1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bg physiological signal processing 08 time frequency2020c mk 9934

51 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 51
Dung lượng 862,44 KB

Nội dung

Nguyễn Công Phương PHYSIOLOGICAL SIGNAL PROCESSING Time – Frequency Representations Contents I Introduction II Introduction to Electrophysiology III Signals and Systems IV Fourier Analysis V Signal Sampling and Reconstruction VI The z-Transform VII.Discrete Filters VIII.Random Signals IX Time-Frequency Representations X Physiological Signal Processing s i tes.google.com/site/ncpdhbkhn Time – Frequency Representations The Spectrogram The Periodogram Spectral Analysis in Multiresolution s i tes.google.com/site/ncpdhbkhn The Spectrogram L−1 X [ k , n] =  w[ m] x[n + m]e− j ( 2π k / N )m m= s i tes.google.com/site/ncpdhbkhn Time – Frequency Representations The Spectrogram The Periodogram Spectral Analysis in Multiresolution s i tes.google.com/site/ncpdhbkhn The Periodogram I (ω ) = N −1  rˆ[ℓ]e − jω ℓ ℓ =− ( N −1) = N rˆ[0] = N N −1 − jωn x [ n ] e  n =0 N −1 x [ n] =  2π n= ≃ 2π  2π I  k =0  K K −1 s i tes.google.com/site/ncpdhbkhn π  π I (ω )dω −  2π k =  K K  2π I  k =0  K K −1  k  Time – Frequency Representations The Spectrogram The Periodogram a) Statistical Properties of the Periodogram b) The Modified Periodogram c) The Blackman – Tukey Method: Smoothing a Single Periodogram d) The Bartlett – Welch Method: Averaging Multiple Periodograms Spectral Analysis in Multiresolution s i tes.google.com/site/ncpdhbkhn I( ) I( ) I( ) I( ) Statistical Properties of the Periodogram (1) s i tes.google.com/site/ncpdhbkhn Time – Frequency Representations The Spectrogram The Periodogram a) Statistical Properties of the Periodogram i ii Mean of the Periodogram Variance & Covariance of the Periodogram b) The Modified Periodogram c) The Blackman – Tukey Method: Smoothing a Single Periodogram d) The Bartlett – Welch Method: Averaging Multiple Periodograms Spectral Analysis in Multiresolution s i tes.google.com/site/ncpdhbkhn Mean of the Periodogram (1) I (ω ) = N −1  rˆ[ℓ]e− jω ℓ ℓ =− ( N −1) → E[I (ω )] = N −1  E(rˆ[ℓ ])e− jω ℓ ℓ =− ( N −1) E(rˆ[ℓ ]) = − ℓ N r[ℓ ]  ℓ → E[ I (ω )] =  1 −  r [ℓ]e − jω ℓ N ℓ =−( N −1)  N −1 S (ω ) = ∞ − jωℓ r [ ℓ ] e  ℓ =−∞ → lim E[ I (ω )] = S (ω ) N →∞ s i tes.google.com/site/ncpdhbkhn 10 CWT (2) ∞ W y (τ , s ) =  y (τ )  t −τ ψ *  s s −∞ y (t ) = Cψ ∞ ∞   W (τ , s ) y −∞ −∞ Cψ = 2π ∞  −∞ Ψ (ω ) ω   dt   t −τ  ψ  s  s  ψ s,τ (t ) =  t −τ ψ s  s  ds  dτ  s dω SC y (τ , s ) = Wy (τ , s) s i tes.google.com/site/ncpdhbkhn 37 CWT (3) Ex ≤ t ≤ 0.5  ψ (t ) =  −1, 0.5 ≤ t ≤  0, otherwise  Ψ (ω ) = je − jω / sin (ω / 4) (ω / 4) 2π | | The Haar wavelet  1, s i tes.google.com/site/ncpdhbkhn 38 CWT (4) Ex (t/0.5) [(t - 0.5)/0.5] (t - 1) (t) The Haar wavelet ψ s,τ (t ) =  t −τ  ψ  s  s  s i tes.google.com/site/ncpdhbkhn 39 CWT (5) Ex The Mexican hat d − x2 / 2 − x2 / ψ (t ) = − e = (1 − x ) e dx 2π | | Ψ (ω ) = ωe −ω /2 s i tes.google.com/site/ncpdhbkhn 40 CWT (6) Ex The Mexican hat s i tes.google.com/site/ncpdhbkhn ψ s,τ (t ) =  t −τ  ψ  s  s  41 CWT (7) Ex s i tes.google.com/site/ncpdhbkhn 42 CWT (8) Ex s i tes.google.com/site/ncpdhbkhn 43 CWT (9) Ex s i tes.google.com/site/ncpdhbkhn 44 CWT (10) Ex s i tes.google.com/site/ncpdhbkhn 45 Time – Frequency Representations The Spectrogram The Periodogram Spectral Analysis in Multiresolution a) The Short – Time Fourier Transform (STFT) b) The Continuous Wavelet Transform (CWT) c) The Discrete Wavelet Transform (DWT) s i tes.google.com/site/ncpdhbkhn 46 DWT (1) http://ataspinar.com/2018/12/21/a-guide-for-usingthe-wavelet-transform-in-machine-learning / s i tes.google.com/site/ncpdhbkhn 47 c DWT (2) Wϕ [ j0 , k ] = N Wψ [ j, k ] = N N −1  x[n]ϕ n= [ n], (for all k ) [ n], (for all k and all j > j0 ) j0 , k N −1  x[n]ψ n= j, k x[ n] = Wϕ [ j0 , k ]ϕ j0 ,k [ n]  N k ∞ + Wψ [ j , k ]ψ j ,k [ n],   N j = j0 k s i tes.google.com/site/ncpdhbkhn ( n = 0,1, , N − 1] 48 DWT (3) Ex ϕ0,0 [ n] = {1,1,1,1}; ψ 0,0 [n] = {1,1, −1, −1}; ψ 1,0 [n] = { 2, − 2, 0,0}; ψ 1,1[ n] = {0, 0, 2, − 2}; x[n] = {1, 2,3, 4} Wϕ [0,0] =  x[n]ϕ0,0 [ n] = (1×1 + ×1 + ×1 + ×1) = n= Wψ [0, 0] =  x[n]ψ 0,0 [n] = [1×1 + ×1 + 3( −1) + 4( −1)] = −2 n =0 Wψ [1,0] =  x[ n]ψ 0,0 [ n] = [1× + 2(− 2) + × + × 0] = −0.7071 n =0 Wψ [1,1] =  x[n ]ψ 0,0 [n ] = [1 × + × + × + 4( − 2)] = −0.7071 n= s i tes.google.com/site/ncpdhbkhn 49 DWT (4) Ex ϕ0,0 [ n] = {1,1,1,1}; ψ 0,0 [n ] = {1,1, −1, −1}; ψ 1,0 [n ] = { 2, − 2, 0,0}; ψ 1,1[ n] = {0, 0, 2, − 2}; x[n ] = {1, 2,3, 4} Wϕ [0,0] = 5; Wψ [0, 0] = −2; Wψ [1, 0] = −0.7071; Wψ [1,1] = −0.7071   1 2   1 1 −1 − 0   1   −1     −2   =     − 0,7071     − 0,7071 −      1    1     −2   2 1 −  =    1 −1   −0, 7071          −0, 7071   − 2 1 −1 s i tes.google.com/site/ncpdhbkhn 50 DWT (5) Ex s i tes.google.com/site/ncpdhbkhn 51

Ngày đăng: 12/12/2022, 21:47