1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Luận án tiến sĩ HUS phép chập liên kết với biến đổi chính tắc tuyến tính bù và biến đổi dạng hartley chính tắc

136 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ———————- LẠI TIẾN MINH PHÉP CHẬP LIÊN KẾT VỚI BIẾN ĐỔI CHÍNH TẮC TUYẾN TÍNH BÙ VÀ BIẾN ĐỔI DẠNG HARTLEY CHÍNH TẮC LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2019 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN −−− −−− LẠI TIẾN MINH PHÉP CHẬP LIÊN KẾT VỚI BIẾN ĐỔI CHÍNH TẮC TUYẾN TÍNH BÙ VÀ BIẾN ĐỔI DẠNG HARTLEY CHÍNH TẮC Chuyên ngành: Toán ứng dụng Mã số: 9460112.01 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS TS NGUYỄN MINH TUẤN PGS TS NGUYỄN HỮU ĐIỂN Hà Nội - 2019 AN VAN CHAT LUONG download : add luanvanchat@agmail.com LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng tơi hướng dẫn PGS TS Nguyễn Minh Tuấn PGS TS Nguyễn Hữu Điển Các kết luận án trung thực chưa công bố cơng trình khác Hà nội, tháng năm 2019 Nghiên cứu sinh Lại Tiến Minh LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com LỜI CẢM ƠN Lời đầu tiên, tơi xin tỏ lịng tri ân sâu sắc thầy PGS TS Nguyễn Minh Tuấn PGS TS Nguyễn Hữu Điển Các thầy tận tình dạy bảo, dẫn tơi học tốn, nghiên cứu toán suốt năm làm nghiên cứu sinh Tơi gửi lời tri ân đặc biệt tới thầy PGS TS Nguyễn Minh Tuấn, người yêu thương, quan tâm đến tôi, cho hội, dạy học nghiên cứu sống Chính thầy cho tơi niềm tin động lực vượt qua trở ngại, lúc khủng hoảng tưởng chừng vượt qua Tôi xin gửi lời cảm ơn chân thành sâu sắc đến GS TSKH Phạm Kỳ Anh, GS TSKH Nguyễn Văn Mậu thầy quan tâm, động viên, cho tơi gợi ý, dìu dắt tơi q trình nghiên cứu Tơi xin bày tỏ lịng biết ơn đến quý thầy cô anh chị đồng nghiệp Seminar mơn tốn học tính tốn; Seminar Giải tích - Đại số , Trường Đại học Khoa học Tự nhiên - Đại học Quốc Gia Hà Nội Tại nhận nhiều dẫn, góp ý quý báu Những nhận xét, góp ý thầy cô anh chị đồng nghiệp giúp tơi có ý tưởng để hồn thiện báo luận án Đặc biệt, tơi xin cảm ơn ý kiến đóng góp giá trị PGS TS Hà Tiến Ngoạn, PGS TS Nguyễn Xuân Thảo, TS Nguyễn Văn Ngọc, TS Nguyễn Trung Hiếu, TS Vũ Nhật Huy giúp tơi hồn thành luận án cách thuận lợi Tôi xin cảm ơn Ban giám hiệu, quý thầy cô bạn bè đồng nghiệp Bộ mơn Tốn, Viện Đào tạo Mở, Trường Đại học Kiến trúc Hà Nội động viên, tạo điều kiện thuận lợi cho suốt thời gian làm nghiên cứu sinh Tôi xin cảm ơn TS Nguyễn Hữu Thọ, TS Bùi Thị Giang, TS Nguyễn Thanh Hồng, ThS Quản Thái Hà, ThS Vũ Văn Quân Các anh chị em cho tơi lời khun hữu ích, động viên giúp tơi vượt qua giai đoạn khó khăn q trình nghiên cứu Tơi xin cảm ơn anh chị em LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com học tập nghiên cứu khoa Toán - Cơ - Tin học Đại học Khoa học Tự nhiên Đại học Quốc Gia Hà Nội trao đổi, hỗ trợ nghiên cứu Cuối cùng, tơi muốn bày tỏ lịng biết ơn sâu sắc đến người bố khuất, mẹ, anh chị em gia đình; đặc biệt mẹ tơi - người động viên, cảm thơng chia sẻ khó khăn suốt năm tháng vừa qua để tơi hồn thành luận án NCS Lại Tiến Minh LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com BẢNG KÍ HIỆU N Tập hợp số tự nhiên Z Tập hợp số nguyên Q Tập hợp số hữu tỷ R Tập hợp số thực z Liên hợp số phức z i Đơn vị ảo X×Y Tích đề hai tập hợp X Y d n Đạo hàm cấp n (n ∈ N∗ ), Dn = dt Không gian Schwartz hàm khả vi vô hạn R thỏa mãn Dn S supt∈R (1 + t2 )m | Dn f (t)| < ∞ L p (R) f p f, g C0 (R) ∞ l (R) (m = 0, 1, 2, ) Khơng gian hàm khả tích Lebesgue cấp p ≥ R Chuẩn L p (R), Tích vô hướng f p = L2 (R), R | f (t)| p dt f, g = R p f (t) g(t)dt Không gian hàm liên tục R triệt tiêu vô Chuẩn C0 (R), f ∞ = sup | f (t)| t ∈R ∞ Không gian dãy số {un } thỏa mãn ∑+ n=−∞ | un | < + ∞ E A (t) fˆ(t) ∞ Tích vơ hướng l (R), un , = ∑+ −∞ un n 2d e− t Đa thức Hermite Hn (t) = (−1)n et dt n t2 d n Hàm Hermite ψn (t) = (−1) e e− t dt Hàm Hartley cas(t) = cos t + sin t − t2 Hàm Gauss G(t) = √ e 2b2 b 2π u a Hàm chirp E A (t) = ei( 2b t + b t) fˆ(t) = f (t)E A (t) rin (t) Tín hiệu vào rout (t) Tín hiệu un , Hn (t) ψn (t) cas(t) G(t) LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com BẢNG CÁC CHỮ VIẾT TẮT OLCT Biến đổi tắc tuyến tính bù LCT Biến đổi tắc tuyến tính FrFT Biến đổi Fourier phân thứ FT Biến đổi Fourier IFT Biến đổi Fourier ngược WDF Hàm phân phối Wigner CHTT Biến đổi dạng Hartley tắc LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỞ ĐẦU Lịch sử vấn đề lí lựa chọn đề tài Rất nhiều tốn xử lý tín hiệu giải nhờ lọc, lấy mẫu khơi phục tín hiệu Lọc sử dụng rộng rãi điện tử viễn thơng, phát thanh, truyền hình, ghi âm, radar, hệ thống điều khiển, xử lý hình ảnh đồ họa máy tính Trong xử lý tín hiệu, lọc thiết bị trình loại bỏ số thành phần tính khơng mong muốn khỏi tín hiệu Thơng thường, điều có nghĩa loại bỏ số tần số băng tần khơng mong muốn Lọc phân loại dựa dạng băng tần khác mô tả dải tần mà lọc thông qua (dải thông) dải tần mà lọc từ chối (dải dừng) Lọc thông thường thu từ biến đổi Fourier Ψ FT biến đổi Fourier ngược Ψ− FT Tín hiệu rout ( t ) biểu diễn qua tín hiệu vào rin (t) sau rout (t) = Ψ− FT Ψ FT {rin ( t )}( u ) ( t ) Với phát triển khoa học máy tính, có nhiều thuật tốn đưa để tính tốn biến đổi Fourier biến đổi Fourier ngược tín hiệu, tiêu biểu thuật tốn biến đổi Fourier nhanh (FFT) Ngồi ra, có cách khác thiết kế lọc dựa phép chập thông thường Tuy nhiên, lọc thông thường hiệu xử lý tín hiệu mà có phân phối lượng khơng chồng lấp mặt phẳng pha Lọc thông thường không hiệu với tín hiệu mà nhiễu có dạng chirp tổng qt Nhiễu thường gặp hệ quang học, hệ vi sóng, hệ đa hệ âm Điều địi hỏi phải có lọc mà xử lý tín hiệu dạng Ngày nay, với phát triển nhanh chóng khoa học cơng nghệ, việc nghiên cứu phát triển lọc đóng vai trị quan trọng xử lý tín hiệu Với phát triển mạnh mẽ lý thuyết biến đổi tích phân lý thuyết chập, đặc biệt ứng dụng phong phú phép chập thực tiễn (xem [17, 28, 34, 51, 61, 63, 66]) có nhiều cách thiết kế lọc đưa để xử lý nhiễu dạng LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt [1] Nguyễn Xuân Liêm, (2016), Giải tích hàm, Nhà xuất Giáo dục Việt Nam [2] Trần Đức Long, Nguyễn Đình Sang, Nguyễn Viết Triều Tiên, Hồng Quốc Tồn, (2005), Bài tập Giải tích tập 1, Nhà xuất Đại học Quốc gia Hà Nội, Hà Nội [3] Nguyễn Văn Ngọc, (2016), Hàm suy rộng, biến đổi Fourier ứng dụng, Nhà xuất Đại học Quốc gia Hà Nội, Hà Nội [4] Đặng Anh Tuấn, (2016), Giáo trình lý thuyết Hàm suy rộng khơng gian Sobolev, Nhà xuất Đại học Quốc gia Hà Nội, Hà Nội Tài liệu tiếng Anh [5] Anh P K., Tuan N M., Tuan P D., (2013), “The Finite Hartley new convolution and solvability of the integral equations with Toeplitz plus Hankel kernels", Journal of Mathematical Analysis and Applications, 397(2), pp 537– 549 [6] Anh P K., Castro L P., Thao P T., Tuan N M., (2017), “Inequalities and consequences of new convolutions for the fractional Fourier transform with Hermite weights", American Institute of Physics, AIP Proceedings, 1798(1), 020006, NY [7] Adams R A., Fournier J J F., (2003), Sobolev Spaces, 2nd ed., Academic Press [8] Abe S., Sheridan J T., (1994), “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation", Opt Lett., 19(22), pp.1801–1803 121 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com [9] Abe S., Sheridan J T., (1994), “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach", J Phys A, 27, pp.4179–4187 [10] Bhandari A., Marziliano P., (2010), “Sampling of sparse signals in Fractional Fourier Domain", IEEE Signal Processing Letters, 17(3), pp.221–224 [11] Beckner W., (1975), “Inequalities in Fourier analysis", Annals of Math, 102(2), pp.159–182 [12] Bracewell R N., (1986), The Fourier Transform and its Applications, McGraw-Hill Press, New York [13] Bracewell R N., (1986), The Hartley transform, Oxford University Press, Inc [14] Bing B., Ran T., Yue W., (2006), “Convolution theorems for the linear canonical transform and their applications", Science in China Series F: Information Sciences, 49(5), pp.592–603 [15] Cordoba A., (1989), “Dirac combs", Kluwer Academic Publishers, 17, pp.191–196 [16] Castro L P., Saitoh S., (2012), “New convolutions and norm inequalities", Math Inequal Appl, 15(3), pp.707–716 [17] Castro L P., Saitoh S., Tuan N M., (2012), “Convolutions, integral transforms and integral equations by means of the theory of reproducing kernels", Opusc Math, 32(4), pp.633–646 [18] Castro L P., Guerra R C., Tuan N M., (2017), “Heisenberg uncertainty principles for an oscillatory integral operator", AIP Conference Proceedings, 1798(020037) [19] Dirac P A M., (1926), “The physical interpretation of the quantum mechanics", Proc Roy Soc A, 113, pp.621–641 [20] Debnath L., Bhatta D., (2007), Integral transforms and their applications, second edition, Chapman and Hall, CRC, Boca Raton 122 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com [21] Erden M F., Ozaktas H M., (1998), “Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domain", Journal of the Optical Society of American, 15(6), pp.621–641 [22] Gabor D., (1946), “Theory of communication", J Inst Elec Engr., 93, pp 429–457 [23] Gudadhe A S., Joshi A V., (2013), “Operation Transform Formulae for the Generalized Canonical Hartley Transform", IOSR Journal of Mathematics, 8(1), pp 64–69 [24] Goodman J W., (1968), Introduction to Fourier optics, McGraw-Hill, New York [25] Hartley R V L., (1942) “A More Symmetrical Fourier Analysis Applied to Transmission Problems”, Proceedings of the IRE, 30(3), pp.144–150 [26] Hong N T., (2010), “Fourier cosine convolution inequalities and applications", Integral Transforms and Special Functions, 21(10), pp.755–763 [27] Jerri A J., (1977), “The Shannon sampling theorem - its various extension and applications: a tutorial review", Proc IEEE, 65, pp.1565–1596 [28] James D F V., Agarwal G S., (1996), “The generalized Fresnel transform and its application to optics", Optics Communications, 126(4-6), pp.207– 212 [29] Jimenez C., Torres C., Mattos L., (2011), “Fractional Hartley transform applied to optical image encryption", Journal of Physics Conference Series, 274, 012041 [30] Kakichev V A., Thao N X., Tuan V K., (2005), “On the generalized convolutions for Fourier cosine and sine transforms", East - West Jour Math., 1(3), pp 321–341 [31] Koc¸ A., Ozaktas H.M., Candan C., Kutay M A., (2008), “Digital computation of linear canonical transforms", Signal Processing, 56(6), pp.2383– 2394 123 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com [32] Mendlovic D., Zalevsky Z., Lohmann A W., Dorsch R G., (1996), “Signal spatial-filtering using the localized fractional Fourier transform", Optics Communications, 126, pp.14–18 [33] Moshinsky M., Quesne C., (1971), “Linear canonical transforms and their unitary representations", J Math Phys,12, pp.1772–1783 [34] Namias V., (1980), “The fractional order Fourier transform and its application in quantum mechanics", J Inst Math Appl, 25(3), pp 241–265 [35] Ozaktas H M., Zalevsky Z., Kutay M A., (2001), The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley, New York [36] Ozaktas H M., Zalevsky Z., Kutay M A., (2001), The Fractional Fourier Transform, Wiley, Chichester [37] Pei S C., Ding J J., (2010), “Fractional Fourier Transform, Wigner Distribution, and Filter Design for Stationary and Nonstationary Random Processes", IEEE Transactions on Signal Processing, 58(8), pp.4079–4092 [38] Pei S C., Ding J J., (2001), “Relations between fractional operations and time-frequency distributions, and their applications", IEEE Transactions on Signal Processing, 49(8), pp.1638–1655 [39] Pei S C., Ding J J., (2002), “Eigenfunctions of linear canonical transform", IEEE Transaction on Signal Processing, 50(1), pp.11–26 [40] Pei S C., Ding J J., (2003), “Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms", Opt Lett , 20(3), pp.522–532 [41] Pei S C., Ding J J., (2007), “Relations between Gabor transform and fractional Fourier transform and their applications for signal processing", IEEE Transactions on Signal processing, 55(10), pp.4839–4850 [42] Prudnikov A P., Brychkov Y A., Marichev O I., (2003), Integrals and series, Fiziko-Matematicheskaya Literatura, Moscow, (Second revised edition) 124 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com [43] Rudin W., (1991), Functional Analysis (second ed.), McGraw-Hill, New York [44] Salasnich L., (2014), Quantum physics of light and matter, Unitext for physics, Springer international publishing Switzerland [45] Saitoh S., Tuan V K., Yamamoto M., (2003), “Convolution inequalities and applications", Journal of Inequalities in Pure and Applied Mathematics, 4(3), pp.1–8 [46] Stein E M., Shakarchi R., (2007), Fourier analysis, An introduction, Princeton University Press [47] Stern A., (2006), “Sampling of linear canonical transformed signals", Signal Processing, 86(7), pp.1421–1425 [48] Stern A., (2007), “Sampling of compact signals in the offset linear canonical domain", Signal Image Video Process, 1(4), pp.359–367 [49] Stern A., (2008), “Uncertainty principles in linear canonical transform domains and some of their implications in optics", J Opt Soc Am A, 25(3), pp 647–652 [50] Sharma K K., Joshi S D., (2008), “Uncertainty principle for real signals in the linear canonical transform domains", Transactions on signal processing, 56(7), pp 2677–2683 [51] Singh A K., Saxena R., (2012), “On convolution and product theorems for the fractional Fourier transform", Wireless Personal Communications, 5(1), pp.189–201 [52] Shi J., Liu X., Zhang N., (2012), “Generalized convolution and product theorems associated with linear canonical transform", Signal Image Video Process, 8(5), pp 967–974 [53] Tuan N M., Tuan P D., (2012), “Operator properties and Heisenberg uncertainty principles for a un-unitary integral operator", Integral transforms and special functions, 23(1), pp.1–12 125 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com [54] Titchmarsh E C., (1986), Introduction to the Theory of Fourier Integrals, Chelsea Publishing Co., New York [55] Tao R., Deng B., Zhang W Q., Wang Y., (2008), “Sampling and sampling rate conversion of bandlimited signals in the fractional Fourier transform domain", IEEE Transactions on Signal Processing, 56(1), pp.158–171 [56] Thao N X., Tuan V K., Hong N T., (2007), “Integral transforms of Fourier cosine and sine generalized convolution type", Int J Math Math Sci., 97250, pp.1–11 [57] Thao N X., Tuan V K., Hong N T., (2008), “Generalized convolution transforms and Toeplitz plus Hankel integral equation", Frac Calc App Anal., 11(2), pp 153–174 [58] Vladimirov V S., (1979), Generalized functions in Mathematical Physics, Mir Publishers Moscow, Moscow [59] Vretblad A., (2003), Fourier analysis and its applications, Springer Verlag, New York- Berlin- Heidelberg [60] Vetterli M., Marziliano P., Blu T., (2002), “Sampling signals with finite rate of innovation", Transactions on signal processing, 50(6), pp.1417–428 [61] Wei D., Ran Q., Li Y., Ma J., Tan L., (2009), “A convolution and product theorem for the linear canonical transform", Signal Processing Letters, 16(10), pp 853–856 [62] Wiener N., (1929), “Hermitian polynomials and Fourier analysis", J Math Phys, 8(1), pp.70–73 [63] Wei D., Ran Q., Li Y., (2012), “A Convolution and correlation theorem for the linear canonical transform and its application", Circuits, Systems and Signal Processing, 31(1), pp.301–312 [64] Xiang Q., Qin K., (2014), “Convolution, correlation, and sampling theorems for the offset linear canonical transform", Signal, Image and Video Processing, 8(3), pp.433–442 126 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com [65] Xia X G., (1996), “On bandlimited signals with fractional Fourier transform", Signal Processing Letters, 3(3), pp.72–74 [66] Zayed A I., (1998), “A convolution and product theorem for the fractional Fourier transform", Signal Processing, 5(4), pp.102–103 [67] Zayed A I., Garca A.G., (1999), “New sampling formulae for the fractional Fourier transform", Signal Processing, 77(1), pp.111–114 [68] Zhang Z, (2016), “New convolution and product theorem for the linear canonical transform and its applications", Optik - International Journal for Light and Electron Optics, 127(11), pp 4894–4902 [69] Zhi X., Wei D., Zhang W., (2016), “A generalized convolution theorem for the special affine Fourier transform and its application to filtering", Optik, 127(5), pp.2613–2616 127 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com PHỤ LỤC Mã lệnh Matlab cho ví dụ Luận án sử dụng phần mềm Matlab để chạy lọc ví dụ Sau đoạn mã lệnh cho ví dụ tương ứng WDF Phân phối Wigner tín hiệu function W = mywigner(Ex) if (size(Ex, 2)-1) error(’E(x) must be a column vector’); end N = length(Ex); x = ifftshift(((0:N-1)’-N/2)*2*pi/(N-1)); X = (0:N-1)-N/2; EX1 = ifft( (fft(Ex)*ones(1,N)).*exp( i*x*X/2 )); EX2 = ifft( (fft(Ex)*ones(1,N)).*exp( -i*x*X/2 )); W = real(fftshift(fft(fftshift(EX1.*conj(EX2), 2), [], 2), 2)); Ví dụ 1.4 Ví dụ phân phối Wigner tín hiệu t=-10:0.1:10; f=-6:0.1:6 x=2*exp(-0.2*t.^2); n=exp(-1i*(3*t)).*exp(-(0.1)*(t-7).^2)+(0.5)*exp(1i*(t+8.6).^2); tfr= mywigner(x.’); xin=x+n; tfr1= mywigner(n.’); tfr2= mywigner(xin.’); 128 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com figure; set(gcf,’color’,’w’); subplot(2, 2, 1); imagesc(t,f,tfr); axis xy; colormap(flipud(jet)); title(’WDF of x(t) ’); xlabel(’Time’); ylabel(’Frequency’); subplot(2, 2, 2); imagesc(t,f,tfr1); axis xy; colormap(flipud(jet)); title(’ WDF of n(t)’); xlabel(’Time’); ylabel(’Frequency’); set(gcf,’color’,’w’); subplot(2, 2, 3); imagesc(t,f,tfr2); axis xy; colormap(flipud(jet)) title(’ WDF r_{in}(t)’); xlabel(’Time’); ylabel(’Frequency’); Ví dụ 4.1 Định lý lấy mẫu Shannon function output = fInput( t ) output = 5/(3*pi).*exp(-1i*(t.^2 + t)); sum = 0; for n = -2000:2000 sum = sum + sin(pi*n).*(sin(0.6*pi*(t - (5*n)/3))./(t - (5*n)/3)); end output = output.*sum; 129 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com end Phần thực tín hiệu khơi phục clear all; close all; t = [-5:0.0001:5]; f = exp(-1i*(t.^2 + t)).*sin(0.6*pi*t) figure; plot( t,real(f),’k’,t,(10^13)/2*real(fInput(t)),’ r’); legend(’original’,’reconstructed signal’); xlabel(’Time’); ylabel (’Amplitude’); Phần ảo tín hiệu khôi phục clear all; close all; t = [-5:0.0001:5]; f = exp(-1i*(t.^2 + t)).*sin(0.6*pi*t) figure; plot( t,imag(f),’k’,t,(10^13)/2*imag(fInput(t)),’ r’); legend(’original’,’reconstructed signal’); xlabel(’Time’); ylabel (’Amplitude’); Ví dụ 4.2 Sử dụng chập với hàm trọng Gauss thiết kế lọc nhân clear all; close all; T = 1/20; t = [-10 : T : 10-T]; fInFunc = 2*exp(-0.2*t.^2) +exp(-1i*(3*t)).*exp(-(0.1)*(t-7).^2)+(0.5)*exp(1i*(t+8.6).^2); f = 2*exp(-0.2*t.^2) 130 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com chirpFunc1 =exp(-(0.3)*1i*(t.^2)); gFunc = fInFunc.*chirpFunc1; lFunc = (2/sqrt(-2*pi*1i))*sin(3.6*t)./t; convFunc = conv(gFunc, lFunc, ’same’); chirpFunc2 = sqrt((1)/(2*pi*1i))*exp((0.3)*1i*(t.^2)); f1OutFunc =10/201*convFunc.*chirpFunc2; figure; set(gcf,’color’,’w’); subplot(1, 2, 1); plot(t, real(fInFunc),’k’); title(’The real part of input signal’); xlabel(’Time’); ylabel (’Amplitude’); subplot(1, 2, 2); plot(t, real(f),’k’,t,real(f1OutFunc),’ r’); legend(’desired signal’,’output signal’); title(’The real parts of desired signal and output signal’); xlabel(’Time’); ylabel (’Amplitude’); Ví dụ 4.4 Sử dụng chập thiết kế lọc Gauss clear all; close all; T = 1/20; t = [-10 : T : 10-T]; fInFunc = 2*exp(-0.2*t.^2) +exp(-1i*(3*t)).*exp(-(0.1)*(t-7).^2)+(0.5)*exp(1i*(t+8.6).^2); f = 2*exp(-0.2*t.^2); chirpFunc1 =exp(-(0.3)*1i*(t.^2)); gFunc = fInFunc.*chirpFunc1; 131 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GFunc = (17)/sqrt((425)*pi)*exp((-0.68)*(t.^2)); convFunc2 = conv(gFunc, GFunc, ’same’); chirpFunc2 = sqrt(sqrt(34)/(10*pi*1i))*exp((0.3)*1i*(t.^2)); f2OutFunc = 20/86*convFunc2.*chirpFunc2; figure; set(gcf,’color’,’w’); subplot(1, 2, 1); plot(t, real(fInFunc),’k’); title(’The real part of input signal’); xlabel(’Time’); ylabel (’Amplitude’); subplot(1, 2, 2); plot(t, real(f),’k’,t,real(f2OutFunc),’ r’); legend(’desired signal’,’output signal’); title(’The real parts of desired signal and output signal’); xlabel(’Time’); ylabel (’Amplitude’); Ví dụ 4.5 Sử dụng chập với hàm trọng Gauss thiết kế lọc kép clear all; close all; T = 1/20; t = [-10 : T : 10-T]; fInFunc = 2*exp(-0.2*t.^2) +exp(-1i*(3*t)).*exp(-(0.1)*(t-7).^2)+(0.5)*exp(1i*(t+8.6).^2); f = 2*exp(-0.2*t.^2); chirpFunc1 =exp(-(0.3)*1i*(t.^2)); gFunc = fInFunc.*chirpFunc1; lFunc = (10/sqrt((-10)*1i*pi*sqrt(34)))*sin((0.72)*sqrt(34)*t)./t; GFunc = (17)/sqrt(425*pi)*exp((-0.68)*(t.^2)); 132 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com convFunc = conv(gFunc, lFunc, ’same’); chirpFunc2 = sqrt((sqrt(34)*1i)/(-10*pi))*exp((0.3)*1i*(t.^2)); convFunc3 = conv(convFunc, GFunc, ’same’); f3OutFunc = 1/339*convFunc3.*chirpFunc2; figure; set(gcf,’color’,’w’); subplot(2, 2, 1); plot(t, real(fInFunc),’k’); title(’The real part of input signal’); xlabel(’Time’); ylabel (’Amplitude’); subplot(2, 2, 2); plot(t,real(10/275*convFunc),’k’); title(’Convolution with multiplicative function’); xlabel(’Time’); ylabel (’Amplitude’); subplot(2, 2, 3); plot(t, real(1/390*convFunc3),’k’); title(’Convolution with Gaussian function’); xlabel(’Time’); ylabel (’Amplitude’); subplot(2, 2, 4); plot(t, real(f),’k’,t,real(f3OutFunc),’ r’); legend(’desired signal’,’output signal’); title(’The real parts of desired signal and output signal’); xlabel(’Time’); ylabel (’Amplitude’); 133 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ví dụ 4.3 WDF tín hiệu t=-10:0.1:10; f=-6:0.1:6 x=exp(-t.*t).*sin(1.5*t); n=exp(i.*(t+10).*(t+10)); tfr= mywigner(x.’); xin=x+n; tfr2= mywigner(xin.’); figure; set(gcf,’color’,’w’); subplot(1, 2, 1); imagesc(t,f,tfr); axis xy; colormap(flipud(jet)) title(’Wigner distribution of desired signal ’) xlabel(’Time’); ylabel(’Frequency’); subplot(1, 2, 2); imagesc(t,f,tfr2); axis xy; colormap(flipud(jet)) title(’Wigner distribution of observed signal ’) Ví dụ 4.3 Sử dụng chập với trọng Hermite để thiết kế lọc nhân clear all; close all; T = 1/20; t = [-10 : T : 10-T]; fInFunc = exp(-1*t.^2).*sin(1.5*t)+exp(1i*(t+10).^2); f = exp(-1*t.^2).*sin(1.5*t); 134 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com chirpFunc1 =exp(-1i*(t.^2)); gFunc = fInFunc.*chirpFunc1; lFunc = (2/sqrt(-6*pi*1i))*sin(6*t)./t; convFunc = conv(gFunc, lFunc, ’same’); chirpFunc2 = sqrt((3)/(2*pi*1i))*exp(1i*(t.^2)); f1OutFunc =10/201*convFunc.*chirpFunc2; figure; set(gcf,’color’,’w’); subplot(1, 2, 1); plot(t, real(fInFunc),’k’); title(’The real part of input signal’); xlabel(’Time’); ylabel (’Amplitude’); subplot(1, 2, 2); plot(t, real(f),’k’,t,real(f1OutFunc),’ r’); legend(’desired signal’,’output signal’); title(’The real parts of desired signal and output signal’); xlabel(’Time’); ylabel (’Amplitude’); 135 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... NHIÊN −−− −−− LẠI TIẾN MINH PHÉP CHẬP LIÊN KẾT VỚI BIẾN ĐỔI CHÍNH TẮC TUYẾN TÍNH BÙ VÀ BIẾN ĐỔI DẠNG HARTLEY CHÍNH TẮC Chun ngành: Tốn ứng dụng Mã số: 9460112.01 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG... luận án nghiên cứu tính chất tốn tử biến đổi tắc tuyến tính bù biến đổi dạng Hartley tắc Đáng ý hai trường hợp đặc biệt biến đổi dạng Hartley biến đổi Hartley phân thứ biến đổi Hartley tắc quan... bị chặn miền tắc tuyến tính bù từ phép chập Tiếp theo, luận án đề xuất cách thiết kế lọc dựa biến đổi tuyến tính tắc bù phép chập hai tín hiệu liên kết với biến đổi tắc tuyến tính bù Các lọc nghiên

Ngày đăng: 15/12/2022, 02:24

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN