đ❝ ❜✐➸✉ ❞✐➵♥ q✉❛ ❤➔♠ sè N1 (x) ✈➔ N2 (x)✳ ỵ S t tỷ tr♦♥❣ L2(0, w)✳ ❑❤✐ ✤â✱ t♦→♥ tû S ✤÷đ❝ ❜✐➸✉ ữợ w Sf = d dx s(x, t)f (t)dt, tr♦♥❣ ✤â s(x, t) t❤✉ë❝ L2(0, w) ✈ỵ✐ ♠é✐ x ❝è ✤à♥❤✳ ❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ sè ex (t) = 1, ≤ t ≤ x, 0, x < t ≤ w ✹ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✶✳ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ L2 (0, w) ◆➳✉ f ∈ L2(0, w) t❤➻ Sf ∈ L2(0, w)✳ ❚❤❡♦ t ổ ữợ tr L2(0, w) t õ x Sf, ex = (Sf )dt ▲↕✐ ❝â Sf, ex = f, S ∗ ex ✭✶✳✷✮ S ∗ ex = s(x, t), ✭✶✳✸✮ ✈ỵ✐ S ∗ ❧➔ t♦→♥ tû ❧✐➯♥ ❤đ♣ ❝õ❛ t♦→♥ tû S ✳ ✣➦t t❛ ✤÷đ❝ w ∗ s(x, t)f (t)dt f, S ex = ✭✶✳✹✮ ❚ø ✭✶✳✷✮ ✲ ✭✶✳✹✮ t❛ ❝â x w (Sf )dt = Sf, ex = f, S ∗ ex = ❱➟② d Sf = dx s(x, t)f (t)dt w s(x, t)f (t)dt ❚ø ✤à♥❤ ♥❣❤➽❛ ❝õ❛ ❤➔♠ ex ✈➔ ✤➥♥❣ t❤ù❝ ✭✶✳✸✮ t❛ s✉② r❛ ❤➺ q✉↔ s❛✉ ✤➙②✳ ❍➺ q✉↔ ✶✳✶✳2❍➔♠ sè s(x, t) tr♦♥❣ ❝æ♥❣ t❤ù❝ ✭✶✳✶✮ ❝â t❤➸ ✤÷đ❝ ❝❤å♥ s❛♦ ❝❤♦ s(x, t) t❤✉ë❝ L (0, w) ✈ỵ✐ ♠é✐ x ✈➔ w |s(x + ∆x, t) − s(x, t)|2 dt ≤ ||S||2 |∆x| s(0, t) = 0; ❚❛ ❦➼ ❤✐➺✉ A ❧➔ t♦→♥ tû t➼❝❤ ♣❤➙♥ tr➯♥ L2(0, w) ①→❝ ✤à♥❤ ❜ð✐ x Af = i f (t)dt ✭✶✳✺✮ ❑❤✐ ✤â✱ t♦→♥ tû ❧✐➯♥ ❤ñ♣ A∗ ❝â ❞↕♥❣ w ∗ A f = −i f (t)dt ✭✶✳✻✮ x ✺ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✶✳ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ L2 (0, w) ỵ S t tỷ ✈ỵ✐ ♥❤➙♥ ✈✐ ♣❤➙♥ ❞↕♥❣ ✭✶✳✶✮✳ ❑❤✐ ✤â✱ t❛ ❝â ❜✐➸✉ ❞✐➵♥ w (AS − SA∗ )f = i ✭✶✳✼✮ (M (x) + N (t))f (t)dt, tr♦♥❣ ✤â M (x) = s(x), N (x) = −s(−x), ≤ x ≤ w ❈❤ù♥❣ ♠✐♥❤✳ ❚ø ✭✶✳✶✮✱ ✭✶✳✺✮ ✈➔ ✭✶✳✻✮ t❛ ❝â  ASf = A   w d dx x  w SA∗ f = S −i   s (x − u) u  w f (t)dts(x) − = i −  w s(x − t)d f (t)dt  u  w u u w − f (t)dtdu f (t)dtd(s(x − u)) f (t)dts(x − u) = −i  s(x − u) w w f (t)dtdu = i w w  u  0w w d f (t)dt = −i dx x w w = −i   w f (t)dt = −iS  s(−t)f (t)dt 0 x  w s(x − t)f (t)dt − i =i 0 w x s(τ − t)f (t)dt s(τ − t)f (t) dτ dτ 0  w d s(x − t)f (t)dt = i w =i  w s(x − t)f (t)dt = i s(x) − s(x − t) f (t)dt ❉♦ ✤â (AS − SA∗ )f = ASf − SA∗ f w w s(x − t)f (t)dt − i =i 0 w s(x − t)f (t)dt − i =i 0 0 w s(x − t)f (t)dt = i w s(x)f (t)dt − i s(−t)f (t)dt + i w s(x)f (t)dt − i s(x − t)f (t)dt w w w s(x)f (t)dt − i s(−t)f (t)dt + i w =i w s(x − t)f (t)dt [s(x) − s(−t)]f (t)dt ✻ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✶✳ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ L2 (0, w) w [M (x) + N (t)]f (t)dt (0 ≤ x ≤ w) =i ỵ ữủ ự ●✐↔ sû t♦→♥ tû S ❞↕♥❣ ✭✶✳✶✮ ❝â ♥❣❤à❝❤ ✤↔♦ ❜à ❝❤➦♥✳ ❑❤✐ ✤â✱ ✤➥♥❣ t❤ù❝ ✭✶✳✼✮ ❧➔ ❝ì sð ✤➸ t❛ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ①➙② ❞ü♥❣ t♦→♥ tû ♥❣❤à❝❤ ✤↔♦ ❝õ❛ S ✳ ❱ỵ✐ T = S −1 t❛ ❝â (T A − A∗ T )f = T (AS − SA∗ )T f = S −1 (AS − SA∗ )S −1 f   w [M (x) + N (t)](S −1 f )(t)dt = S −1 i  w = S −1 i M (x)(S −1 f )(t)dt + i N (t)(S −1 f )(t)dt w w (S −1 f )(t)dtS −1 (M (x)) + i =i  w N (t)S −1 f (t)dtS −1 (1) =i S −1 f, N1 (x) + i S −1 f, N (t) N2 (x) = i f, (S −1 )∗ N1 (x) + i f, (S −1 )∗ N (t) N2 (x) = i f, M1 (t) N1 (x) + i f, M2 (t) N2 (x) w =i [N1 (x)M1 (t) + N2 (x)M2 (t)]f (t)dt, tr♦♥❣ ✤â S ∗M1 = 1, ❚❛ ❦➼ ❤✐➺✉ ✈➔ t♦→♥ tû S ∗ M2 = N (x), SN1 = M (x), SN2 = Q(x, t) = N1 (x)M1 (t) + N2 (x)M2 (t), w Qf (x) = Q(x, t)f (t)dt ỵ t tû T ❜à ❝❤➦♥ tr♦♥❣ L2(0, w) ✈➔ t❤ä❛ ♠➣♥ T A − A∗ T = iQ t❤➻ ❤➔♠ sè ✭✶✳✽✮ 2w−|x−t| φ(x, t) = Q s+x−t s−x+t , ds 2 ✭✶✳✾✮ x+t ✼ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✶✳ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ L2 (0, w) ❧✐➯♥ tö❝ t✉②➺t ✤è✐ t❤❡♦ t ✈➔ w ∂ φ(x, t) f (t)dt ∂t d T f (x) = dx ✭✶✳✶✵✮ ❈❤ù♥❣ ♠✐♥❤✳ ❉♦ T ❜à ❝❤➦♥ ♥➯♥ t❤❡♦ ✣à♥❤ ỵ tỗ t F (x, t) tở L2(0, w) s t tỷ T ữủ ữợ w d Tf = dx F (x, t)f (t)dt ✭✶✳✶✶✮ ❚❤❡♦ ❍➺ q✉↔ ✶✳✶✱ ❤➔♠ sè F (x, t) ❝â t❤➸ ✤÷đ❝ ❝❤å♥ s❛♦ ❝❤♦ w |F (x + ∆x, t) − F (x, t)|2 dt ≤ ||T ||2 |∆x| F (w, t) = 0, ✭✶✳✶✷✮ ❱➻ ✈➟②✱ t➼❝❤ ♣❤➙♥ w F (x, s)ds t ❧✐➯♥ tö❝ t❤❡♦ x ♥➯♥ t❛ ❝â t❤➸ ✤à♥❤ ♥❣❤➽❛ F1(x, t) ❜ð✐ w w F1 (x, t) = − F (u, s)dsdu x ✭✶✳✶✸✮ t ❚ø ✭✶✳✶✶✮✱ ✭✶✳✶✷✮ t❛ s✉② r❛ t♦→♥ tû T1 ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ w T1 f = F1 (x, t)f (t)dt t❤ä❛ ♠➣♥ ❚❤❡♦ ✭✶✳✽✮✱ t❛ ❝â ✤➥♥❣ t❤ù❝ s❛✉ T1 = iA∗2 T A T1 A − A∗ T1 = iQ1 , tr♦♥❣ ✤â w ✭✶✳✶✹✮ Q1 (x, t)f (t)dt ✭✶✳✶✺✮ Q(u, s)ds(u − x)du ✭✶✳✶✻✮ Q1 f = iA∗2 QAf = w w Q1 (x, t) = x t ✽ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✷✳ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ❚ø ✭✷✳✻✮ ✈➔ ✭✷✳✼✮ t❛ ❝â |γ(x, t)| ≤ h(x − t) ✈ỵ✐ w−x h(x) =   |A (x)B(w)| + |A (w − s)B (s + x)|ds,   |A(0)B (w + x)| + w < x < w; w |A (w − s)B (s + x)|ds, + −x −w < x < −x ✷✳✷ P❤÷ì♥❣ tr t ợ t ữỡ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❝â ❞↕♥❣ w d Sf = dx s(x − t)f (t)dt = φ(x) ✷✳✷✳✶ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ✈ỵ✐ ✈➳ ♣❤↔✐ ✤➦❝ ❜✐➺t ▼➺♥❤ ✤➲ ✷✳✶✳ ❈❤♦ S ❧➔ t♦→♥ tû ❜à ❝❤➦♥ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Lp(0, w) ❝â ❞↕♥❣ ✭✷✳✶✮✳ ❑❤✐ ✤â✱ ✤➥♥❣ t❤ù❝ ✭✶✳✼✮ ❧✉ỉ♥ ✤ó♥❣ ✈ỵ✐ M (x) = s(x), N (x) = s(x) tự ú ợ Lm ữủ ✭✶✳✸✼✮✳ ❑❤✐ ✤â✱ t♦→♥ tû S ❜à ❝❤➦♥ tr♦♥❣ ❦❤æ♥❣ r ❣✐❛♥ Lr (0, w)(p ≤ r ≤ q) ✈➔ t♦→♥ tû S ∗ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Lr˜(0, w)(˜r = r − ) ✤÷đ❝ ❝❤♦ ❜ð✐ ❝ỉ♥❣ t❤ù❝ S ∗ = U SU, U f = f (w − x) ✭✷✳✾✮ ▼➺♥❤ ✤➲ ♥➔② ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tü ❇ê ✤➲ ✶✳✶ ð ❈❤÷ì♥❣ ✶✳ ❇ê ✤➲ ✷✳✶✳ ◆➳✉ f t❤✉ë❝ Lp(0, w) ✈➔ Sf t❤✉ë❝ Lq (0, w) t❤➻ Sf, U f = f, S ∗ U f ✭✷✳✶✵✮ ❈❤ù♥❣ ♠✐♥❤✳ ❉♦ Sf t❤✉ë❝ Lq (0, w) ♥➯♥ S ∗U f t❤✉ë❝ Lq (0, w)✳ ❉♦ ✈➟②✱ ❤❛✐ ✈➳ ❝õ❛ ✭✷✳✶✵✮ ✤➲✉ ❝â ♥❣❤➽❛✳ ✣➥♥❣ t❤ù❝ ✭✷✳✶✵✮ t❤✉ ✤÷đ❝ tø t➼♥❤ ❝❤➜t s❛✉ f1 , f2 = U f2 , U f1 , f1 ∈ Lq (0, w), f2 Lp (0, w) ỵ ●✐↔ sû t♦→♥ tû S ❝â ❞↕♥❣ ✭✷✳✶✮p ❜à ❝❤➦♥ tr Lp(0, w)(1 p 2) tỗ t ❝→❝ ❤➔♠ sè N1(x) ✈➔ N2(x) t❤✉ë❝ L (0, w) t❤ä❛ ♠➣♥ SN1 = M, SN2 = 1✳ ❑❤✐ ✤â −1 SBγ (x, λ) = eixλ , λ = , ✭✷✳✶✷✮ iγ tr♦♥❣ ✤â γ = SN1 , U N2 − N1 , S ∗ U N2 ; Bγ (x, λ) = + B(x, λ) + λγ ợ B(x, ) tở Lp(0, w) ữủ ✤à♥❤ ❜ð✐ ✭✶✳✺✵✮ ✲ ✭✶✳✺✷✮✳ ✷✺ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✷✳ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ▼➺♥❤ ✤➲ ✷✳✶✱ ✤➥♥❣ t❤ù❝ ✭✶✳✼✮ ✈➔ ❝æ♥❣ t❤ù❝ ✭✶✳✸✽✮ ✈➝♥ ✤ó♥❣ tr♦♥❣ tr÷í♥❣ ❤đ♣ S t❤✉ë❝ Lp(0, w)✳ ❉♦ N (x) t❤✉ë❝ Lq (0, w) ✈➔ ✭✶✳✸✽✮ tỗ t số C s ||Lm+1 ||p ≤ Cm ||Lm ||p ≤ C m+1 m! ✭✷✳✶✹✮ ❚❛ ❦➼ ❤✐➺✉ ||f ||p ❧➔m❝❤✉➞♥ ❝õ❛ f tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Lp(0, w)✳ ❚❤❡♦ ✭✷✳✶✹✮✱ ❝❤✉é✐ ∞ (iλ) Bγ (x, λ) = ❤ë✐ tư ✈ỵ✐ |λ| < c−1 ❱➟② SBγ (x, λ) = eiλx, |λ| < c−1✳ m! m=0 ❚❤❡♦ ❇ê ✤➲ ✭✶✳✸✮✱ t❛ ❝â w Bγ (x, λ) = uγ (x, λ) − iλ ✭✷✳✶✺✮ Bγ (t, λ)dt, x tr♦♥❣ ✤â ✭✷✳✶✻✮ uγ (x, λ) = aγ (λ)N1 (x) + bγ (λ)N2 (x) w Bγ (t, x)dt; bγ (x) = + iλ aγ (x) = iλ ❚❤❡♦ ✭✶✳✸✽✮ t❛ ❝â w Bγ (t, λ)N (t)dt w xm i = SA∗ Lm + i m [M (x) + N (t)]Lm (t)dt s✉② r❛ w Lm+1 = − m w Lm (t)dt + x ❉♦ ✤â ∞ (iλ)m Lm+1 = − (m − 1)! m m=1 [N1 (x) + N (t)N2 (x)]Lm (t)dt ∞ m=1 ∞ + m=1 (iλ)m (m − 1)! w Lm (t)dt x w (iλ)m (m − 1)! [N1 (x) + N (t)N2 (x)]Lm (t)dt ❚ø ✤â t❛ ❝â w Bγ (x, λ) − L1 (x) = −iλ w Bγ (t, λ)dt + iλN1 (x) x Bγ (t, λ)dt w + iλN2 (x) N (t)Bγ (t, λ)dt ✷✻ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✷✳ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) w ⇔ Bγ (x, λ) = −iλ w Bγ (t, λ)dt + iλN1 (x) x Bγ (t, λ)dt w N (t)Bγ (t, λ)dt + N2 (x) + iλN2 (x) ❚❛ ✤➦t w aγ (λ) = iλ w Bγ (t, λ)dt; bγ (λ) = + iλ Bγ (t, λ)N (t)dt ✭✷✳✶✼✮ uγ (x, λ) = aγ (λ)N1 (x) + bγ (λ)N2 (x) ❱➟② w w Bγ (t, λ)dt = uγ (x, λ) − iλ Bγ (x, λ) = aγ (λ).N1 (x) + bγ (λ)N2 (x) − iλ x Bγ (t, λ)dt x ❚❛ ✈✐➳t a () a() ữợ a () = iλ Bγ (x, λ), S ∗ U N2 , a(λ) = iλ SBγ (x, λ), U N2 ✭✷✳✶✽✮ ✭✷✳✶✾✮ ❚ø ✭✷✳✶✺✮ ✲ ✭✷✳✶✼✮ t❛ ✤÷đ❝ a(λ) = aγ (λ)(1 + iλγ) ✭✷✳✷✵✮ ✈ỵ✐ γ ①→❝ ✤à♥❤ ❜ð✐ ✭✷✳✶✸✮✳ ❚❛ ✈✐➳t b () b() ữợ b () = + iλ Bγ , S ∗ U (1 − N1 ) , b(λ) = + iλ SBγ (x, λ), U (1 − N2 ) ❚÷ì♥❣ tü ✭✷✳✷✵✮✱ t❛ ✤÷đ❝ b(λ) = bγ (1 + iλγ) ❚ø ✭✷✳✷✵✮ ✈➔ ✭✷✳✷✷✮ t❛ t❤✉ ✤÷đ❝ uγ (x, λ) = ✭✷✳✷✶✮ ✭✷✳✷✷✮ u(x, λ) B(x, λ) ; Bγ (x, λ) = ; |λ| < c−1 + iλγ + iλγ ❉♦ B(x, λ) ✈➔ eiλx ❣✐↔✐ t➼❝❤ t❤❡♦ λ ♥➯♥ ỵ ữủ ự LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✷✳ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ✷✳✷✳✷ Pữỡ tr t ợ tr ổ Wp2 (0, w) ❈❤♦ S ❧➔ t♦→♥ tû ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❤✐➺✉ ❜à ❝❤➦♥ tr♦♥❣ Lp(0, w) ✈➔ ❣✐↔ sû tỗ t số N1(x) N2(x) tọ SN1 = M, SN2 = é ỵ tr ú t ữỡ tr ợ ❧➔ ❤➔♠ φ(x) = eiλx ❚r♦♥❣ ♠ư❝ ♥➔②✱ ❝❤ó♥❣ t❛ sû ❞ư♥❣ ❦➳t q✉↔ ✤â ✤➸ ❣✐↔✐ ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮ tr♦♥❣ tr÷í♥❣ ❤đ♣ ✈➳ ♣❤↔✐ ❧➔ ❤➔♠ sè φ(x) t❤✉ë❝ Wp2 ❚❛ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ sè s❛✉ r(x, t) = N2 (w − t)N1 (x) − N1 (w − t)N2 (x) ❚❛ ❝â r(w − t, w − x) = N2 (w − w + x)N1 (w − t) − N1 (w − w + x)N2 (w − t) = N2 (x)N1 (w − t) − N1 (x − t)N2 (w − t) = −r(x, t), ❱ỵ✐ f (x) ❧➔ ❤➔♠ sè ❜➜t ❦ý t❤✉ë❝ Lq (−w, w) ✤➦t w w−x f (x − t + s)r(t, s)dsdt, I= x ✣ê✐ ❜✐➳♥ t = w − t , s = w − s ✱ ❦❤✐ ✤â w w−x f (x − t + s)r(t, s)dsdt I= x 0 x f (x + t − s )r(w − t , w − s )ds dt = w−x w w−x w f (x + t − s )r(w − t , w − s )ds dt = x w w−x f (x + t − s )r(w − t , w − s )dt ds = x w w−x =− f (x + t − s )r(t , s )dt ds x w w−x =− f (x + t − s)r(t, s)dtds = −I x ✷✽ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ Pữỡ tr t r ợ tr♦♥❣ Lp (0, w) ❙✉② r❛✱ I = ❚❛ ✤à♥❤ ♥❣❤➽❛ t♦→♥ tû T tr♦♥❣ Wp2 ❜ð✐ w w ϕ (t)r(x, t)dt + ϕ(w)N2 (x) − Tϕ = ϕ (x − t + w)N2 (t)dt x w w − ϕ (x + t − s).r(t, s)dsdt ✭✷✳✷✸✮ x w−x ❚❛ t❤➜② T ❧➔ ♠ët →♥❤ ①↕ tø Wp2 ✈➔♦ Lp(0, w)✳ ❚❤❡♦ ✭✶✳✺✵✮ ✲ ✭✶✳✺✷✮ t❛ t❤✉ ✤÷đ❝ B(x, λ) = T eiλx ✭✷✳✷✹✮ ◆➳✉ γ = t❤➻ tø ✭✷✳✶✷✮ t❛ s✉② r❛ ST eiλx = eiλx ; T SB(x, λ) = B(x, λ) ✭✷✳✷✺✮ ❙û ❞ư♥❣ ♠è✐ ❧✐➯♥ ❤➺ ✭✷✳✷✺✮✱ t❛ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ ✤à♥❤ ỵ ữợ ỵ sỷ ỵ tọ = ❑❤✐ ✤â✱ t♦→♥ tû T ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ❜ð✐ ✭✷✳✷✸✮ ❧➔ ♥❣❤à❝❤ ✤↔♦ ♣❤↔✐ ❝õ❛ S ✱ tù❝ ❧➔✱ ST ϕ = ϕ, ϕ ∈ Wp2 ✭✷✳✷✻✮ ❉♦ ✈➟②✱ ✈ỵ✐ γ = ✈➔ ϕ t❤✉ë❝ Wp2 t❤➻ ❤➔♠ sè f (x) = T ϕ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮✳ ❚❛ ①➨t tr÷í♥❣ ❤đ♣ γ = SN1 , U N2 − N1 , S ∗ U N2 = ❚❛ ✤➦t λ0 = −1 ❚ø ✭✷✳✶✷✮ t❛ ❝â iγ SBγ (x, λ) = eixλ , s✉② r❛ S ❞♦ ✈➟② B(x, λ) iλγ + = eiλx , S(B(x, λ)) = (iλγ + 1)eixλ ❑❤✐ λ t✐➳♥ tỵ✐ λ0, ❞♦ S ❧✐➯♥ tư❝ ✈➔ B ❧➔ ❤➔♠ ❣✐↔✐ t➼❝❤ t❤❡♦ λ ♥➯♥ SB(x, λ0 ) = lim SB(x, λ) = lim (iλγ + 1)eixλ = λ→λ0 λ→λ0 ✷✾ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ữỡ Pữỡ tr t r ợ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ❚❛ ✈✐➳t ❧↕✐ ✭✷✳✶✷✮ ♥❤÷ s❛✉ S(B(x, λ) − B(x, λ0 )) (iλγ + 1)eixλ − = = eixλ iλf + iλγ + ✭✷✳✷✼✮ ❚❛ ✤à♥❤ ♥❣❤➽❛ ❤➔♠ sè x Cγ ϕ = γ ϕ(t)eiλ0 (x−t) dt, Tγ = T Cγ ✭✷✳✷✽✮ ❚❛ ❞➵ t❤➜② x Cγ e iλx = γ eiλt eiλ0 (x−t) dt x = γ = = = eiλ0 x e(iλ−iλ0 )t dt x iλ e x e(iλ−iλ0 )t iλ − iλ0 γ eiλ0 x (iλ−iλ )x e γ iλ − iλ0 Cγ eiλx = ❚ø ✭✷✳✷✹✮✱ ✭✷✳✷✽✮ ✈➔ ✭✷✳✷✾✮ t❛ ❝â eiλx − eiλ0 x iλγ + eiλx − eiλ0 x iλγ + ❚ø t❛ t❤➜② T ❧➔ →♥❤ ①↕ tø Wp1 w Tγ ϕ = −1 d γ dx iλ − iλ0 eiλx − eiλ0 x (eiλx − eiλ0 x ) = γi(λ − λ0 ) iλγ + ❱➟② Tγ eiλx = T Cγ eiλx = T − ✈➔♦ = T eiλx − T eiλ0 x B(x, λ) − B(x, λ0 ) = iλγ + iλf + Lp (0, w)  ✈➔ ✤÷đ❝ ✈✐➳t ữợ w (u).ei0 (tu) du (x, t)dt (t) + iλ0 ✭✷✳✷✾✮ ✭✷✳✸✵✮ ✭✷✳✸✶✮ ❚ø ✭✷✳✷✽✮ ✈➔ ✭✷✳✸✵✮✱ t❛ ❝❤➾ r❛ r➡♥❣ STγ eiλx = S B(x, λ) − B(x, λ0 ) iλγ + = eiλx t õ ỵ s LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✷✳ Pữỡ tr t r ợ tr Lp (0, w) ỵ sỷ ỵ tọ ❦❤→❝ 0✳ ❑❤✐ ✤â t♦→♥ tû Tγ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ❜ð✐ ✭✷✳✸✶✮ ❧➔ ♠ët ♥❣❤à❝❤ ✤↔♦ ♣❤↔✐ ❝õ❛ S ✱ tù❝ ❧➔✱ ✭✷✳✸✷✮ STγ ϕ = ϕ, ϕ(x) ∈ Wp1 ỵ t ữỡ ✤➸ t➻♠ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮✳ ✣➸ ♠ỉ t↔ t➟♣ ♥❣❤✐➺♠ ✈➔ t➼♥❤ ❞✉② ♥❤➜t ❝õ❛ ♥â✱ t❛ s➩ ①➨t ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t Sf = ❚❛ ❦➼ ❤✐➺✉ HS ❧➔ t➟♣ ♥❣❤✐➺♠ ❝õ❛ Sf = t❤✉ë❝ Lp(0, w)✳ ◆➳✉ dim HS > t❤➻ t❛ ❝â ỵ s ỵ S t♦→♥ tû ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❤✐➺✉ ❜à ❝❤➦♥ tr♦♥❣ Lp(0, w) (1 ≤ p ≤ 2) ✈➔ < dim HS = n < ∞ ❑❤✐ ✤â✱ HS ❝â ❝ì sð ❧➔ fk (0 ≤ k ≤ n − 1) t❤ä❛ ♠➣♥ fk+1 = A∗ fk , ≤ k ≤ n − 2, ✭✷✳✸✸✮ x w tr♦♥❣ ✤â Af = i f (t)dt ✈➔ A∗f = −i f (t)dt✳ x ❈❤ù♥❣ ♠✐♥❤✳ ❉♦ A∗ ❦❤æ♥❣ ❝â ❦❤æ♥❣ ❣✐❛♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉ ❜➜t ❜✐➳♥ ♥➯♥ A∗HS = HS ❚❤❡♦ ✭✶✳✼✮ t❛ ❝â w (AS − SA∗ )f = i [M (x) + N (t)]f (t)dt ❑❤✐ ✤â✱ ✈ỵ✐ ♠å✐ f t❤✉ë❝ HS t❛ ❝â Sf = ♥➯♥ w SA∗ f = −i w [M (x) + N (t)]f (t)dt = −iM (x) w f (t)dt − i f (t).N (t)dt ❱➟② SA∗HS ⊂ s{M (x), 1} dim SAHS = t tỗ t↕✐ ❤➔♠ sè N1 ✈➔ N2 ❧✐➯♥ tö❝✳ ❑❤✐ ✤â✱ S HS = ổ ỵ dim HS > 1✮✳ ❱➟② dim SA∗HS = ✣➦t HS1 = A∗HS ∩HS ❱➻ dim SA∗HS ≤ ♥➯♥ dim(A∗HS −∩HS ) ≥ dim A∗HS − = dim HS − = n − ❤❛② dim HS1 = n − ❚÷ì♥❣ tü tr➯♥ t❛ ❝â A∗ HS1 = HS1 ⊂ HS ✈➔ dim S(A∗HS1 ) ≤ dim S(A∗HS ) ≤ ❚÷ì♥❣ tü t❛ ✤➦t HS2 = A∗HS1 ∩HS ❑❤✐ ✤â✱ dim(A∗HS1 ∩HS ) ≤ dim A∗HS1 −1 = n − ❚❛ ❞➵ ❞➔♥❣ t❤➜② ✤÷đ❝ HS2 ⊂ HS1 ❈ù ❧➦♣ ❧↕✐ tữỡ tữ ữ ợ t HS = AHSk1 ∩ HS (2 ≤ k ≤ n − 1) ✈➔ HS ⊃ HS1 ⊃ · · · ⊃ HSn−1, dim HSk = n k õ tỗ t sè f0 ∈ HS t❤ä❛ ♠➣♥ fk = A∗k f0 ∈ HSk (1 ≤ k ≤ n − 1, ||f0||p = 0) ❚❛ ①➨t ❤➺ t❤ù❝ α0 f0 + α1 f1 + α2 f2 + · · · + αn−1 fn−1 = ✸✶ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ữỡ Pữỡ tr t r ợ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ⇐⇒α0 f0 + α1 A∗ f0 + α2 A∗2 f0 + · · · + αn−1 A∗n−1 f0 = ⇐⇒ α0 + α1 A∗ + α2 A∗2 + · · · + αn−1 A∗n−1 f0 = ⇐⇒α0 = α1 = α2 = · · · = αn−1 = ❱➻ ✈➟②✱ fk (0 ≤ k ≤ n − 1) ❧➔ ♠ët ❝ì sð ❝õ❛ HS ✈➔ t❤ä❛ ♠➣♥ fk+1 = A∗fk (0 ≤ k) ✷✳✸ ❱➼ ❞ö →♣ ❞ö♥❣ s❛✉ ❚r♦♥❣ ú t s ỵ tt tr ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ s❣♥ w 1−β (x − t) f (t)dt = φ(x) |x − t|α−1 Sα f = ✭✷✳✸✹✮ ✈ỵ✐ ✭✷✳✸✺✮ ❚❛ s➩ ❝❤➾ r❛ ❤➔♠ sè L1(x), L2(x) tữỡ ự ợ ữỡ tr õ −1 < β < 1; < α < 2; α = L1 (x) = Dx−ρ (w − x)ρ−µ , L2 (x) = w(ρ − µ) + x L1 (x), 1−µ ✭✷✳✸✻✮ ✭✷✳✸✼✮ tr♦♥❣ ✤â D= sin πρ , π(1 − β) µ = − α, tan πρ = (1 − β) sin πµ , < ρ < (1 + β) + (1 − β) cos πµ ✭✷✳✸✽✮ ✭✷✳✸✾✮ ✭✷✳✹✵✮ ❚❛ ❝ơ♥❣ ❝â t❤➸ ✈✐➳t ✭✷✳✹✵✮ ữợ sin = ợ sin (à ) 1+ ỵ t tỷ Sα ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ ✭✷✳✸✹✮✱ ✭✷✳✸✺✮ ✈➔ ❝→❝ ❤➔♠ sè L1 (x), L2 (x) ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ❜ð✐ ✭✷✳✸✻✮ ✲ ✭✷✳✹✵✮✳ ❑❤✐ ✤â✱ t❛ ❝â Sα Lk = xk−1 , k = 1, ✭✷✳✹✸✮ < µ − ρ < ✸✷ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ữỡ Pữỡ tr t r ợ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ❝❤ù♥❣ ♠✐♥❤ ✭✷✳✹✸✮ ✈ỵ✐ k = 1✳ ✣ê✐ ❜✐➳♥ x = wu, t = ws t ữợw − β s❣♥(x − t) S L = L (t)dt α 1 |x − t|α−1 s❣♥ 1−β (wu − ws) L1 (ws)ds |wu − ws|α−1 = s❣♥ 1−β (wu − ws) D(ws)−ρ (w − ws)ρ−µ ds |wu − ws|α−1 = s−ρ (1 − s)ρ−µ (1 − β =D s❣♥(u − s))|u − s|µ−1ds  u s−ρ (1 − s)ρ−µ (u − s)µ−1 ds(1 − β) + = D s−ρ (1 − s)ρ−µ (u − s)µ−1 ds(1 + β) u ❝â  ✣➦t s = zu ð t➼❝❤ ♣❤➙♥ t❤ù ♥❤➜t ✈➔ s = − (1 − u)z ð t➼❝❤ ♣❤➙♥ t❤ù ❤❛✐✱ t❛ u z −ρ (1 − zu)ρ−µ (1 − z)µ−1 dz(1 − β) Sα L1 = D uµ−ρ (1 − z)µ−1 z ρ−µ (1 − (1 − u)z)−ρ dz(1 + β) + (1 − u) ỵ (c) F (a, b, c, z) = Γ(b)Γ(c − b) tb−1 (1 − t)c−b−1 dt (1 − tz)a ✭✷✳✹✹✮ tr♣♥❣ ✤â Γ ❧➔ ❤➔♠ õ t ữủ S L1 = D(à)(uà +(1 − u)ρ Γ(1 − ρ) F (µ − ρ, − ρ, − ρ + µ, u)(1 − β) Γ(1 − ρ + µ) Γ(1 + ρ − µ) F (ρ, + ρ − µ, − ρ, − u)(1 + β)) Γ(1 + ρ) ✭✷✳✹✺✮ ✣➦t ✸✸ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ Pữỡ tr t r ợ tr♦♥❣ Lp (0, w) u ✭✷✳✹✻✮ sp−1 (1 − s)q−1 ds Bu (p, q) = ❚ø ✭✷✳✹✺✮ s✉② r❛ ✭✷✳✹✼✮ F (p, − q, p + 1, u) = pu−p Bu (p, q) ❚ø ❝æ♥❣ t❤ù❝ ✭✷✳✹✼✮ ✈➔ Γ(x + 1) = xΓ(x) t❛ ❝â u Γ(1 − ρ) Sα L1 = DΓ(µ) uµ−ρ (µ − ρ)uρ−µ (µ − ρ)Γ(µ − ρ) tµ−ρ−1 (1 − t)ρ−1 dt(1 − β) 1−u + (1 − u)ρ Γ(1 + ρ − µ) −ρ ρu ρΓ(ρ) tρ−1 (1 − t)µ−ρ−1 dt u =D Γ(1 − ρ)Γ(µ) (1 − β) Γ(µ − ρ) tµ−ρ−1 (1 − t)ρ−1 dt 1−u Γ(1 + ρ − µ)Γ(µ) = (1 + β) Γ(ρ) Γ(z)Γ(1 − z) = ▼➔ π sin πz ✭✷✳✹✾✮ ✭✷✳✺✵✮ Γ(1 − ρ)(1 − β) Γ(1 + ρ − µ)(1 + β) = Γ(µ − ρ) Γ(ρ) 1−u tρ−1 (1 − t)µ−ρ−1 dt = tµ−ρ−1 (1 − t)ρ−1 dt ✭✷✳✺✶✮ u ❚ø ✭✷✳✹✽✮✱ ✭✷✳✺✵✮ ✈➔ ✭✷✳✺✶✮ t❛ ❝â  Sα L1 = D ✭✷✳✹✽✮ ❚❤❡♦ t➼♥❤ ❝❤➜t ❝õ❛ ❤➔♠ ❣❛♠♠❛ ✈➔ ✭✷✳✹✶✮✱ t❛ ❝â tρ−1 (1 − t)µ−ρ−1 dt u Γ(1 − ρ)Γ(µ) (1 − β)  Γ(µ − ρ)  tµ−ρ−1 (1 − t)ρ−1 dt + tµ−ρ−1 (1 − t)ρ−1 dt u Γ(1 − ρ)Γ(µ) =D (1 − β) Γ(µ − ρ) tµ−ρ−1 (1 − t)ρ−1 dt ✭✷✳✺✷✮ ✸✹ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ ✷✳ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ❚ø ✭✷✳✹✽✮✱ ✭✷✳✺✶✮ ✭✷✳✺✷✮ ✈➔ ✤➥♥❣ t❤ù❝ tµ−ρ−1 (1 − t)ρ−1 dt = Γ(µ − ρ)Γ(ρ) Γ(µ) ✭✷✳✺✸✮ t❛ ❝â ✤➥♥❣ t❤ù❝ s❛✉ Γ(1 − ρ)Γ(µ) Γ(µ − ρ)Γ(ρ) (1 − β) Γ(µ − ρ) Γ(µ) = D(Γ(1 − ρ)(1 − β)Γ(ρ)) π =D (1 − β) = sin πρ Sα L1 = D ❱➟② ✭✷✳✹✸✮ ✤ó♥❣ ✈ỵ✐ k = ❚❛ ❝❤ù♥❣ ♠✐♥❤ ✭✷✳✹✸✮ ✈ỵ✐ k = ❚❛ ①➨t x u t1−ρ (w−t)ρ−µ (x−t)µ−1 dt(1−β)+ Sα (xL1 ) = D( t1−ρ (w−t)ρ−µ (t−x)µ−1 dt(1+β)) x ✣ê✐ ❜✐➳♥ x = wu, t = wuz ð t➼❝❤ ♣❤➙♥ t❤ù ♥❤➜t ✈➔ x = wu, t = w[1 − (1 − u)z] ð t➼❝❤ ♣❤➙♥ t❤ù ❤❛✐ t❛ ữủ S (xL1 ) = Dw(uà+1 z (1 − zu)ρ−µ (1 − z)µ−1 dt(1 − β) (1 − z)µ−1 z ρ−µ (1 − (1 − u)z)1−ρ dt(1 + β)) +(1 − u)ρ ✭✷✳✺✹✮ ❚ø ✭✷✳✹✺✮ ✈➔ ✭✷✳✺✹✮ t❛ ❝â Sα L1 = DwΓ(w)(uµ−ρ+1 +(1 − u)ρ Γ(2 − ρ) F (µ − ρ, − ρ, − ρ + µ, u)(1 − β) Γ(2 − ρ + µ) Γ(1 + ρ − µ) F (ρ − 1, + ρ − µ, + ρ, − u)(1 + β)) Γ(1 + ρ) ✭✷✳✺✺✮ ❚❛ ✤à♥❤ ♥❣❤➽❛ ❤➺ t❤ù❝ ●❛✉ss ♥❤÷ s❛✉ F (a, b, c, z) = −a c−1 F (a + 1, b, c, z) + F (a, b, c − 1, z) c−a−1 c−a−1 ✭✷✳✺✻✮ ❚ø ✭✷✳✺✺✮ ✈➔ ✭✷✳✺✻✮ t❛ ❦➳t ❧✉➟♥ Sα L1 = DwΓ(µ)(uµ−ρ+1 Γ(2 − ρ) (ρ − µ)F (µ − ρ + 1, − ρ, − ρ + µ, u) Γ(2 − ρ + µ) ✸✺ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❈❤÷ì♥❣ Pữỡ tr t r ợ tr♦♥❣ Lp (0, w) +(1 − ρ)F (ρ, + ρ − µ, + ρ, − u) + ρF (ρ − 1, + ρ − µ, ρ, − µ)(1 + β)) ✭✷✳✺✼✮ ❚ø ✭✷✳✺✵✮ t❛ ❝â Γ(2 − ρ)(1 − β) Γ(1 + ρ − µ)(1 + β) = Γ(1 + ρ) Γ(µ − ρ)ρ(1 − ρ) ✭✷✳✺✽✮ ❚❛ ✈✐➳t ❧↕✐ ✭✷✳✺✼✮ ♥❤÷ s❛✉ Γ(2 − ρ)(1 − β) µ−ρ+1 −1 (u ( F (µ − ρ + 1, − ρ, − ρ + µ, u) Γ(µ − ρ) µ−ρ+1 1 + F (µ − ρ, − ρ, − ρ + µ, µ)) + (1 − u)ρ ( F (ρ, + ρ − µ, + ρ, − u) µ−ρ ρ Sα L1 = DwΓ(µ) + F (ρ − 1, + ρ − µ, ρ, − u)) 1−ρ ✭✷✳✺✾✮ ❚❛ sû ❞ö♥❣ ❦➼ ❤✐➺✉ φ(ρ, µ, u) ❧➔ ❜✐➸✉ t❤ù❝ tr♦♥❣ ♥❣♦➦❝ ✈✉æ♥❣ tr♦♥❣ ✭✷✳✺✾✮✳ ⑩♣ ❞ư♥❣ ✭✷✳✹✻✮ ✈➔ ✭✷✳✹✼✮ t❛ ✈✐➳t ❧↕✐ φ(ρ, µ, u) ữ s tà1 (1 t)2 (u t)dt φ(ρ, µ, u) = =− Γ(µ − ρ − 1)Γ(ρ − 1) Γ(µ − ρ)Γ(ρ − 1) +u Γ(µ) Γ(µ − 1) ❚❤❡♦ ✭✷✳✸✽✮ ✈➔ ✭✷✳✹✾✮ t❛ ❝â DΓ(2 − ρ).Γ(ρ − 1)(1 − β) = sin πρ sin πρ Γ(2 − ρ)Γ(ρ − 1)(1 − β) = = −1 π(1 − β) sin π(1 − ρ) ❚❤❡♦ ✭✷✳✺✾✮ ✈➔ ✭✷✳✻✵✮ t❛ ❝â Sα(xL1) = −x(µ − 1) + w(à p) ú ợ k = ❚ø ✭✷✳✸✻✮ ✈➔ ✭✷✳✺✸✮ t❛ t❤✉ ✤÷đ❝ w w Dx−ρ (w − x)ρ−µ dx = Dw1−µ L1 (x)dx = R= ✭✷✳✻✵✮ Γ(1 − ρ)Γ(1 + ρ − µ) Γ(2 − µ) ❚❤❡♦ ✭✷✳✸✻✮✱ ✭✷✳✸✼✮ t❛ ❝â Q1 (x, t) = D2 x−ρ (w − x)ρ−µ (w − t)−ρ tρ−µ (x + t − w) R(1 − µ) ✭✷✳✻✶✮ ✸✻ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ữỡ Pữỡ tr t r ợ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ Lp (0, w) ✣➦t s = u + w ✈➔♦ φ1(x, t) ✈➔ tø ✭✷✳✻✶✮ t❛ t❤✉ ✤÷đ❝ 2w−|x−t| φ1 (x, t) = Q1 s+x−t s−x+t , ds 2 x+t w−|x−t| D2 = 2R(1 − µ)2 (w + x − t)2 − u2 t −ρ (w − x + t)2 − u2 udu x+tw ứ õ t ỹ ữợ t♦→♥ tû Sα Tα ϕ = ϕ, ϕ ∈ Wp2 T ữ ỵ N2 (x) = L1 (x) ú ỵ t ữủ số L1 L2 ữỡ tr ợ < α < ✸✼ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❑➌❚ ▲❯❾◆ ▲✉➟♥ ✈➠♥ ✤➣ tr➻♥❤ ỳ s ữỡ tr r ợ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣✿ • ❳➙② ❞ü♥❣ t♦→♥ tû ♥❣❤à❝❤ ✤↔♦ ❝õ❛ t♦→♥ tû t➼❝❤ ♣❤➙♥ ✈ỵ✐ ♥❤➙♥ ❞↕♥❣ ❝❤➟♣ tr♦♥❣ L2(0, w) • ❚➼♥❤ ❝❤➜t ❝õ❛ t♦→♥ tû t➼❝❤ ♣❤➙♥ ợ tr Lp (0, w) ã ữỡ tr t ợ tr Wp2 (0, w)✳ ✸✽ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪ ▲❡✈ ❆✳ ❙❛❦❤♥♦✈✐❝❤✱ ■♥t❡❣r❛❧ ❊q✉❛t✐♦♥s ✇✐t❤ ❉✐❢❢❡r❡♥❝❡ ❑❡r♥❡❧s ♦♥ ❋✐♥✐t❡ ■♥t❡r✈❛❧s✱ ❇✐r❦❤❛✉s❡r ✭✷✵✶✺✮✳ ❬✷❪ ❚r➛♥ ✣ù❝ ▲♦♥❣ ✲ P❤↕♠ ❑ý ❆♥❤✱ ●✐→♦ tr➻♥❤ ●✐↔✐ t➼❝❤ ❤➔♠✱ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ●✐❛ ❍➔ ◆ë✐ ✭✷✵✵✶✮✳ ❬✸❪ ❚r➛♥ ✣ù❝ ▲♦♥❣ ✲ ◆❣✉②➵♥ ✣➻♥❤ ❙❛♥❣ ✲ ❍♦➔♥❣ ◗✉è❝ ❚♦➔♥✱ ●✐→♦ tr➻♥❤ ●✐↔✐ t➼❝❤✱ ❚➟♣ ✶✱ ✷ ✈➔ ✸✱ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ●✐❛ ❍➔ ◆ë✐ ✭✷✵✵✺✮✳ ✸✾ LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ...  NGUYỄN THỊ MINH THÚY TÌM HIỂU VỀ PHƯƠNG TRÌNH FREDHOLM VỚI NHÂN DẠNG CHẬP TRÊN KHOẢNG HỮU HẠN Chuyên ngành: Tốn giải tích Mã số: 60 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Cán hướng dẫn: TS

Ngày đăng: 15/12/2022, 10:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w