1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bg physiological signal processing 05 z transform2020psp mk 9511

24 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 269,5 KB

Nội dung

Nguyễn Công Phương PHYSIOLOGICAL SIGNAL PROCESSING The z – Transform Contents I Introduction II Introduction to Electrophysiology III Signals and Systems IV Fourier Analysis V Signal Sampling and Reconstruction VI The z – Transform VII.Discrete Filters VIII.Random Signals IX Time-Frequency Representation of Physiological Signals X Physiological Signal Processing s i tes.google.com/site/ncpdhbkhn The z – Transform The z – Transform The Inverse z – Transform Properties of the z – Transform s i tes.google.com/site/ncpdhbkhn The z – Transform (1) x[ n] = ∞  x[k ]δ [n − k ] ֏ y[ n] = k =−∞ x[ n] = z , for all n z = Re( z ) + j Im( z ) n ֏ y[n] = ∞ ∞ k =−∞ k =−∞  x[k ]h[n − k ] =  h[k ]x[n − k ] ∞  h[k ]z k =−∞ n −k  ∞  =   h[k ] z − k  z n ,  k =−∞  H ( z) = ∞  h[k ]z for all n −k k =−∞ → y[ n ] = H ( z ) z n , x[ n ] =  ck zkn , k for all n ֏ y[ n ] =  ck H ( z k ) zkn , for all n for all n k s i tes.google.com/site/ncpdhbkhn The z – Transform (2) X ( z) = ∞  Im( z) z = e jω z – plane x[ n ]z − n ω n =−∞ • ROC (region of convergence): the set of values of z for which X(z) converges • Zeros: the values of z for which X(z) = • Poles: the values of z for which X(z) is infinite s i tes.google.com/site/ncpdhbkhn Re( z ) Unit circle Im( z) z – plane z = re jω r sin ω r ω Re( z ) r cos ω The z – Transform (3) Ex Given x1[n] = {1 5}, x2 [n] = {1 5} ↑ ↑ Determine their z – transforms? X ( z) = ∞  x[ n ] z − n n =−∞ −4 X ( z ) = x1[0]z + x1[1] z −1 + x1[2]z −2 + x1[3]z −3 + x1[4] z = + z − + 3z −2 + z −3 + z −4 ROC: entire z – plane except z = X ( z ) = x2[ −2]z − ( −2 ) + x2 [−1] z − ( −1) + x2[0]z + x2 [1]z −1 + x2[ 2]z −2 = 1z + z + 3z + z −1 + 5z − = z2 + z + + z −1 + z −2 ROC: entire z – plane except z = & z = ∞ s i tes.google.com/site/ncpdhbkhn The z – Transform (4) Ex x1[n] = δ [n], x2 [n] = δ [n − k ], x3[n ] = δ [n + k ], k > Determine their z – transforms? X (z) = ∞  x[n]z − n n =−∞ X ( z ) = + x1[− 1]z − ( −1) + x1[0]z + x1[1]z −1 + x1[2]z −2 + = + z − ( − 1) + 1z + z −1 + z −2 + = ROC: entire z – plane s i tes.google.com/site/ncpdhbkhn The z – Transform (5) Ex 1, 0, Find the z – transform of the square – pulse sequence x[ n] =  X (z) = ∞  x[n]z −n 0≤n≤M otherwise M = 1z −n n= n =−∞ − AN +1 + A + A + A + + A = , if A < 1− A Im N − z − ( M +1) → X ( z) = − z −1 z −1 Re 1 ROC: |z| > s i tes.google.com/site/ncpdhbkhn ROC The z – Transform (6) Ex Find the z – transform of the sequence x[n] = anu[n]? X (z) = ∞  n =−∞ ∞ ∞ n= n =0 x[n]z − n =  a n z − n =  (az − )n + A + A2 + A3 + = , if A < 1− A → X ( z) = az −1 < → z > a s i tes.google.com/site/ncpdhbkhn z = − az − z − a Zero: z = Pole: z = a ROC: |z| > a The z – Transform (7) Ex Find the z – transform of the sequence x[n] = anu[n]? X (z) = z = − az −1 z − a Zero: z = 0; pole: z = a; ROC: |z| > a 0< a1 a =1 … … … … … … n n Im a n Im Re Im Re 0 ROC ROC s i tes.google.com/site/ncpdhbkhn a Re ROC 10 The z – Transform (8) Ex n≥0 0, Find the z – transform of the sequence x[ n] = −a u[ −n − 1] =  n −a , n X (z) = ∞  x[n]z n =−∞ −n −1 =−a z n −n n=−∞ −1 = −  (az ) −1 n n a s i tes.google.com/site/ncpdhbkhn 11 The z – Transform (9) Ex n a , Find the z – transform of the sequence x[ n] =  −bn , X (z) = ∞  n =−∞ x[n]z −n −1 =−b z n =−∞ n −n −1 n a →  a n z − n = z−a n =0 −1 n≥0 n −n z z → X ( z) = + z−b z−a Zero: z = Pole: z = a, b ROC: a < |z| < b s i tes.google.com/site/ncpdhbkhn 12 The z – Transform (10) a … … … … n … n n … b Im a Im Re Re ROC ROC: |z| > a Im 0 b ROC ROC: |z| < b s i tes.google.com/site/ncpdhbkhn a Re b ROC ROC: a < |z| < b 13 The z – Transform (11) Ex Find the z – transform of the sequence x[n] = rn (cos ω0n)u[n ], r > 0, ≤ ω0 ≤ 2π X (z) = ∞  ∞ n −n x[n]z − n =  r (cos ω0n) z n =−∞ n =0 jθ − jθ e = cos θ + j sin θ → cos θ = e + e 2 jθ ∞ ∞ jω0 − n → X ( z ) =  (re z ) +  (re − jω0 z −1 )n n= n =0 e jθ = cos θ + j sin θ = cos θ + sin2 θ = re jω0 z −1 < & re − jω0 z −1 < → rz −1 < → z > r → X ( z) = 1 1 + , ROC : z > r jω0 − − jω0 −1 − re z − re z s i tes.google.com/site/ncpdhbkhn 14 The z – Transform (12) Ex Find the z – transform of the sequence x[n] = rn (cos ω0n)u[n ], r > 0, ≤ ω0 ≤ 2π 1 1 X (z) = + jω0 − − re z − re − jω0 z −1 (1 − re − jω0 z −1 ) + (1 − re jω0 z −1 ) − rz −1(e − jω0 + e jω0 ) = = jω0 − − jω0 −1 2(1 − re z )(1 − re z ) 2[1 − 2(r cos ω0 ) z −1 + r z −2 ] e jθ = cos θ + j sin θ → e jθ + e − jθ = cos θ Im p1 r Re z1 z2 − r (cos ω0 ) z −1 → X ( z) = − 2( r cos ω0 ) z −1 + r z −2 z ( z − r cos ω0 ) = ( z − re jω0 )( z − re− jω0 ) Zero: z1 = 0; z2 = rcosω0 p2 ROC Pole : p1 = re jω0 ; p2 = re − jω0 s i tes.google.com/site/ncpdhbkhn ROC: |z| > r 15 The z – Transform (13) • ROC – There is no pole inside a ROC – The ROC is a connected region – For finite duration sequences, the ROC is the entire z – plane, sometimes except for z = and z=∞ • The z – transform – We need both X(z) and its ROC – X(z) is not defined outside the ROC s i tes.google.com/site/ncpdhbkhn 16 The z – Transform (14) s i tes.google.com/site/ncpdhbkhn 17 The z – Transform The z – Transform The Inverse z – Transform Properties of the z – Transform s i tes.google.com/site/ncpdhbkhn 18 The Inverse z – Transform (1) x[n] = 2π j  n −1 C X ( z ) z dz b0 + b1 z −1 + b2 z −2 + bN −1 z − ( N −1) X ( z) = + a1 z −1 + a2 z −2 + a N z − N s i tes.google.com/site/ncpdhbkhn 19 The Inverse z – Transform (2) Ex 1 + z −1 X ( z) = (1 − z −1 )(1 − 0.2 z −1) + z −1 K1 K2 = + (1 − z −1)(1 − 0.2 z −1) − z− 1 − 0.2 z −1 → + z −1 = K1(1 − 0.2 z −1 ) + K2 (1 − z −1 ) z = → + = K1 (1 − 0.2 × 1) + K (1 − 1) → K1 = 2.5 z = 0.2 → + = K1 (1 − 0.2 × 5) + K (1 − 5) → K2 = − 1.5 → X ( z) = s i tes.google.com/site/ncpdhbkhn 1.5 − − z −1 − 0.2 z −1 20 The Inverse z – Transform (3) Ex 1 + z −1 5 X ( z) = = − (1 − z −1 )(1 − 0.2 z −1 ) − z −1 − 0.2 z −1  2.5 1 − z −1 → 5u[ n ] a u[n ] → , ROC : z > a −1 − az →  −1.5 → −1 5( 0.2 )n u[ n] If z > 1 − 0.2 z − n → x[n ] = 5u[n ] − 5(0.2 )n u[n]   − z − → −2.5u[ −n − 1] −a u[− n − 1] → , ROC : z < a −1 − az →  −1 → 1.5(0 2) n u[ − n − 1] If z <  − 0.2 z −1 n → x[ n ] = −2 5u[ − n − 1] + 1.5( 0.2 )n u[ −n − 1]  2.5 1 − z −1 → −2.5u[ −n − 1] If < z < →   −1.5 → −1 5( 0.2 )n u[ n] 1 − 0.2 z − → x[ n ] = −2 5u[ − n − 1] − 1.5( 0.2 )n u[ n] s i tes.google.com/site/ncpdhbkhn 21 The Inverse z – Transform (4) Ex + z −1 X ( z) = − z −1 + 2.5z −2 − z −1 + z −2 = → p1,2 = ± j1.5 = 1.58e ± j1 25 + z −1 K1 K2 = + − z −1 + 2.5z −2 − p1z −1 − p2 z −1 → + z −1 = K1(1 − p2 z− 1) + K (1 − p1z −1 ) z = p1 → + / p1 = K1(1 − p2 / p1 ) + K2 (1 − 1) → K1 = − j 0.67 = 0.83e − j 93 z = p2 → + / p = K (1 − 1) + K (1 − p1 / p ) → K = + j 67 = 83e j 0.93 → x[n] = 0.83e − j 0.93 (1.58e j1.25 )n u[n] + 0.83e j 0.93 (1.58e − j1.25 )n u[n ] = 0.83(1 58 )n ( e j (1 25 n −0 93) + e − j (1.25 n−0 93 ) ) e j (1.25n −0.93) + e− j (1.25n− 0.93) = cos(1.25n − 0.93) → x[ n ] = 1.67(1 58) n cos(1.25n − 93)u [n ] = 67 (1.58) n cos(1 25 n − 53 13 o )u[ n ] s i tes.google.com/site/ncpdhbkhn 22 The z – Transform The z – Transform The Inverse z – Transform Properties of the z – Transform s i tes.google.com/site/ncpdhbkhn 23 Properties of the z – Transform s i tes.google.com/site/ncpdhbkhn 24 ... + = , if A < 1− A z Zero: z = = − a − 1z z − a Pole: z = a a −1 z < → z < a ROC: |z| < a → X ( z ) = −a − 1z x[n] = a nu[n] → X ( z) = z z−a Zero: z = 0; pole: z = a; ROC: |z| > a s i tes.google.com/site/ncpdhbkhn... = X ( z ) = x2[ −2 ]z − ( −2 ) + x2 [−1] z − ( −1) + x2[0 ]z + x2 [1 ]z −1 + x2[ 2 ]z −2 = 1z + z + 3z + z −1 + 5z − = z2 + z + + z −1 + z −2 ROC: entire z – plane except z = & z = ∞ s i tes.google.com/site/ncpdhbkhn... their z – transforms? X ( z) = ∞  x[ n ] z − n n =−∞ −4 X ( z ) = x1[0 ]z + x1[1] z −1 + x1[2 ]z −2 + x1[3 ]z −3 + x1[4] z = + z − + 3z −2 + z −3 + z −4 ROC: entire z – plane except z = X ( z ) =

Ngày đăng: 12/12/2022, 21:45