1. Trang chủ
  2. » Thể loại khác

Xây dựng thuật toán điều khiển thích nghi hệ truyền động bmá ứng dụng điều khiển mờ

7 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 253,47 KB

Nội dung

Tuyen tap bao cao khoa hgc Hgi nghi Khoa hoc ky thuat Do ludng toan qudc lan thfl IV Hd Ndi, 11 -2005 J XAY DliNG THUAT TOAN DIEU KHIEN THICH NGHI HE TRUYEN D d N G BAM O N G D U N G D I E U KHIEN M d Duang Qudc Tudn, Nguyen Tdng Hgc vien ky thudt qudn sif Cudng Tdm tdt: Bdi bdo trinh bdy ke't qud nghien cdu phuang phdp dieu khien thich nghi tiem can tdi Uu he truyin dgng hdm dng dung ly thuye't dieu khien md Thudt todn xdy difng tren ca sd ke't hgp thugt todn td'i uu vd thudt todn diiu khien md Ket qud md phdng thifc nghiem khang dinh bg diiu khien tong hgp theo thudt todn thich nghi md tiem cdn td'i ifu co ddc tinh ddng hgc tdt, ddp idig yeu cdu chd't lugiig cua he truyin ddng bdm Abstract: The paper presents the research results of constructing adaptive algorithm for regulation Rotor Flux of AC Motor with vector control The adoptive control algorithm based on the using combinadon of optimal and fuzzy control approoachs The paper also describers simulative results on PC in Matlab-Sinudink enviroment for adapdve control algorithm, and these results emphasis the right method of synthesising the Rotor Flux control channel I DAT VAN DE Hfi TDB la mdt hfi thd'ng phflc tap, cd chfla cdc phdn tfl phi tuye'n hoac cdc tham so cua hfi thay ddi qua trinh lam vific Cdc phuong phdp tdng hgp bfi didu khien kinh didn ddu dua tren yfiu cdu nhdn dang chinh xac mfi hinh ddi tugng theo mdt sd gia thiet dua ldm hfi quy chie'u Do vdy kfi't qua tdng hop cha'p nhan cd su sai lech so vdi mfi hmh thuc tfi' Mdt phuong phdp mdi cho phep tdng hgp cac bd difiu khidn ma khdng ddi boi nhdn dang chinh xdc md hinh dfi'i tugng, dd la ly thuyfi't didu khidn md [3] Tfl quan nifim coi md hinh ddi tugng gdm Phdn tfl cdng sud't-He co hgc la md hinh khdng ro, ta di tdi xdy dung mfit phuong phap mdi tdng hgp bd didu khien thfch nghi hfi truydn ddng bam trfin co sd ket hgp Ihudt todn didu khidn td'i uu va didu khien md (goi tdt la thudt todn thfch nghi md tifim cdn td'i uu) Bg difiu khien tdng hgp theo thuat todn cd kha ndng thich nghi vdi md hinh dd'i tugng, cd kha nang bii khfl anh hudng ciia nhifiu bat djnh va su bifi'n ddi tham sd ciia ddi tugng II XAY DUNG THUAT T O A N DIEU KHIEN THICH NGHI MCi HE TDB Xet md hinh bd didu khidn md Mamdani hai bie'n vao va mdt bifin nhu hinh XXXX Hinh 1: Mo hinh bp dieu khien mfl Hai bidn vat ly rd ddu vao la e (sai Ifich cua bien ddu ra) va ^ (dao ham sai lech) Mdi bidn vdt Iy rd dugc md boa vdi p mflc ngfin ngfl ( p bifi'n md), ta se cd p" ludt hgp thdnh Ham lifin thufic bifin md ddu vao chgn bam Gauss; Ham lien thudc bifi'n md ddu chgn dang ham Singleton Chgn phuong phap giai md theo dd cao Sau giai md, tfn hifiu didu khidn u tai thdi didm t flng vdi cap gid tri ciia vec to ddu vao (e,e\ cdng thflc [3]: I«, E.i'.M) n dugc ti'nh theo =/'f(e) M) i-l (1) Trong dtf u, la diSu khi^n dSu img vtfi luat thil r, fi j {e^ ) la dtf phu thutfc ciia •''* c^c bie'n mcf theo gia tn bitfn vat ly vao e^ tai thtfi di^m /.- k la chi stf' bie'n vat ly d^u vao (k=l,2); j = \- p la stf bie'n mtf ciia mtfi gia tri vat ly ro d^u vao NSu chpn stf bitfn mtf p = vtfi miic ngtfn ngtt [NM, NS, ZE, PS, PM] (am nhiSu, am ft, khtfng, duong ft, duong nhi^u), thi vec to ^(e) xac dinh vtfi 25 phSn: ile) = l%),%'kU"ki (2) Trong dd mdi phdn t^ie) cd gia tri {j = l-5) (3) Nfi'u hifiu chinh X dd tfn hifiu ddu u cua bd didu khidn md tifim can tdi mfit ludt didu khidn td'i tm u' nao dd da xac djnh, thi chiing ta da hifin thuc dugc qui ludt td'i uu nhd bd didu khidn md md khdng phai nhdn dang trang thdi dd'i tugng va khdng phai giai hfi phuong trinh vi phdn nhidu bidn phflc tap Quy ludt didu khidn thich nghi md tifim cdn tfi'i tm: u=[Xf.[«e)l = u* (4) Xet ddi tflOng la hfi thdng bam cd phflong trinh vi phdn ldng quat dang mfit ddu vao vd mdt ddu ra: r Xf=fi{^,8)+g„(x\ i=l-n \y = x ^ (5) X =[xi, X2 „Xn]- Vec to trang thai; u : Dai lugng didu khidn; 6: Tac ddng nhifiu / , g„: Hdm phi tuyfi'n theo x vd 5; y: Bifi'n didu khidn ddu la vi tri gdc dd'i tugng Chgn phifi'm ham muc tifiu didu khidn: ^ , = ] H f e ) +lf''fe)h s:[e,.] 716 Sai Ifich e la ham cua bien trang thai va thdi gian Ludt hifiu chinh thich nghi md tifim cdn tdi uu xac dinh tfl tifiu chuan dn djnh Lyapunov nhu sau [1]: X = -meJUe_)?^I^gJx) dx„ Dieu kien: ^^lll^ (^^^0 dx„ (6) Cdng thflc (6) la thudt toan thfch nghi tifim can tdi uu thoa man phie'm ham J(e) ITieo thuat toan (6), ta co thd tdng hgp bg dieu khifin thfch nghi md tifim can tdi Uu cho ddi tugng dgng hgc la hfi TDB su dung DCXCBP vdi bd didu khifin vec to Ndu g„(x) = b; T(e) = e + CK e thi mdt thuat todn thich nghi don gian nhd't se cd dang [I]: ^ = -ya(,e + ae)4{e) (7) Theo thuat toan trfin, ludt hieu chinh thfch nghi chi phu thugc vao phiem ham muc tieu didu khidn, vao tham sd bg difiu khidn md ^(e), khdng phu thudc vao tham ii6 md hinh dd'i tugng Tai moi thdi didm flng vdi tap gid tri ciia cac bie'n vao, ta se cd gia tri difiu khien ddu tuong flng thoa man didu kifin cue trj phie'm ham muc tieu didu khie'n tdi uu Thudt todn xdc dinh dieu khidn tifim cdn tdi uu ddu bd didu khidn md xdc dinh nhu sau: Budc 1: Dgc cac gid tri e, e Budc 2: Xac djnh dd phu thugc ciia cac bifi'n md vao e, e theo ham hen thudc da chgn Budc 3: Tfnh cac phdn ciia vec to Iham sd bd didu khidn md ^(e) theo (3) Budc 4: Tfnh cdc phdn ciia vec to hieu chinh thfch nghi bdng giai phuong trinh vi phdn (7) vdi dieu kifin ddu xdc djnh X^ Gia tri ddu X^ se lien quan tdi td'c hdi tu cua nghifim Cd thd chgn X^ = Budc 5: Tfnh u theo (4) Theo cac budc thudt loan trfin, ta xdy dutig dugc md hinh md phdng bd didu khien md Ihi'ch nghi tifim cdn td'i uu cho mdt dd'i tugng ddng hgc khdng xdc dinh rd md hinh dd'i tugng Bd didu khidn md thuc hien ludt difiu khifi'n thfch nghi cd md hinh thuat todn xdy dung Mallab-Simulink nhu hinh e l : Sai lech gdc vj trf ddi tugng; e2: Dao ham sai lech gdc vi trf; u: Tfn hifiu didu khifi'n ddu bd md; a (anpha) la hfi sd hifiu chinh ham muc tifiu; y (gama) ia cdc hfi sd hifiu chinh thi'ch nghi bd md Cac khdi md hoa xdc djnh phu thugc (do cao) cua cac bifin md vao cac gia trj cua bie'n vdt ly ei va e2 tai thdi difi'm dgc mdu Do cao phu thudc kifiu dang, phdn bd cua ham lifin Ihudc ta chgn Khdi md boa hoan toan phu thudc vao ddi tugng difiu khidn Cac khdi cdn lai thuc hifin cac phep toan (3), (4), (7), gid'ng cho mgi ddi tirgng 717 Hinh Mo hinh thuat toan bo dieu khien md Ghep md hinh dd'i tugng vdi bd difiu khien, thuc hifin hifiu chinh a va y thfch nghi vdi md hinh dd'i tugng (hifiu chinh online) cho thoa man cac yfiu cdu chat hrgng ddng hpc ciia dd'i tugng d mdt chfi' dd dac trimg nhat Tfl day, cha't lugng ddng hgc ciia dd'i tugng dugc bao dam theo phie'm ham muc tifiu lua chgn nhd kha nang tu chinh thfch nghi ciia bd didu khidn md II NGHIEN CUU MO PHONG HE TDB W6l BO DIEU KHIEN MCi -KX) CD I * t J rH rB Soop.l LJduMl—Jete2L-r-».e2 Coirect e2 ^uzzyl Scope2 Hinh Md hinh mo phong ddi tucmg vdi bp dieu khien md Sfl dung cac bfi phat tfn hifiu mdu dd nghien cflu dap flng ddu la vi trf ( Xrl) va td'c dd ( Xr2) cua hfi TBB Vdi md hinh md phdng trfin, ta cd thd ghep md hinh ddi tugng cd cd'u triic gia ihifi't bd't ky vao he thd'ng Didu quan trgng nhat la phai xac djnb midn gid tri ciia el va e2, (midn xac djnh cua tdp md); kifi'u dang va phan bd ham lifin thudc phu hgp vdi dd'i tugng nghifin cflu Dieu dat dugc nhd thuc nghifim Md phong thuc nghifim dugc thuc hifin nhdm nghifin curu: - Kha ndng thich nghi vdi nhifiu bifi'n ddng ddt bie'n tdc ddng dau vao thay ddi - Kha nang thich nghi vdi cac tham sd cua md hlnh ddi tugng - Kha nang thfch nghi can true md hinh thay ddi 1 Xac dinh ham lien thugc ctia khau mfl hua Xac dinh HST cua dgng co chap hanh [2| Trudng hgp 1: Ddng co chd'p hanh + Bd didu khidn vec to vdi bifi'n tdn ngudn ddng (BTi) Khi ddng co xoay chifiu ba pha sfl dung bifi'n tan ngudn ddng, ddng hgc cua nd la khdu khdng qudn tinh MwteshpfiidaifWs FWfOfb j igf Henteslipfunctiofiplols pWpcfe j Hinh Ham lien thupc cua sai lech \ i tri e n va dao ham de • np /dt " Trudng hgp 2: Ddng co chap banh -i- Bd difiu khifin vec to vdi bifi'n tdn ngudn dp (BTu) Khi dfing co xoay chieu ba pha didu khidn vec to sfl dung bie'n tan ngudn ap, ddng hgc ciia nd la khdu quan tfnh Do'i tugng md phdng la ddng co xoay chidu ba pha Afl 4A 100L4y3 vdi bg bifi'n tdn dieu khifi'n vec to va hfi co hgc truydn ddng Anten C75 cd cac tham sd: Cdng sua't P= KW; U =230 V; TI=0,78; cos(p=0,75; Idm = 10 (A); f=5Q hz; sd pha:3 L^ = 0,1958 (H); L, = 0,202(H); L,= 0,2065;L(,, = 0,0062(11), L^, =0,0107 (H); R^ = 1,275 dm; R, = 1,663; (6m); ^ ,d„ = 1,07 Vfibe Cac tham sd li'nh todn: L^^ = 0,0163 (H); T, = L^/R, = 0,121 (sec); T, = L y R = 0,162(sec);k, = L^/L =0,969; i^,„„ = 5,46A; i.^,,^ = 12,76 A Khi dling bifi'n tdn ngudn ddng, he sd truyen ciia ddng co la Km=2,68 Kbi diing bie'n tdn ngudn dp, HST cua dgng co K(s) = 63*3.1 l/(s-i-]02) Md hinh md phong ddng co diing bie'n tan ngudn ap hinh fr^ Hinh Mo hinh doi tuong dong co voi bien tan nguon ap 719 III KET QUA MO PHONG Dap ung vi In dot tuong Wii Xu=lBtf^ Ullgvl1^aol1uQt^gk^ a Bien tdn ngufin dong b Bien tan ngudn ap y chinh Idn, gay ma't dn djnh vi tri Hinh Dap flng vj tri gdc dieu chinh he sd y (a =2) a Bidn tdn nguon dong b Bien tan ngudn ap (a chinh ldn co thd gSy mdt dn dinh vj tri.) Hinh Dap flng vi tri gdc dieu chinh he so' a (y =consl) a Bifi'n tdn ngudn ddng b Bien tan ngudn dp Hinh Sai sd goc bam cac tham so' dpng co thay ddi (a, y =const) a Khfing co nhifiu md men b Cd nhifiu mo men Cd tac dfing nhidu md men can Khong cd tac ddng nhidu mo men can Hinh 4.26 Sai sfi' gdc bam (BTi) co tac dong mfi men nhifiu (y.a = const) (Sai Ifich gdc bam cua hfi gdn nhu khong bj anh huong cd md men can nhilu bidn ddi) Hinh Sai lech gdc bam cd tac dpng nhilu md men can phan tich ket qua mo phdng 720 Tfl kfi't qua thu dugc md phong bd dieu khidn thfch nghi md tiem can td'i flu he TDB Irong mfii trudng MATLAB-Simulink, ta cd ke't ludn sau: Kbi thay ddi cd'u true dd'i tugng tfl khdu khue'eh dai (Bifi'n tdn nguon ddng) sang cd'u triic mgt khdu quan tinh (bifi'n tdn ngudn dp), chat lugng ddng hgc hfi TDB vdn dugc thoa man Didu cho tha'y bd difiu khidn thich nghi dugc vdi su thay ddi cau triic b mflc nao dd Khi thay ddi cac tham sd Tr (Lr/Rr); Rs; Lm; J cua dd'i tugng, dac tfnh qua dd vj trf gdc gan nhu khdng thay ddi Difiu chflng minh tfnh thi'ch nghi Iham sd ciia bg didu khidn tiem cdn td'i uu Khi cho tdc ddng nhifiu dot bifi'n, ddp irng qud vj trf gdc khdng thay ddi so voi khdng cd nhifiu Cac ddc tfnh dap flng vj trf md phdng cd nhifiu va khdng cd nhifiu deu trimg He thd'ng dam bao sai sd ddng pham vi cho phep gdc didu khidn ddu vao cd td'c va gia td'c thay ddi ma khdng phai dung mach bii theo tdc dd vd gia td'c ddu vao V KET LUAN Kfi't qua md phdng khang dinh tfnh diing ddn cua thudt toan thfch nghi dugc xdy dung trfin CO sd ke't hgp thudt toan tdi uu va thuat toan didu khie'n md Thudt todn cd thd md rgng dd tdng hgp bd didu khidn cho cdc dfi'i tugng khdng bie't chfnh xac mfi hinh vd nhifiu bd't djnh Tdi lieu tham khdo: Duang Qudc Tudn Nguyen Tdng Cudng / Xiy difug thudt todn thich nghi he truyen ddng hdm sd dung ddng cff xoay chiiu ba pha dieu khien vec Iff/ Tgp chi Nghien t i(u khoa hgc ky thudt vd cdng nghe qudn sif, Trung tdm KHKT vd CNQS so 12 thdng 9/2005 Nguyin Phiing Quang; Andreas Dittrich /Truyin dgng dien thdng minh/ H Nxb KH&KT,2002 Phan Xidn Minh Nguyen Dodn Phifdc ILy thuyet dieu khien mdi N.\h KH& KT, [997 721 ... ham lifin thudc phu hgp vdi dd''i tugng nghifin cflu Dieu dat dugc nhd thuc nghifim Md phong thuc nghifim dugc thuc hifin nhdm nghifin curu: - Kha ndng thich nghi vdi nhifiu bifi''n ddng ddt bie''n... dieu khifin thfch nghi md tifim can tdi Uu cho ddi tugng dgng hgc la hfi TDB su dung DCXCBP vdi bd didu khifin vec to Ndu g„(x) = b; T(e) = e + CK e thi mdt thuat todn thich nghi don gian nhd''t... cdc phdn ciia vec to hieu chinh thfch nghi bdng giai phuong trinh vi phdn (7) vdi dieu kifin ddu xdc djnh X^ Gia tri ddu X^ se lien quan tdi td''c hdi tu cua nghifim Cd thd chgn X^ = Budc 5: Tfnh

Ngày đăng: 08/12/2022, 16:31

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w