1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bg physiological signal processing 04 signal sampling and reconstruction2020mk 7993

30 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 276,22 KB

Nội dung

Nguyễn Công Phương PHYSIOLOGICAL SIGNAL PROCESSING Signal Sampling and Reconstruction Contents I Introduction II Introduction to Electrophysiology III Signals and Systems IV Fourier Analysis V Signal Sampling and Reconstruction VI The z-Transform VII.Discrete Filters VIII.Random Signals IX Time-Frequency Representation of Physiological Signals X Physiological Signal Processing s i tes.google.com/site/ncpdhbkhn Signal Sampling and Reconstruction • Periodic Sampling of Continuous – Time Signals • Frequency Analysis of Periodic Sampling • Reconstruction of Continuous – Time Signals from Samples • Discrete Processing of Continuous – Time Signals s i tes.google.com/site/ncpdhbkhn Signal Sampling and Reconstruction Analog input Sensor Analog Pre-processing ADC DSP DAC Analog Post-processing s i tes.google.com/site/ncpdhbkhn Analog output Periodic Sampling of Continuous – Time Signals x c (t ) Ideal analog – digital converter Fs = 1/T x[n ] = x c (t ) t = nT = xc (nT ), x[n ] = xc (nT ) −∞ 2Ω H −Ω s −ΩH X ( e jΩT ) Nyquist rate 2Ω H ΩH Nyquist frequency FH π T Fs Folding frequency s i tes.google.com/site/ncpdhbkhn 2π T Ω [rad/s] Fs Sampling frequency Frequency Analysis of Periodic Sampling (4) T Ω s > 2Ω H Guard band −Ω s Ω s = 2π Fs Guard band −ΩH TX ( e jΩT ), Ω ≤ Ω s / X c ( jΩ) =  Ω > Ωs / 0, X ( e jΩT ) −Ω H ΩH Ω s − ΩH Ω s Ω = 2π F X c ( jΩ ) Ω H = 2π FH ΩH Ω = 2π F Let xc(t) be a continuous – time bandlimited signal with Fourier transform X c ( jΩ) = for Ω > Ω H Then xc(t) can be uniquely determined by its samples x[n] = xc(nT), where n = 0, ±1, ±2, …, if the sampling frequency Ωs satisfies the condition 2π Ωs = ≥ 2Ω H T s i tes.google.com/site/ncpdhbkhn 10 Reconstruction of Continuous – Time Signals from Samples (5) ∞ xc ( t ) Continuous – time Fourier Transform Pairs 2π  ∞ −∞ X c ( j Ω)e jΩ td Ω ∞  x[ n]e X (e jΩ T ) = − jΩTn n =−∞ x[n ] Discrete – time Fourier Transform Pairs x [n] = 2π π /T π − /T TX (e jΩT )e jΩ Tn d Ω s i tes.google.com/site/ncpdhbkhn X ( e jΩT ) Normalized Frequency Sampling Reconstruction x c (t ) = X c ( jΩ) Frequency Discrete – Time −∞ Aliasing Lowpass – Filtering Continuous – Time X c ( j Ω) =  x c (t )e − jΩt dt 16 Reconstruction of Continuous – Time Signals from Samples (6) x c (t ) X c ( j 2π F ) Ideal analog – digital converter Fs = 1/T x[n ] X (e j 2π FT ) Ideal digital – analog converter Fs = 1/T y r (t ) Yc ( j2π F ) -0 -0 -0 -0 s i tes.google.com/site/ncpdhbkhn 17 Reconstruction of Continuous – Time Signals from Samples (7) Spectrum of x (t) Ex c xc (t) = cos(2π F0t ) e j 2π F0t + e− j 2π F0t x c ( t) = X (e = T j 2π F0T )  X [ j 2π ( F − kF )] c GBL ( j2π F ) T , = 0, F0 F ≤ Fs / F > Fs / s F GBL ( j 2π F ) 2T F − s − Fs Fs Fs T ∞ k =−∞ − F0 − Fs F0 < − F0 Fs F0 F Fs Spectrum of xr(t) No aliasing − Fs X r ( j 2π F0 ) = Gr ( j 2π F ) X (e j 2π F0T ) − F0 s i tes.google.com/site/ncpdhbkhn F0 < F0 Fs Fs 18 F Reconstruction of Continuous – Time Signals from Samples (8) Spectrum of x (t) Ex c xc (t) = cos(2π F0t ) e j 2π F0t + e− j 2π F0t x c ( t) = X (e = T j 2π F0T )  X [ j 2π ( F c − kFs )] GBL ( j2π F ) T , = 0, F ≤ Fs / F > Fs / − GBL ( j 2π F ) 2T Fs F F0 Fs T ∞ k =−∞ − Fs − F0 Fs < F0 < Fs Fs − Fs −F0 F F0 Fs Spectrum of xr(t) Aliasing − Fs X r ( j 2π F0 ) = Gr ( j 2π F ) X (e j 2π F0T ) −( Fs − F0 ) F0 < Fs − F0 Fs Fs F xr (t ) = cos[ 2π ( Fs − F0 )t ] ≠ xc (t) s i tes.google.com/site/ncpdhbkhn 19 Ex Reconstruction of Continuous – Time Signals from Samples (9) xc (t) = cos(2π F0t ) F0 = Fs / + ∆F , → xc (t) = cos[2π ( Fs / + ∆F )t ] ∆F ≤ Fs / xr (t ) = cos[ 2π ( Fs − F0 )t ] Fapparent = Fs − F0 = Fs / − ∆F → xr (t ) = cos 2(π Fa t ) = cos[2π ( Fs / − ∆F )t ] s i tes.google.com/site/ncpdhbkhn 20 Reconstruction of Continuous – Time Signals from Samples (10) xc (t) = e −At xc(t) Ex 2A X c ( jΩ ) = A + Ω2 A>0 0.5 -10 -8 -6 -4 -2 t 10 -8 -6 -4 -2 Ω 10 -8 -6 -4 -2 Ω 10 x[ n] = xc (nT ) = e = (e − AT −A n T X c(jΩ) 0.4 0.2 -10 ) =a , n n a = e− AT jω X(e ) X (e ) =  x[n]e − j ωn Sum Xc (jΩ ) shifted 2π to left & scaled 1/T n =−∞ − a2 = , − 2a cos(ω ) + a Ω ω= Fs -10 yr(t) jω ∞ X (jΩ ) scaled 1/T c 0.5 -10 Xc (jΩ ) shifted 2π to right & scaled 1/ T -8 -6 -4 s i tes.google.com/site/ncpdhbkhn -2 t 10 21 Signal Sampling and Reconstruction • Periodic Sampling of Continuous – Time Signals • Frequency Analysis of Periodic Sampling • Reconstruction of Continuous – Time Signals from Samples • Discrete Processing of Continuous – Time Signals s i tes.google.com/site/ncpdhbkhn 22 Discrete – Time Processing of Continuous – Time Signals (1) LTI xc ( t ) Ideal ADC x[n ] Discrete – Time y[ n] Ideal DAC System jω Fs = 1/T X c ( jΩ) Fs = 1/T X ( e jω ) Y ( e ) h[n] H(ejω) xc ( t ) T 2T 3T X c ( jΩ) Ω   ∞ 2π   X (e ) =  X c  j  Ω − k  T  T k =−∞   T x[n ] = xc (t ) t =nT = xc (nT ) Yr ( jΩ) −2π FH 2π FH t yr (t ) jΩT t − 2π T s i tes.google.com/site/ncpdhbkhn −2π FH 2π FH 2π T Ω 23 Discrete – Time Processing of Continuous – Time Signals (2) LTI xc ( t ) Ideal ADC x[n ] Discrete – Time y[ n] Ideal DAC System jω Fs = 1/T X c ( jΩ) Fs = 1/T X ( e jω ) Y ( e ) h[n] H(ejω) T ⋯ n −2π ⋯ H (e j ω ) ωc ωH 2π ω 2π ω Y (e jω ) = H (e jω ) X (e jω ) T y[ n] = h[n] * x[n] ⋯ −ωH −ωc Yr ( jΩ) X (e jω ) x[n] ⋯ yr (t ) n −2π s i tes.google.com/site/ncpdhbkhn −ωc ωc 24 Discrete – Time Processing of Continuous – Time Signals (3) LTI xc ( t ) Ideal ADC x[n ] Discrete – Time y[ n] Ideal DAC System jω Fs = 1/T X c ( jΩ) Fs = 1/T X ( e jω ) Y ( e ) h[n] H(ejω) T 2T 3T Yr ( jΩ) Gr ( jΩ) T yr (nT ) = y[ n] yr (t ) Y (e jΩT ) T t 2π − T − π −Ω c Ω c π T T 2π T Ω Yr ( jΩ ) = G r ( jΩ )Y (e jΩT ) yr (t ) t s i tes.google.com/site/ncpdhbkhn −Ω c Ω c Ω 25 Discrete – Time Processing of Continuous – Time Signals (4) LTI xc ( t ) Ideal ADC x[n ] Discrete – Time y[ n] Ideal DAC System jω Fs = 1/T X c ( jΩ) Fs = 1/T X ( e jω ) Y ( e ) h[n] H(ejω) yr (t ) Yr ( jΩ) H (e jω ) X (e jΩT ∞   2π ) =  Xc  j  Ω − T k =−∞   T Y (e jω ) = H (e jω ) X (e jω ) Yr ( jΩ ) = Gr ( jΩ)Y (e jΩT )  k   T Gr ( jΩ) Y (e jΩT ) T 2π − T → Yr ( j Ω) = G BL ( jΩ) H ( e j ΩT − ) T π −Ω c Ω c π T T   2π X j Ω −  c   T k =−∞    H (e jΩT ) X c ( jΩ), = 0, s i tes.google.com/site/ncpdhbkhn ∞ 2π T Ω  k   Ω ≤π /T Ω >π /T 26 Discrete – Time Processing of Continuous – Time Signals (5) LTI xc ( t ) Ideal ADC x[n ] Discrete – Time y[ n] Ideal DAC System jω Fs = 1/T X c ( jΩ) Fs = 1/T X ( e jω ) Y ( e ) h[n] H(ejω)  H (e jΩT ) X c ( jΩ ), Yr ( jΩ) =  0,  H (e jΩT ), H effective ( jΩ) =  0, yr (t ) Yr ( jΩ) Ω ≤π /T Ω >π /T Ω ≤π /T Ω >π /T → Yr ( jΩ) = H effective ( jΩ) X c ( jΩ) s i tes.google.com/site/ncpdhbkhn 27 Ex yc (t ) = Discrete – Time Processing of Continuous – Time Signals (6) dxc (t ) Y ( j Ω) → Yc ( jΩ) = jΩX ( jΩ) → H c ( j Ω) = = jΩ dt X ( j Ω)  j Ω, H c ( j Ω) =  0, Ω ≤ ΩH otherwise Ωs =2Ω H hc (t )  → h[ n] = hc ( nT ) jω → H (e ) ω =ΩT ∞ 2π   =  H c  jΩ − j k , T k =−∞  T  T= π ΩH jω → H ( e ) = H c ( jω / T ) = , ω ≤ π T T jω → h[ n] = 2π 0, j ω    jωn ω e d =  cos(π n ) − π  T   nT , π s i tes.google.com/site/ncpdhbkhn n=0 n≠0 28 Ex Discrete – Time Processing of Continuous – Time Signals (7) Yc ( s) Ω2n H c (s) = = X c ( s) s2 + 2ζΩ n s + Ω 2n Ωn If < ζ < → hc (t) = e −ζΩnt sin  Ω n − ζ t  u(t)   1−ζ ( → h[n] = hc (nT ) = = → H ( z) = = ) ( Ωn ) e −ζΩnnT sin  Ω n − ζ nT  u(n)   1−ζ Ωn 1−ζ Ωn 1−ζ ( e−ζΩnT ∞ Ωn 1−ζ ( e n= × ) n ( ) sin  ΩnT − ζ n  u( n)   − ζΩ nT ) sin (Ω T n n ( ) − ζ n z − n  ) e− ζΩnT sin ΩnT − ζ z −1 ( ) − 2e− ζΩnT cos ΩnT − ζ z −1 + e−2ζΩn T z −2 s i tes.google.com/site/ncpdhbkhn 29 Ex Discrete – Time Processing of Continuous – Time Signals (8) Yc ( s) Ω2n H c (s) = = X c ( s) s2 + 2ζΩ n s + Ω 2n Ωn If < ζ < → hc ( t ) = e −ζΩnt sin  Ω n − ζ t  u( t )   1−ζ ( h[ n] = H ( z) = → y[ n] = Ωn 1−ζ Ωn 1−ζ Ωn 1−ζ (e × − ζΩ nT ) ) sin (Ω T n n ) − ζ n  u(n )  ( ) e− ζΩnT sin Ω nT − ζ z −1 ( ) − 2e− ζΩn T cos Ω nT − ζ z −1 + e−2ζΩn T z −2 ( ) e− ζΩn T sin Ω nT − ζ x[n − 1] ( ) + 2e −ζΩnT cos ΩnT − ζ y[ n − 1] − e−2ζΩnT y[ n − 2] s i tes.google.com/site/ncpdhbkhn 30 ... III Signals and Systems IV Fourier Analysis V Signal Sampling and Reconstruction VI The z-Transform VII.Discrete Filters VIII.Random Signals IX Time-Frequency Representation of Physiological Signals... Signals X Physiological Signal Processing s i tes.google.com/site/ncpdhbkhn Signal Sampling and Reconstruction • Periodic Sampling of Continuous – Time Signals • Frequency Analysis of Periodic Sampling. .. Continuous – Time Signals from Samples • Discrete Processing of Continuous – Time Signals s i tes.google.com/site/ncpdhbkhn Signal Sampling and Reconstruction Analog input Sensor Analog Pre-processing

Ngày đăng: 12/12/2022, 21:45