1. Trang chủ
  2. » Giáo án - Bài giảng

melting and differentiation of early formed asteroids the perspective from high precision oxygen isotope studies

43 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies
Tác giả Richard C. Greenwood, Thomas H. Burbine, Martin F. Miller, Ian. A. Franchi
Trường học The Open University
Chuyên ngành Planetary and Space Sciences
Thể loại Article
Năm xuất bản 2016
Định dạng
Số trang 43
Dung lượng 8,89 MB

Cấu trúc

  • 1. Introduction (0)
  • 2. Oxygen isotope analysis (3)
    • 2.1. Oxygen – the magic element! (3)
    • 2.2. Oxygen isotopes – notation and mass fractionation (3)
    • 2.3. Oxygen isotope analysis of meteorites – a brief historical perspective (4)
    • 2.4. Analytical procedures and instrumentation (5)
      • 2.4.1. Laser fluorination and related techniques: overview (5)
      • 2.4.2. General system configurations (5)
      • 2.4.3. Laser systems and sample chamber configurations (5)
      • 2.4.4. Sample gas clean-up line (6)
      • 2.4.5. Isotope-ratio mass spectrometer (6)
      • 2.4.6. How laser fluorination differs from UV laser ablation (6)
      • 2.4.7. Future developments (6)
  • 3. Oxygen isotope analysis of achondritic meteorites (7)
    • 3.1. Introduction (7)
    • 3.2. Primitive achondrites (7)
      • 3.2.1. Acapulcoite-lodranite clan (7)
      • 3.2.2. Brachinites (8)
      • 3.2.3. Ureilites (9)
      • 3.2.4. Winonaites and IAB-IIICD irons (11)
    • 3.3. Differentiated achondrites, stony-iron and iron meteorites (13)
      • 3.3.1. Angrites (13)
      • 3.3.2. Aubrites (15)
      • 3.3.3. Howardite-Eucrite-Diogenite suite (HEDs) (16)
      • 3.3.4. Mesosiderites (18)
      • 3.3.5. Pallasites (18)
      • 3.3.6. Iron meteorites (20)
    • 3.4. Ungrouped and anomalous achondrites (22)
      • 3.4.1. Ungrouped primitive achondrites (22)
      • 3.4.2. Ungrouped and anomalous basaltic achondrites (23)
  • 4. Discussion (26)
    • 4.1. Understanding the meteorite record: an oxygen isotope/remote sensing perspective (26)
      • 4.1.1. How many differentiated parent bodies are present in our meteorite collections? (27)
      • 4.1.2. Asteroid – meteorite links: remote sensing observations (27)
      • 4.1.3. Linking meteorites to early-formed planetesimals (29)
    • 4.2. The slope 1 oxygen isotope anomaly: an achondrite perspective (30)
      • 4.3.1. Formation and preservation of primordial oxygen isotope anomalies (31)
    • 4.4. The relationship between chondrites and achondrites (33)
  • 5. Summary and conclusions (35)

Nội dung

Oxygen isotope analysis

Oxygen – the magic element!

Itwillcomeaslittlesurprisetolearnthatoxygenisauniquely importantelement.Afterall,lifeasweknowit,includingscientific research,wouldbeimpossiblewithoutoxygen!Itisperhapsless obviouswhyoxygenshouldarguablyhavebecomethesinglemost powerfultoolavailabletothecosmochemiststudyingtheorigin andevolutionoftheearlySolarSystem.

Oxygenisahighlyreactivenon-metalthatreadilyformscom- poundswithotherelements.Itisthefirstelementingroup16ofthe periodictable,hasanelectronicconfigurationof1s 2 ,2s 2 ,2p 4 andso readilyformsadoublecovalentbondwithanotheroxygenatom, withpureoxygenbeingacolourless,odourlessgaswiththefor- mulaO2.Creditforthediscoveryofoxygeniscontroversial,being splitthreewaysbetweentheSwedishapothecaryCarlScheele,the

Lavoisier;thelattergenerallyconsideredtobethefounderofmod- ernchemistry(Lane,2002).Scheeleappearstohavebeenthefirst tohave madethediscoveryin1773,orsometimebefore.How- ever,Priestlypublishedhisresultsfirst,in1774andsoisgenerally givenpriority.OxygenwasnamedbyLavoisier,whodemonstrated thatitwasthereactiveconstituentofairandtheelementrespon- siblefor bothcombustionand respiration.In fact,Lavoisierwas activelyundertakingexperimentsonairwhenhewasdraggedoff toatribunalbyarevolutionarymobandsubsequentlybeheadedin

OxygenisthethirdmostabundantelementintheSolarSys- temafterhydrogenandhelium,asdeterminedbyspectroscopic measurementsoftheSolarPhotosphere(Fig.1)(Lodders,2003).

Fig 1 Elemental Solar System abundances up to z = 50 illustrating that oxygen is the third most abundant element after hydrogen and helium (Data: Lodders, 2003).

However,moreimportantthanitshighrelativeabundanceisthe factthatoxygenisamajormineral-formingelement.Comprising closeto46wt.%oftheBulkSilicateEarth(Javoyetal.,2010),oxy- genisthemostabundantelementintheEarth’scrustandmantle (Allègreetal.,1995).Evenwhenthecoreisincludedtoderivea totalBulkEarthcomposition,oxygenat32.4wt.%remainsthemost abundantelement,justaheadofironat28.2wt.%(Allègreetal.,

1995).InthecaseofVenusandMars,oxygenisalsoroughlyinequal abundancetoiron(both∼30wt.%),whereas Mercuryisanoma- louslyiron-rich(Elseretal.,2012).ButwhileitsSolarSystemand BulkEarthabundancesmaybeimportant,perhapsthemostcritical featureofoxygenisthefactthatitreadilycombineswithhydrogen toformwater.Wateristheessentialcompoundforlife,isubiqui- tousthroughouttheSolarSystemandundoubtedlyplayedamajor roleinitsearlyevolution.Asignificantproportionofthewaterin thesolarnebulawasinheritedfromtheparentmolecularcloud(Cleevesetal.,2014).

Oxygen isotopes – notation and mass fractionation

Unliketheotherimportantlightelements, nitrogenand car- bon,whichhaveonlytwostableisotopes,oxygenhasthree: 16 O (99.757atom.%), 17 O(0.038atom.%), 18 O(0.205atom.%)(Rosman andTaylor,1998).Thisishelpfulbecauseitmeansthattwosets ofisotoperatios( 17 O/ 16 Oand 18 O/ 16 O)canbemeasuredandthen plottedonwhatisgenerallyreferredtoasanoxygenthree-isotope diagram(Fig.2).Theoxygenisotopecompositionofasampleis measuredwithreferencetotheinternationalreferencestandard VSMOW(ViennaStandard MeanOcean Water)provided bythe InternationalAtomicEnergyAgency(IAEA)inViennaasareplace- mentfortheearlierstandardSMOW(Craig,1961).Infact,SMOW neverphysicallyexisted,butwasanaverageofvaluesforanumber ofoceanwatersamplesthatwasthentiedtothedistilledwater sampleNBS-1,whichwasactuallyavailableformeasurement.In reality,isotopicmeasurementsofsamplesaremadewithreference toaworkinglaboratorygasthathasbeennominallycalibratedrela- tivetoVSMOW.Infact,directcalibrationontheVSMOWscaleisan analyticallydifficultprocedureandthesubjectofcurrentdebate. Theissuesinvolvedarebeyondthescopeofthisreview,thereader isreferredtothepaperbyPackandHerwartz(2014)andthesub- sequentcommentbyMilleretal.(2015)forfurtherdetailsonthis topic.

Fig 2 Oxygen three-isotope diagram for 47 terrestrial whole-rock and mineral separates (Miller et al., 1999).

Oxygenisotoperatiosareconventionallyexpressedusingthe deltanotationfirstformallydefinedbyMcKinneyetal.(1950)and recentlyrevisedbytheCommissiononIsotopicAbundance and

␦ 18 O =( 18 R sample − 18 R VSMOW )/ 18 R VSMOW whereR= 18 O/ 16 O and

Becausedeltavaluesareverysmallanddimensionless,itisusual toexpressthemaspartsperthousand(‘permil’).Thus,adeltavalue of0.01wouldgenerallybewrittenas10permil(or10‰).

Inasimilarmannertootherlightelements,oxygenisreadily fractionatedbyavarietyofchemicalandphysicalprocesses.The magnitudeofthisvariationisafunctionofthemassesoftheiso- topesandisthereforereferredtoasmass-dependentfractionation.

Thus,foraparticularprocessthe 18 O/ 16 Oratiowillvaryapproxi- matelytwiceasmuchasthe 17 O/ 16 Oratio.

Whenoxygenisotopeanalysesofterrestrialsilicaterocksand mineralsareplottedonathree-isotopediagram,with␦ 18 Oplotted astheabscissa(Fig.2),theresultantlineofslope∼0.52(Matsuhisa etal.,1978)iscommonlyreferredtoastheterrestrialfractionation line(TFL)(e.g.Rumble etal., 2007).Deviations fromthisrefer- encelineareconventionallyexpressedas: 17 O=␦ 17 O–0.52␦ 18 O

(1996),thelinearrelationshipbetween␦ 17 Oand␦ 18 Oisactually anapproximation,derivedfrom:

␭ withtheexponent␭varyingbetween∼0.5and0.5305depend- ingonthenatureofthesamplesunderinvestigationandwhether a kinetic or equilibrium mass fractionation process is involved

(Miller,2002;Youngetal.,2002;PackandHerwartz,2014).Indelta notation,theequationbecomes:

Thisprovidesthebasisofamoreaccurateandrobustformula- tionof 17 O,asproposedbyMiller(2002): ln(1+ 17 O) = ln(1+ı 17 O)–ln(1+ı 18 O) where␭correspondstotheslopeofareferencefractionationline. For 17 Ovaluesoflessthan3‰,whichincludesthevastmajority ofthesamplesconsideredinthisreview, 17 Ocanbedefinedas:

17 O= ln(1+ı 17 O)−ln(1+ı 18 O) withoutlossofaccuracy.Withregardtoanappropriatevalue of ␭: someauthors have selected a value based on the actual fractionationlinegivenbyacollectionofterrestrialsamples(e.g. Miller,2002;Spicuzzaetal.,2007;Packetal.,2013);othershave assigned it as the hightemperature equilibrium limit value of 0.5305(Wiechertetal.,2004; Packand Herwartz,2014).There is,asyet,noconsensusonwhichreferencelineshouldbecho- senfordefining 17 O.Thiscanleadtomisleadingcomparisons, ifcareisnottakentoensurethatall 17 Ovaluesaredefinedcon- sistently.Anadditionalcomplicationisthatithasrecentlybeen shown(TanakaandNakamura,2013;Milleretal.,2015)thatterres- trialrocksandmineralsformfractionationarrayswhichareslightly offset(by∼30–70ppm)fromtheVSMOWreferencematerial. Formuchofthepastdecadeorso, 17 Omeasurementsmade attheOpenUniversitylaboratoryhavebeenreportedinthefor- matproposedbyMiller(2002)andwithreferencetoalineofslope 0.5247passingthroughVSMOW.Thisformatandslopearegener- allyusedthroughoutthisreviewunlessotherwisestated.However, asaresultoftheextensivestudiesundertakenbytheChicagogroup, alargedatabaseofanalysesintheliterature,collectedusingthe nickle“bomb”technique(Section2.3),arequotedusingthecon- ventionalversionof 17 Oi.e 17 O=␦ 17 O–0.52␦ 18 O.Itwouldbe misleadingtorecalculatetheseanalysesusingtheformatofMiller

(2002),thereforeinsomeinstances 17 Ovaluesforlaserfluorina- tiondatahavebeencalculatedusingaslopefactorof0.52toaid comparisonwiththisearlierdataset.

Oxygen isotope analysis of meteorites – a brief historical perspective

Quantitativelyliberatingoxygenfromsilicateandoxideminer- alsisnoeasytaskinviewofthestrengthoftheSi–Obond.The earlydevelopmentofoxygenisotopecosmochemistryessentially involvedthequestforthemostappropriate(andsafe)reagents andtheoptimalanalyticalconditionsrequiredtoreleaseoxygen andthenmeasureitsisotopiccomposition.Allsuccessfulmethod- ologies involved theuseof eitherhalogens, orhalogen-bearing compounds,todisplaceoxygenfromthesilicate/oxidestructure. However,thehighlyreactivecharacterofthesecompoundsbrings withitsignificanthealthandsafetyissues.Oneofthefirstattempts toanalyzeoxygen frommeteoriteswas undertakenby Manian etal.(1934)usingaresistancewoundelectricfurnaceheatedto

1000 ◦ C.Themeteoritesamplesweremixedwithgraphite,andcar- bontetrachloridewasusedasthechlorinatingagent.Theattempt wasunsuccessfulduetoyieldproblems,thepresenceofinterfering compoundsandthepoorresolvingpowerofthemassspectrom- etersavailableatthattime.Theproblemofinconsistentandpoor yieldswasimprovedwiththedevelopmentofexternallyheated,sealable, nickel reactiontubes (Baertschiand Silverman, 1951),whicharesometimesaffectionatelyreferredtoas“bombs”.Inthe study of Baertschi and Silverman(1951) rock samples,includ- ingaeucrite,weretreatedusingmixturesofchlorinetrifluoride andhydrogenfluorideat430 ◦ C,or fluorineandhydrogenfluo- rideat420 ◦ C,forperiodsrangingfrom6to20hours.Apartfrom theobviousproblemofhavingtodealwithextremelydangerous compounds,the“bomb”techniquesuffersfromthefactthatthe maximumreactiontemperaturesattainablearecomparativelylow andsoreactiontimesmustbelong.Thisresultsinhighsystem blanklevelsandevenwiththelongreactiontimesinvolved,com- pletefluorinationis rarelyachieved,resultinginvariableyields andmassfractionationoftheliberatedgas.Significantanalytical andsafetyimprovementswereobtainedusingthereagentbromine pentafluoride(BrF 5 )(ClaytonandMayeda,1963).Acolourlessliq- uidatroomtemperature(M.P.−61.3 ◦ C, B.P.40.5 ◦ C)andhence inherentlyeasiertohandleinthelaboratorythanfluorinegas,BrF5 couldbeheatedinnickelbombstotemperaturesashighas700 ◦ C, thusensuringmoreconsistentyields(ClaytonandMayeda,1963).

Untiltheearly1970soxygenisotopeanalysisofextraterrestrial materialswaslittledifferenttoitsterrestrialcounterpart.While asignificantamountofworkwasundertakenonlunarrocksfol- lowing theApollo landings(e.g.Claytonetal.,1971,1972)and intheapplicationofoxygenisotopestogeothermometry(Onuma etal.,1972),therewerefewmajorsurprises.Thisallchangedin

1973,theyearoxygenisotopecosmochemistrywaskickstarted bythediscoveryofmass-independentvariationincarbonaceous chondrites(Claytonetal.,1973).Thisworkwasundertakenfol- lowing therecognition that calcium,aluminium-richinclusions

(CAIs)incarbonaceouschondriteshadamineralogysimilartothe predictedearlycondensatesfromacoolinggasofsolarcompo- sition(Grossman,1972).WhatClaytonandhisco-workersfound whentheyanalyzedtheseCAIswasthattheir␦ 18 Oand␦ 17 Oratios, rather thandefining a slope ∼0.5, plottedalong a lineof slope closeto1.Asthisvariationisnotduetomassdependencyithas cometobeknownasmass-independentfractionation.Atthetime oftheirdiscoveryClaytonetal.(1973)suggestedthatthisvaria- tionwasduetotheinjectionofacomponentofalmostpure 16 O earlyinSolarSystemhistory.Analternativemechanismwassub- sequentlysuggested byThiemensand Heidenreich(1983),who showedexperimentallythatozoneformationwasassociatedwith aslope1oxygenisotopeanomaly.Morerecently,theslope1vari- ationfirstidentifiedbyClaytonetal.(1973)hasbeenexplained in terms of a self-shielding mechanism associated withphoto- dissociationofCO,eitherintheearlysolarnebula(Clayton,2002;

LyonsandYoung,2005),orearlierstillinthemolecularcloudfrom whichtheSolarSystemformed(YurimotoandKuramoto,2004).In theyearssincethepioneeringstudyofClaytonetal.(1973),detailed analysisofdifferentmeteoritegroupsandtheircomponentshas demonstrated that theyshow significant, systematic variations withrespectto␦ 18 Oand␦ 17 O(Clayton,2003,2006;Franchi,2008).

The availability of affordable and reliable laser systems in the 1980s led to the development of a wide range of micro- analytical techniques for both bulk compositional and isotopic studies.Althoughtherehadbeenearlierpublisheddescriptionsof lasertechniqueswiththepotentialtoundertakeoxygenisotope analysis (Franchi et al., 1986), the first working laser fluorina- tionsystemwasdevelopedbySharp(1990).Comparedtoearly methodologies,laserfluorinationhastheconsiderableadvantage ofoperatingathightemperatures(>1200 ◦ C),thusensuringmore consistentyieldsandduetothemorerapidrateofreaction(gener- allyjustafewminutes)hasmuchlowersystemblanks.Asaresult oftheseadvantages,laserfluorinationconsistentlyachieveshigher levelsofprecisionthanwereobtainableusingthenickel“bomb” techniqueanditisnowroutinelyusedinalargenumberofsta- bleisotopelaboratoriesworldwide(Sharp,1990;Elsenheimerand

Analytical procedures and instrumentation

Laserfluorinationcurrentlyprovidesthehighestlevelsofpreci- sionavailableforoxygenisotopeanalysisofbothterrestrialand extraterrestrialmaterials.It is routinelypossible toanalyze0.5 to2mg mineraland whole-rocksampleswitha precisionofat least±0.08‰for␦ 17 O,±0.16‰for ␦ 18 O,and±0.05‰for 17 O

(2␴)(Milleretal.,1999;ValleyandKita,2005;Greenwoodetal., 2014;Starkeyetal.,2016).Anotablesuccessofthetechniquehas beenthemeasurementofmassfractionationlines(average 17 O values)fortheEarth,Mars,Vestaandvariousachondriteparent bodiestoaprecisionofbetterthan±0.03‰(2␴)(Franchietal., 1999;Wiechertetal.,2004;Greenwoodetal.,2005,2006).Under favourableconditions,thelevelsofprecisionobtainedbysecondary ion massspectrometry(SIMS)techniquescanbeclosetothose achievedbylaserfluorination(Kitaetal.,2009a).However,due totheloweramountsofmaterialbeinganalyzedandtheinfluence ofvariousinstrumentalandmatrixeffects,SIMSoxygenisotope analysesarenormallyofsignificantlylowerprecisionthancanbe routinelyachievedbylaserfluorination.

While theprocessof reactingsamplesand thencleaning-up the releasedoxygen gasis an essential partof all laser fluori- nationsystems,theanalyticalprotocolsandapparatusthathave beendevelopedaregenerallyquitediverse(Rumbleetal.,2007).

It is certainly the case that no two laser fluorination lines are thesame.Whilethedescriptiongivenhereisbasedprimarilyon theOpenUniversitysystem(Milleretal.,1999),wealsodrawon informationavailableinpublisheddescriptionsfromotherlabo- ratories.InthissectionwealsolookbrieflyatUVlaserablation systems.

2.4.2 Generalsystemconfigurations Mostlaserfluorinationsystemsconsistoffourprincipalcom- ponents(Fig.3aandb):(1)aninfrared,ornear-infrared,laserand beamdeliverysystem,(2)asamplechamber,(3)asamplegasclean- upline,and(4)anisotope-ratiomassspectrometer.

CO 2 lasersareusedinmostlaserfluorinationsystems(10.6␮m, 12–50Wmax.poweroutput)(Milleretal.,1999;Kusakabeetal.,

2004).NearinfraredNd:YAGlasers(1.064␮m,60Wmax.power output)havealsobeenemployed(MatteyandMacPherson,1993). The laser is sometimesfixed,with thestatic laser beamdeliv- eredtothesamplechamberviaanopticsystemofhalf-silvered mirrors and prisms In this configuration the sample chamber is mounted on a motorized X-Y-Z stage However, it is now morenormaltousecommerciallyavailableX-Y-Zgantrymounted lasers (e.g esi MIR 10 system, or Teledyne Photon Machines FusionCO2system)inassociationwithafixedsamplechamber.

In either configuration the sample is viewed by video camera throughaBaF 2 window(forCO 2 lasers)inthetopofthecham- ber.

Sample chamber configurations vary enormously from sys- temtosystem.ThearrangementdescribedbyMilleretal.(1999) consistsofatwo-partchamber,madevacuumtightusingacom- pressionsealwithacoppergasketandquick-releaseKFXclamp.

Intermsofmaintainingahighvacuum,andhencelowblanklev- els,thesamplechamberisaparticularlyproblematiccomponentin anylaserfluorinationsystem.Thisresultsfromthefactthat,during sampleloading,thisportionofthelineneedstobeopenedtothe atmosphere.Tofacilitatethis,eitheragasketsystem,orfluoroe- lastomerO-rings,orboth,areemployed(e.g.Sharp,1990;Miller etal.,1999;Kusakabeetal.,2004).Suchsealsinvariablyhavenon- trivialleakratesandthefluoroelastomerO-ringsinevitablyoutgas hydrocarbons.Inaddition,exposureofthesamplechambersur- facestotheatmospheremeansthattheybecomecoatedinalayer ofmoisture,whichfurtherincreasestheblankonceBrF 5 isintro- ducedintothechamber.Asaconsequenceoftheseproblems,the samplechamberundoubtedlymakesthelargestcontributiontothe overallsystemblank.

Fig 3 Laser fluorination line at the Open University (a) Photo showing the main component sections of the line (see text for further details) (b) The sample chamber and infrared laser are housed within the laser safety box Inset: Two-part chamber with the upper half incorporating a BaF 2 window for simultaneous viewing and laser-heating of samples The two halves of the chamber (lower half not visible) are kept vacuum tight by a compression seal involving an internal copper gasket and external quick-release KFX clamp Samples are loaded in a removable Ni block with drilled wells (14 are present in the example shown in Fig 3b).

FollowingreactionwithexcessBrF 5 (F 2 gasisusedasthefluori- natingagentinsomesystems),theproductgasesareexpandedinto acleanup-line,whichgenerallyconsistsofatleasttwoliquidnitro- gen“U”tubetraps,separatedbyabedofheatedKBr.Thefirstliquid nitrogentrapremovesthemajorityofcondensablegases.Thebed ofheatedKBrservestoremoveanyF2gasbyreactiontoformKF, withthedisplacedBr 2 removedinthesecondliquidnitrogentrap.

Followingtheseclean-upprocedures,thepurifiedO 2 gasistrapped downon13Xmolecularsievepelletscooledtoliquidnitrogentem- peratures.Themolecularsieveisthenisolatedfromtheclean-up lineandheatedup,withthereleasedO 2 gasexpandedintothe inletsystemofthemassspectrometer.Insomesystemsadditional clean-upstepsareemployedbasedongaschromatographytech- nology,withtheaimofeliminatinganypotentialresidualtracesof

FisherMAT253(ortheearlier251and252models),oraMicromass

Prism III Both of these instruments have relatively high mass resolution(m/m=∼250).However,lowerresolutionmassspec- trometers,suchastheFinnigan-MATDelta plus (m/m=∼95)are sometimesused.

Itisacommonmisconceptionthatlaserfluorinationiscapa- bleofundertakinginsituspotanalysis.Whileinfraredlaserscan befocusedtoalimitedextent,significantlybetterspatialresolu- tionisachievedbyshorterwavelengthlasersandhenceultraviolet (UV) laserablation wasdeveloped asa techniqueto undertake spot analysis(Wiechert and Hoefs, 1995; Rumble et al., 1997; FarquharandRumble,1998;Youngetal.,1998;Wiechertetal.,

2002).Intermsofthenatureoftheirinteractionwiththeanal- ysissubstrate,UV and infraredlasersoperate infundamentally differentways(FarquharandRumble,1998;Youngetal.,1998). Infraredlasersessentiallyactasanarrowdiameterheatsource, allowingthefluorinatingagenttoreactrapidlywiththehotmin- eralsurface.Incontrast,UVlasersproduceasuperheatedplume ofmaterialfromawell-constrainedspot,withminimalheatingof thesurroundingmaterial.Thus,inthecaseoftheinfraredlaser, thefluorinationreactionstakeplaceonthemineralsurfaceitself, whereasfor theUVlaser, thesereactionstakeplacewithinthe superheatedplume.Thesedifferencesmeanthatinfraredlaserflu- orinationisessentiallya bulkanalysistechniquewithrelatively poorspatialresolution, whereasUV laserablationis capableof spotanalysis.F 2 gasis normallyused asthefluorinatingagent in UV laser ablation as BrF 5 gives less precise results(Rumble et al., 1997) Bothlaser fluorination and UV laser ablation are capable of achieving comparable levels of accuracy and preci- sion(FarquharandRumble,1998).However,therelativelysmall amountsofmaterialreactedduringspotanalysisbyUVlaserabla- tionresultsinlowerlevelsofprecisionthanareroutinelyachieved bylaserfluorination(Younget al.,1998;Wiechertetal.,2002). TheUVlaserablationtechniquehasbeenappliedsuccessfullyin awiderange ofextraterrestrialanalysisstudies(e.g.Young and Russell,1998;Wangetal., 2004;McCoyetal.,2011;Dyl etal., 2012).

2.4.7 Futuredevelopments Duetothehighlevelsofprecisionthatcanberoutinelyachieved, atthetimeofwriting,laserfluorinationisthetechniqueofchoice toundertakebulkoxygenisotopeanalysisofextraterrestrialmate- rials.Wherematerialsarelimitedbymass,orspatially resolved analysisofindividualphasesisrequired,SIMStechniquesarenow generallyemployed(Kitaetal.,2009a).Refinementandinnova- tioninanumberofareasoflaserfluorinationtechnologywould significantlyhelp toimproveoverall levelsof precision.Asdis- cussedabove, thesample chamberis thecomponentthatmost influencestheoverall systemprecision.Airlockshuttlesystems havebeendeveloped,butarenotyetinroutineuse(e.g.Spicuzza etal.,1998).Thecapabilityofchangingsampleswithoutbringing thechamberuptoairwouldbeamajorimprovement.Thesys- temclean-uplinecertainlyalsocausesfractionationduringgas handling.Reducingtheoverallsizeofthecomponentsinvolvedin theclean-upprocedureshouldalsoresultinimprovedprecision.Finally,thefluorinatingreagentitself,BrF5,probablytrapsdowna fractionofoxygenwhenitisfrozenontothefirstliquidnitrogen trap.Controllingthefreeze-downprocessintermsoftemperature and duration may helpto reduce this potentialsource offrac- tionation.Theuseofmassspectrometerswithveryhighresolving powerisafurtherdevelopmentthat,inconjunctionwithrefined clean-upprocedures(e.g.PackandHerwartz,2014;Youngetal.,2016a),islikelytoresultinimprovedsystemprecision(Youngetal.,2016b).

Oxygen isotope analysis of achondritic meteorites

Introduction

SolarSystemprocesses,wespecificallyexcludedgroupsthathave a planetaryorigin,suchasmartian orlunar meteorites.Achon- dritesexperiencedvariabledegreesofmeltingandmobilizationin anasteroidalsetting,suchthatprimary,“chondritic”components

(chondrules,CAIs,amoeboidolivineaggregates(AOAs),matrix)are nolongerpresent(Krotetal.,2014;Scottetal.,2015).Achondrites aregenerallydividedintotwobroadclasses:(i)primitiveachon- drites,and (ii)differentiatedachondrites (Weisbergetal.,2006;

Krotetal.,2014;Scottetal.,2015).Primitiveachondritesarethose thatexhibitnear-chondriticbulkcompositionsandnon-chondritic textures and as a consequence are consideredto bethe prod- uctsofrelativelylowdegreesofpartialmeltingandmobilization

(Weisberg etal.,2006;Krotetal.,2014).In contrast,differenti- atedachondriteshavemoreevolvedcompositionsandgenerally displaywell-developedigneoustextures(Mittlefehldtetal.,1998;

Krotetal.,2014).Differentiatedachondritesareconsideredtobe derivedfromsourcesthatexperiencedmoderatetohighdegreesof partialmelting,resultinginlarge-scaledifferentiation(Krotetal.,

2014;Scottetal.,2015).Alongwiththedifferentiatedachondrites wealsoexaminetheoriginofthestony-ironmeteoritesandpro- videabriefsummaryofwhathasbeenlearntfromoxygenisotope studiesconcerningtheformationofironmeteorites.

Thereiscompletegradationindegreesofmeltingandmobiliza- tionbetweenprimitiveanddifferentiatedachondrites,suchthat thereissomedisagreementastowhichcategorycertainmeteorite groupsshouldbeassigned (Krotetal.,2014;Scottetal.,2015).

Weisbergetal.(2006)considertheprimitiveachondrite“classic coregroups”to betheacapulcoites, lodranites,winonaites and silicate-bearingIABandIIICDirons.Theseauthorsalsoincludethe brachinitesandureilitesasprimitiveachondrites,butpointoutthat thereiscontinuinguncertainty aboutwhetherthesegroupsare residuesorcumulates.Incontrast,Hutchison(2004)suggeststhat thehigh-degreeofcrystal-liquidfractionationindicatedbyureilite mineralogydoesnotsupporttheirdesignationasprimitiveachon- drites.Acumulateoriginfortheureilites,aswellasthebrachinites, isalsoproposedbyMittlefehldt(2005a,2008).In thispaper,in additiontothe“classiccoregroups”ofWeisbergetal.(2006),we haveincludedbothureilitesandbrachinitesamongsttheprimi- tiveachondrites Therearea numberofreasonsforconsidering thebrachinitestobebonefideprimitiveachondrites;theseinclude thenear-chondritic,lithophileelementabundancesdisplayedby

Brachina(Weisbergetal.,2006)andtheoxygenisotopehetero- geneityofthegroupasawhole(Section3.2.2)(Greenwoodetal.,

2012).Despitetheuncertainty concerningtheoriginofureilites weincludethemwiththeprimitiveachondritesinthisreviewon accountoftheirextremeoxygenisotopeheterogeneity(Table1,

Primitive achondrites

Acapulcoites are relatively fine-grained (150–230␮m), with anequigranulartextureandanessentiallychondriticmineralogy, consistingofolivine(Fa 4-13 )(allmineralcompositionsinmol%), low-Capyroxene(Fs1-9),Ca-richpyroxene(Fs46-50,Wo43-46),pla- gioclase(An 12-31 ),metalandtroilite(McCoyetal.,1996,1997a;

Mittlefehldt2005a,2008;Weisbergetal.,2006).Relictchondrules havebeen reportedina number ofacapulcoites (Schultz etal.,

Fig 4 Oxygen isotopic composition of untreated acapulcoite and lodranite finds compared to falls and EATG-treated residues Tie lines link untreated samples with their respective EATG residues Antarctic finds are systematically displaced to lower

␦ 18 O values compared to their EATG residues and non-Antarctic finds are shifted to higher ␦ 18 O values The diagram also shows that untreated samples are generally displaced to less negative 17 O values than falls or EATG residues, consistent with the source of the contamination being terrestrial in origin The light grey shaded box shows the 2␴ variation on the mean ␦ 18 O and 17 O values for the EATG residues and fall samples As it is based on samples that have had terrestrial weathering effects at least partially removed, the grey box provides an indication of the primary oxygen isotope variation in the acapulcoite-lodranite clan All data from Greenwood et al. (2012).

1982;McCoyetal.,1996;Rubin,2007).Incomparison,lodranites arecoarser-grained (540–700␮m),but similarlyhaveequigran- ular textures and nearly identical mineralcompositions to the acapulcoites(McCoyetal.,1997a,b).However,incontrasttothe acapulcoites,theyaredepletedintroiliteandplagioclase(McCoy etal.,1997a,b;Mittlefehldt,2005a,2008;Weisbergetal.,2006).In termsoftheirgrain-sizeandmineralogy,anumberofmeteorites aretransitionalbetweentheacapulcoitesandlodranites(i.e.,EET

84302,GRA95209,FRO93001).Inviewoftheirsimilarmineralogy, geochemistryandisotopiccomposition,thereisageneralconsen- susthattheacapulcoitesandlodranitesarederivedfromasingle parentbody(McCoyetal.,1997a;Mittlefehldt,2008).Inrecogni- tionoftheircommoncharacteristics,acapulcoitesandlodranites havebeengiven“clan”status(Weisbergetal.,1995,2006). Acapulcoites and lodranites, being relatively metal and sul- phiderich,areparticularlysusceptibletotheeffectsofterrestrial weathering,whichcansignificantlydisturbtheiroxygenisotope compositions(ClaytonandMayeda,1996;Greenwoodetal.,2012).

Inordertodefineprimarylevelsofoxygenisotopeheterogeneityin theselithologiesitisgenerallynecessarytoleachmeteoritefinds toremoveweatheringproducts.Whenthisisdonesomesamples showshiftsofnearly3‰withrespectto␦ 18 Obetweenleached andunleachedpairs(Greenwoodetal.,2012)(Fig.4).AttheOpen Universitysamplesareleachedusingasolutionofethanolamine thioglycollate (EATG)(Greenwoodet al.,2014).Washingin HCl ofvariousstrengthsisalsocommonlyundertakeninotherlabo- ratoriesasameansofremovingterrestrialweatheringproducts (ClaytonandMayeda,1996;Rumbleetal.,2008).

Incontrastto␦ 18 O,variationin 17 Oisonlyslightlydecreased intheEATGresiduescomparedtountreatedfinds,varyingfrom about−0.8to−1.5‰(Fig.4).Theaverage 17 OvalueoftheEATG- treatedacapulcoitesandlodranitesis−1.12±0.36‰(2␴)(Table1).Thislevel ofheterogeneity isgreater thanthat foundinanyof theordinarychondritegroups(Claytonetal.,1991)(Table1)and

Oxygen isotope variation in chondrites and achondrites See Table S1 for references and additional data. ı 17 O‰ 2␴ ı 18 O‰ 2␴ 17 O‰ 2␴

CV3 chondrites (Ox & Red.) −3.56 3.01 0.67 3.44 −3.91 1.27 wasmostlikelyinheritedfromtheirprecursormaterials,which werepresumablychondriticincomposition.Rubin(2007)suggests thattheprecursortotheacapulcoite-lodraniteclanwassimilarin compositiontotheCRchondrites,butmoreenrichedinmetaland sulphide.Whenoxygenisotopecompositionsareplottedaccord- ingtotheirrespectivegroupsthere isalmostcomplete overlap betweenthe acapulcoites and lodranites, consistent withtheir derivationfromasinglesource(Fig.5).Thecosmicrayexposure agesoftheacapulcoitesandlodranitesshowatightcluster,evi- dencewhichisalsoconsistentwithauniqueasteroidalsourcefor thesemeteorites(Krotetal.,2014).

Brachinites are a diversegroup of equigranular, olivine-rich achondrites, which can have variable grain-sizes, ranging from

Keil,2014).Olivine(Fa28-37),generallyhomogeneousinindividual meteorites,ispresentinamountsbetween80and95vol.%.Ca-rich pyroxene(Fs 9-16 ,En 38-49 ,Wo 38-48 )ispresentinvariableamounts

(3–15vol.%)inalmostallbrachinites.Ca-poorpyroxene(Fs25–31)is eitherpresentatverylowabundancelevels,orabsent.Anotable exceptionisNWA595,whichcontains10–15vol.%modalCa-poor pyroxene.WiththeexceptionofBrachina(seebelow),plagioclase

(An 15-41 )iseitherpresentinonlysmallamounts,orabsent.Bra- chinitesalsotypicallycontaintracetominoramountsofsulphide, metal,chromiteandCa-phosphate.

Fig 5 Oxygen isotopic composition of acapulcoite and lodranite EATG residues plotted in terms of their group designations It is clear from the plot that there is no systematic difference between the acapulcoites and lodranites and as a consequence both groups are probably derived from a single asteroidal source All data fromGreenwood et al (2012).

Fig 6 Oxygen isotopic composition of brachinites Light grey shaded box shows the

2␴ variation on the mean ␦ 18 O and 17 O values for EATG residues of 18 brachinites, including Brachina Darker grey box is for the same group of EATG residues excluding

Brachina Data: Rumble et al (2008); Day et al (2012a); Greenwood et al (2012) and

Met Bull Database (NWA 6152, NWA 6474, NWA 7388, NWA 7605, NWA 7904, RaS

There are currently 40 officially classified brachinite speci- menslistedontheMeteoriticalBulletinDatabase.Alloftheseare

finds andit is clearfrom thedescriptions giventhat many are significantlyweathered.However,brachinitescontainonlytrace amountsofmetalandsulphide(themosteasilyoxidizedphases) and asa consequencetheshiftsin oxygenisotopecomposition betweenuntreatedand EATGresiduesaremuch less thanseen intheacapulcoites,lodranitesor winonaites(Greenwoodetal.,

2012).Oxygen isotopeanalysesfor 18EATG-treatedbrachinites areplottedinFig.6inrelationtothefieldsdefinedbyGreenwood etal.(2012)(seefigurecaptionforfurtherdetails).Themajority ofbrachiniteanalysesplotwithintheinnerboxinFig.6,witha fewscatteringoutsidetheouterbox.Brachinaplotsawayfromthe innercorebrachinitegroupinFig.6.Brachinaisknowntoshow somecompositionaldifferenceswhencomparedtotheotherbra- chinites,inparticularhavingarelativelyhighplagioclasecontent

(∼10%)(Nehruetal.,1983,1992).However,intermsofitsmajor andtraceelements,Brachinaisclosetobeingchondriticincompo- sition,withotherbrachinitesbeingmorefractionated(Mittlefehldt etal.,2003;Goodrichetal.,2010;Sheareretal.,2010;Dayetal.,

Brachina,oranyoftheothersamplesthatscatterattheedgeof theouterboxinFig.6,fromthebrachinitegroup.Theouterboxin

(2␴)(Table1),whichistwicethelevelof 17 Ovariationdisplayed bythewinonaitesandequivalenttothatfoundintheHandLgroup ordinarychondrites(Claytonetal.,1991;Greenwoodetal.,2012).

Ureilitesareultramaficachondritespredominantlycomposed ofolivineandpyroxene,andcharacteristicallycontainasignificant amountofelementalcarbon(upto5.5wt.%)(Mittlefehldtetal.,

1998;Downesetal.,2008;Barratetal.,2016a).With431specimens currentlylistedontheMeteoriticalBulletindatabase,ureilitesare thesecondlargestachondritegroupaftertheHEDs.Ureilitesare nowgenerallyconsideredtobemantle-derivedsamplesfromasin- gledisruptedparentbody(Mittlefehldtetal.,1998;Downesetal., 2008;Bischoffetal.,2014;Barratetal.,2016a).

(1988,1996),oxygenisotopeevidencehasplayeda criticalrole in deciphering theorigin and earlyevolution ofthis enigmatic group(Clayton,2003;Franchi,2008).ClaytonandMayeda(1988) showedthatureilitesdisplayamuchgreaterlevelofoxygeniso- topevariationthananyothergroupofachondrites(Fig.7).Theyalso demonstratedthatureilitesdonotfallonamass-dependentfrac- tionationline,asisthecaseformostotherachondritegroups,but insteaddefineatrendsimilartoAllendeCAIs(Figs.7and8).Inaddi- tion,theyshowedthatthereisaclearcorrelationbetweenureilite

17 Owhole-rockvaluesandolivineandpyroxeneironcontents (Fig.9).Onthebasisofthisevidence,ClaytonandMayeda(1988) suggestedthattheoxygenisotopeheterogeneitydisplayedbythe ureiliteswasinheritedfromthegroup’snebularprecursormateri- alsandthatthisvariationwasnotsignificantlymodifiedbylater parentbodyprocesses.Theimplicationofthisobservationisthat theureiliteparentasteroiddidnotexperiencealarge-scalemelting eventsimilartothatproposedfortheHEDs(Section3.3.3). Detailedstudiesofpolymictureilites,bothbySIMS(Kitaetal., 2004;Downesetal.,2008)andlaserfluorination(Bischoffetal.,

2010,2014;Rumbleetal.,2010;Horstmannetal.,2012)havepro- videdadditionalinsightsintotheevolutionoftheureiliteparent body(UPB),andingeneralhaveaddedfurthersupporttotheorigi- nalfindingsofClaytonandMayeda(1988,1996).Polymictureilites areregolithbrecciasfromthenear-surfacelayersofureiliticaster- oids(Downesetal.,2008)andhavetheadvantageovermonomict ureilitesof containingarange ofclast typesandhence maybe morerepresentativeoftheUPBasawhole.BoththestudiesofKita etal.(2004)andDownesetal.(2008)foundthattheoxygeniso- topecompositionsofpolymictureiliteclastsareidenticaltothose ofmonomicttypesanddefinearelativelytighttrendclosetothe CCAMline.Theresultsfromanumberoflaserfluorinationstudies ofthespectacularAlmahataSittapolymictfall(Jenniskensetal., 2009;Bischoffetal.,2010,2014;Rumbleetal.,2010;Horstmann etal.,2012)areplottedinFigs.7and8.Whiletheoxygenisotope resultsfromAlmahataSittaareverysimilartothoseobtainedby SIMStechniques,theselaserfluorinationanalysesdefineatrend thatisoffsettotheleftoftheCCAMline,althoughtheslopeofboth isidentical(Fig.8).Itisconceivablethatthisslightoffsetfromthe CCAMlineisgenuine,alternativelyitmayreflectaslightanalyti- caldifferencebetweenlaserfluorinationandconventionaloxygen isotopetechniques;thepositionoftheCCAMlinebeingoriginally definedusingthelattermethodology(Claytonetal.,1977;Clayton andMayeda,1999).

ItwassuggestedbyFranchietal.(1998,2001),onthebasisof laser fluorinationanalysesofa comprehensivesuiteof samples (Table S2),that ureilitesmightbesubdivided intofourdiscrete subgroups,eachcharacterizedbyhavingarelativelyshallowslope onanoxygenthree-isotopediagram.Althoughsomesubsequent studies(Rumbleetal.,2010)havefoundevidenceforclumping of oxygen isotope compositionsin ureilites,the discrete series definedbyFranchietal.(1998,2001)appeartohavebeenreplaced byacontinuumasmorehighprecisiondatahavebeenacquired (Figs.7and8)(Downesetal.,2008;Bischoffetal.,2010;Rumble etal.,2010;Horstmannetal.,2012).Thisevidencesuggeststhat ureiliteswereoriginallyderivedfromasingleheterogeneousaster- oid(Downesetal.,2008).

Duetotheirlackofplagioclase,superchondriticCa/Alratiosand depletioninincompatiblelithophileelements, ureilitesaregen- erallyconsideredtohavelostabasalticcomponent(Mittlefehldt etal.,1998;Kitaetal.,2004;Goodrichetal.,2007;Downesetal.,

Fig 7 Oxygen isotopic composition of ureilites shown in relation to other major achondrite groups Conventional oxygen isotope data from Clayton and Mayeda (1996). Laser fluorination data collected at the Open University are given in Table S2 Laser fluorination data for Almahatta Sitta from Bischoff et al., 2010, 2014; Rumble et al., 2010; Horstmann et al., 2012 Fields for primitive and differentiated achondrites from Greenwood et al (2012).Abbreviations: MGP: main-group pallasites, HEDs: howardite- eucrite-diogenite suite, TFL: terrestrial fractionation line, CCAM: carbonaceous chondrite anhydrous minerals line (Clayton et al., 1977; Clayton and Mayeda, 1999).

Fig 8 Oxygen isotopic composition of ureilites Conventional oxygen isotope data from Clayton and Mayeda (1996) Laser fluorination data this study (Table S2) Almahata Sitta laser fluorination data: see caption to Fig 7 Best fit line through Almahata Sitta data only Data for ALM-A trachyandesitic clast from Bischoff et al (2014) Abbreviations: TFL: terrestrial fractionation line, CCAM: carbonaceous chondrite anhydrous minerals line (Clayton et al., 1977; Clayton and Mayeda, 1999). duringexplosive volcanismtriggeredbylowpressure reduction of FeO leading to the formation of CO and CO 2 from graphite entrainedinthemelt(Wilsonetal.,2008).Tracesofthismissing basalticcomponentarepresentinpolymictureilitesintheform ofplagioclase-bearingclasts(Kitaetal.,2004).Auniquetrachyan- desiticclastintheAlmahataSittaureilite,ALM-A,hasaureilitic oxygenisotope composition (Fig 8) and appears to show that theUPBwascapableofproducinghighlyevolvedlavas(Bischoff etal.,2014).REEabundancedataforureilitessuggeststhatatleast twodistinctmagmatypeswereproducedduringmelting ofthe

Fig 9 Plot showing the relationship between olivine and whole-rock oxygen isotope compositions Oxygen isotope data: Calyton and Mayeda (1996) and Open University (Table S2) Olivine compositions from Mittlefehldt et al (1998).

Despite the oxygen isotope evidence that appears to link ureilites to carbonaceous chondrites, 54 Cr isotope systematics seeminglyexcludeanydirectgeneticrelationshipbetweenthetwo

(Fig.10)(Warren,2011a,b).Ifcorrect,this posessomethingofa conundrumfortheinterpretationofprimaryoxygenisotopevari- ationinthesolarnebula.YoungandRussell(1998)haveproposed thatalineofexactlyslope1definestheprimordialvariationand thatthiswasmodifiedbylaterparentbodyprocessestoformthe

CCAMline.However,ifcarbonaceouschondritesandureilitesare unrelated,thefactthatbothplotalongtheCCAMlinemightsug- gestthatthislineismorethanjustasecondaryartifact(seeSection

Winonaitesarearelativelysmallgroupofprimitiveachondrites which,intermsoftheirtexturesandmineralogy,showsomesim- ilaritiestotheacapulcoitesandlodranites.Benedixetal.(1998) proposedthreeclassificationcriteriafor thegroup:(1) ahighly reducedmineralogy (i.e.,olivine typicallyFa1-10), (2) anoxygen isotopiccomposition withintherange 17 O=−0.40 to−0.73‰

(ClaytonandMayeda,1996),and(3)arelativelyhighcontentof metalandtroilite.MetalcontentsinthewinonaitefallPontlyfini andtherelatively unweatheredwinonaite Yamato74025range from1.5 to12.3vol.%,while troilitecontents range from9.1to

Winonaitesdisplayvariableaveragegrain-sizes,generallyinthe range75–230␮m,butmillimeter-sizedgrainscanalsobepresent

(Hutchison,2004).Theydisplayequigranulartextures,withgrain boundariesthatmeet at120 ◦ triplejunctions andhavebroadly chondriticmineralabundances(Benedixetal.,1998;Flossetal.,

2008).Mineralcompositionsare:olivine(Fa1-10),low-Capyroxene

(Fs 1-9 ),Ca-richpyroxene(Fs 2-4 ,Wo 44-45 )andplagioclase(An 11-22 )

(Mittlefehldt,2005a,2008;Weisbergetal.,2006).Relictchondrules havebeenrecognizedinanumberofwinonaites,includingNWA

725,NWA1052,NWA1463,Pontlyfni,Dhofar1222,MountMorris (Wisconsin)(Benedixetal.,1998,2003;Rubin,2007).Dhofar1222, NWA725andNWA1052arecurrentlyclassifiedasacapulcoites (MeteoriticalBulletinDatabase,2016),but theiroxygenisotope compositionsindicatethattheyarewinonaites(Greenwoodetal., 2012).

Asaresultoftheirhighmetalandsulphidecontent,untreated winonaitefindsdisplaysignificantlygreaterlevelsofoxygeniso- topevariationthantheirEATGresidues(Greenwoodetal.,2012) (Fig.11).Inasimilarmannertotheacapulcoitesandlodranites, untreatedAntarcticwinonaites areshiftedtolower␦ 18 Ovalues andslightlydisplacedtolessnegative 17 Ovaluescomparedto theirEATGresidues(Fig.11).Y-791058isthemostextremecase, withtheuntreatedsamplebeingnearly7‰lighterwithrespectto

␦ 18 OthantheEATGresidue(Fig.11).Unliketheacapulcoitesand lodranites,non-Antarcticwinonaitefindsdo notshowaconsis- tentshifttohigher␦ 18 OvaluescomparedwiththeirEATGresidues (Fig.11).However,thismayreflecttherelativelylimitednumber ofsamplesinvolved,and inparticularthebehaviourofthetwo extremely weathered NorthAmerican finds,Winona and Tierra Blanca(Fig.11).Theapparentlyanomalousbehaviourofthesetwo samplesmayreflectpastweatheringinacolderclimate,ormore speculativelyinthecaseofWinona,transportbyNativeAmericans frommorenortherlylatitudes(Greenwoodetal.,2012).

Onanoxygenthree-isotopediagram,EATG-treatedwinonaite samplesshow much less scatter thanthe acapulcoite-lodranite clan, with an average 17 O of −0.51±0.08‰ (2␴) (Table 1) and essentiallydefinea massfractionation linewitha slopeof 0.53±0.01anday-axisinterceptof−0.53±0.04(R 2 =1)(Fig.12) (Greenwoodetal.,2012).Thisevidencesuggeststhatthewinonaite parentbodyexperiencedagreaterlevelofisotopichomogenization thanthatoftheacapulcoitesandlodranites.Basedontheirsimilar petrographies(Benedixetal.,2000)andoxygenisotopecomposi- tions(ClaytonandMayeda,1996),thewinonaiteshavebeenlinked tosilicateinclusionsinthewell-populatedIAB-complexirongroup(currentlyshowing289individualMeteoriticalBulletinDatabase

Fig 10 ␧ 54 Cr vs 17 O diagram for a range of planetary materials Eagle Station pallasites plot within the carbonaceous chondrite grouping, whereas main-group pallasites (MGPs) plot in the same field as the ordinary and enstatite chondrites and the majority of achondrite groups Data from Clayton et al (1991); Clayton and Mayeda (1999); Newton et al (2000); Trinquier et al (2007); Shukolyukov and Lugmair, (2006); Ueda et al (2006); Qin et al (2010a,b); Yamakawa et al (2010); Greenwood et al (2012) Diagram modified after Warren (2011a).

Fig 11 Oxygen isotopic composition of winonaites Antarctic finds are displaced to lower ␦ 18 O values and less negative 17 O values than their EATG residues Non-Antarctic finds show less distinct trends than seen in the acapulcoites and lodranites (Fig 4) with Winona and Tierra Blanca showing anomalous behaviour (see text for further discussion) The light grey shaded box shows the 2␴ variation on the mean ␦ 18 O and 17 O values for the EATG residues and Pontlyfni, the only fall in the group All data from Greenwood et al (2012). entries).Inparticular,thewinonaitesappeartobecloselyrelated totheabundantangularsilicateinclusionsinIABirons,andasingle parentbodysourceforbothgroupshasbeenproposed(Benedix etal., 2000).Oxygen isotope analysesforIABand IIICD silicate inclusionsarealsoplottedinFig.12(ClaytonandMayeda,1996).

WhiletheIABandIIICDdatashowslightlygreaterscatterthanthe winonaiteanalyses,thetwodatasetsdisplayconsiderableoverlap,consistentwithasinglesourceforboth(Bild,1977;ClaytonandMayeda,1996;Benedixetal.,1998;Greenwoodetal.,2012).

Fig 12 Oxygen isotopic composition of winonaites, acapulcoite-lodranite clan, IAB, IIICD silicate inclusions and CR chondrites Named winonaite samples are those which contain relict chondrules Winonaite and acapulcoite-lodranite data (Greenwood et al., 2012), IAB, IIICD data (Clayton and Mayeda, 1996), CR chondrite data (Clayton and Mayeda, 1999; Schrader et al., 2011) TFL: Terrestrial Fractionaton Line; Y&R: slope 1 line (Young and Russell, 1998); CCAM: carbonaceous chondrite anhydrous mineral line (Clayton et al., 1977; Clayton and Mayeda, 1999).

Both theIAB silicate inclusions and winonaites display evi- denceofheterogeneousheatingtoatleasttheFe,Ni-FeScotectic

(∼950 ◦ C),and possibly toas high as ∼1450 ◦ C (Benedix et al.,

Differentiated achondrites, stony-iron and iron meteorites

Angrites are a relatively small group of ancient, essentially unshockedmeteoriteswithabroadlybasalticcomposition,andare characterizedbyextremelevelsofalkalidepletionandrefractory elementenrichments,inparticularCaandTi(Keil,2012).Despite thesmallnumberofspecimens(28currentlylistedontheMete- oriticalBulletinDatabase),angritesshowconsiderabletexturaland mineralogicaldiversityandaresubdividedintovolcanicandplu- tonicsub-types(Keil,2012)(Table2).Withinthevolcanicsub-type, somesamplesshowevidenceforrapidcrystallizationandsoare generallyreferredtoas“quenched”angrites.Duetotheiroldages andthefactthattheyarerelativelyunbrecciatedandunshocked, angrites have proved to be key samples in early Solar System dating studies (Keil,2012) Volcanicand plutonic angrites give well-resolvedmeanagesof4562.1±0.4Myrand4557.7±0.7Myr respectively(Keil,2012).

Claytonand Mayeda (1996) werethe firstto determinethe oxygenisotopecompositionoftheangrites,usingaconventional analysistechnique.Atthetimeoftheirstudyonlyfourangritesam- pleshadbeenidentified:AngradosReis,Asuka881371,LEW86010 andLEW87051.Theyobtainedamean 17 Ovalueforthegroupof

−0.15±0.12‰(2␴),whichshowedconsiderableoverlapwiththeir HEDvalueof−0.25±0.16‰(2␴).Greenwoodetal.(2005)under- tookalaserfluorinationstudyoffiveangrites(AngradosReis,LEW

86010,D’Orbigny,NWA1296andNWA1670)andobtainedagroup mean 17 Ovalueof−0.072±0.014‰(2␴)(Table2),whichwas fullyresolvedfromtheirmeanHED 17 Ovalueof−0.239±0.014‰

(2␴).Thisprovidedconfirmationthatbothgroupswerederived fromseparateparentbodies;aresultinkeeping withtheirdis- tinct compositions and mineralogies (Mittlefehldt et al., 1998; Keil, 2012) Laserfluorination analysisof main-group pallasites (Greenwoodetal.,2006,2014)demonstratesthatthisgroupisalso fullyresolvedfromtheangrites(Fig.13).

Laserfluorinationanalysesoffiveadditionalangritesareavail- ableinvariousabstractsandintheMeteoriticalBulletinDatabase:NWA2999,NWA4590(Irvingetal.,2006),NWA4801,NWA7812,NWA8535(Ageeetal.,2015).Themean 17 Ovalueofthesefive analysesis−0.076±0.028‰(2␴)(Fig.13)(Table2),withthelower

Oxygen isotopic composition of angrites.

NWA 1296 Volcanic − Quenched Greenwood et al (2005) 2 2.086 0.048 4.126 0.097 −0.077 0.003

NWA 1670 Volcanic − Quenched Greenwood et al (2005) 2 1.966 0.116 3.884 0.142 −0.070 0.042

Angra dos Reis Plutonic Greenwood et al (2005) 4 1.945 0.053 3.864 0.087 −0.080 0.009

LEW 86010 Plutonic Greenwood et al (2005) 2 2.016 0.109 3.980 0.190 −0.070 0.009

D’Orbigny Volcanic − Quenched Greenwood et al (2005) 2 2.167 0.031 4.253 0.052 −0.062 0.003

Other angrite laser fluorination analyses a

NWA 2999 Plutonic Met Bull Database 3 2.041 0.062 4.029 0.167 −0.071 0.028

NWA 4590 Plutonic Irving et al (2006) 2 1.947 0.028 3.863 0.025 −0.078 0.015

NWA 4801 Plutonic Met Bull Database 2 1.816 0.010 3.570 0.036 −0.055 0.029

NWA 7812 Volcanic − Quenched Met Bull Database 3 2.003 0.047 3.978 0.104 −0.083 0.015

NWA 8535 Dunite Met Bull Database 3 1.703 0.352 3.425 0.729 −0.093 0.031

AVERAGE 1.902 0.140 3.773 0.264 −0.076 0.014 a 17 O‰ values have been recalculated using a slope value of 0.5247 (see Miller, 2002 for details).

Fig 13 Oxygen isotopic composition of angrites shown in relation to the HEDs (excluding howardites and polymict eucrites) and main-group pallasites HED data: Table S4; main-group pallasite data: Greenwood et al (2015a); angrite data (1): Greenwood et al (2005); angrite data (2) from Meteoritical Bulletin Database AFL: angrite fractionation line All 17 O values calculated relative to a slope of 0.5247 See text for further discussion. precisionofthisdata,comparedtothatofGreenwoodetal.(2005), atleastinpartreflectinginter-laboratorycalibrationdifferences.

However,ascanbeseenfromFig.13,themean 17 Ovaluesof bothsetsofdataarewithinerrorofeach other,supportingthe propositionthatangritesarerelativelyhomogeneouswithrespect to 17 O.

ItwassuggestedbyGreenwoodetal.(2005)thattheoxygeniso- topehomogeneityofangritespointstoanearly,large-scalemelting eventontheirparentbody,possiblyleadingtothedevelopment ofamagmaocean.Thesuggestionthatmagmaoceansmayhave existedonasteroidsintheearlySolarSystemhasbeencriticized ingeneraltermsbyWasson(2013a),andinthespecificcaseofthe angriteparentbodybyKeil(2012).Thereisnodoubtthattheterm

“magmaocean”isprobablyapooronewhenappliedtoasteroids thatmaynothavebeenanylargerthanabout500kmdiameter, i.e.,Vesta-sized.However,thistermisreallyjustshorthandforthe conceptthatearly-formedasteroidsexperiencedlarge-scalemelt- ingevents,probablydrivenbedecayofshort-livedradionuclides, suchas 26 Al(i.e.,HeveyandSanders,2006).Theevidencecitedby

Greenwoodetal.(2005)infavourofearly,large-scalemeltingon theangriteparentbodycomesfromtheextremelyuniformmean

The homogeneous 17 O composition displayed by angrites hastobesetagainstthesignificantlymoreheterogeneousvalues measuredinachondritegroupsthatappeartohaveexperienced relativelylow degreesofpartialmelting, theureilites showthe highest levels of oxygen isotope heterogeneity of any achon- drite group, with a mean 17 O value of −0.96±1.00‰ (2␴) (Table1).Ureilitesarecommonlyconsideredtorepresentpartial meltresiduesthatmusthaveexperiencedatleast15%meltingto eliminateplagioclase,andasmuchas30%tosatisfyREEandEucon- straints(Mittlefehldtetal.,1998;Wilsonetal.,2008;Barratetal., 2016b).Theacapulcoite-lodraniteclanisalsoextremelyheteroge- neouswithrespectto 17 O,withameanvalueof−1.12±36‰(2␴) (Table1)(Greenwoodetal.,2012),andareestimatedtohaveexpe- riencedextremelyvariablelevelsofwhole-rockpartialmeltingof

20vol.%(McCoyetal.,1997a)(TableS1).This evidencesuggeststhattoattainoxygenisotopicequilibration,an asteroidalbodymusthaveundergoneatleast40%partialmelting andprobablyinexcessof50%(Greenwoodetal.,2005,2014).

AspointedoutbyKeil(2012),anunderlyingassumptionofthis modelisthattheangriteprecursormaterialwasheterogeneous withrespecttooxygenisotopes,anassumptionwhichhesuggests isunsubstantiated.Thisiscertainlytrue.Asaresultoftheexten- sivethermalprocessingexperiencedontheangriteparentbody allevidenceconcerningtheheterogeneityofthestartingmaterial hasbeencompletelyobliterated.However,inviewofthehighlev- elsofoxygenisotopeheterogeneitypresentinallchondritegroups

Independent of the oxygen isotope evidence, siderophile elementdepletions(Righter,2008;Shiraietal.,2009)andpale- omagnetic analysis(Weiss et al., 2008)are consistentwiththe formationofasmallcoreontheangriteparentbody.Boththehigh levelofoxygenisotopehomogeneitydisplayedbytheangritesand evidenceforcoreformationontheirparentbodywouldseemtobe consistentwithanearlyphaseoflarge-scalemelting.BasedonHf-

Wdata,Kleineetal.(2012)alsoinvokeearly,large-scalemeltingof theangriteparentbodydrivenbydecayoflive 26 Al.However,they alsosuggestthatthedataindicatesthatcoreformationwasnot asingleeventandmayhavebeendisruptedbymultipleimpacts whichconstantlyremovedinsulatingcrustandhencecausedrapid coolingofthemagmaocean.ThesuggestionbyKleineetal.(2012) thattheangritemantlewasnotsufficientlywell-mixedtoaccount fortheobservedoxygenisotopehomogenization,isnotsupported byBaghdadietal.(2015).Insteadtheselatterauthorssuggestthat themantleheterogeneitydiscussedbyKleineetal.(2012)isasec- ondaryfeaturethatpostdatescore-mantleseparationandreflects theincorporationofvariousamountsofexogenousironimpactor material.

3.3.2 Aubrites Aubrites are highly reduced achondritic meteorites, pre- dominantly composed of Mg-rich enstatite, with minor albitic plagioclase,Mg-richdiopside,olivine,metal,sulphideandavariety ofrareaccessoryminerals(Keil,2010).Intermsoftheircompo- sitionalvariation,mineralogyandoxidationstate,aubritesshow acloseaffinitytotheEHand ELchondritesandasaresultitis generallyacceptedthattheyformedfromenstatitechondrite-like parentmaterials(Keil,1989,2010;Barratetal.,2016b).Enstatite chondritesandaubritesalsohavecloselysimilaroxygenisotope compositionsandploton,orcloseto,theterrestrialfractionation line(Claytonetal.,1984;ClaytonandMayeda,1996;Newtonetal., 2000;Miuraetal.,2007;Barratetal.,2016b)(Fig.14).TheEHchon- dritesshowalargercompositionalrangethantheELchondrites withrespecttoboth␦ 18 Oand 17 O(Fig.14)(Table3,TableS3). WiththeexceptionofCumberlandFalls,theaubritesdefinearel- ativelyrestrictedfieldinFig.14,whichismore-or-lesscentralto boththeEHandELfields.CumberlandFallsisapolymictbreccia thatconsistsofchondriticfragmentsinanenstatite-richcataclas- ticmatrix(Keil,2010).ThesechondriticfragmentsareLLordinary chondrite-like(Keil,2010)andtheirpresenceisthelikelyreason thatCumberlandFallshasarelativelyheavy 17 Ocompositionand plotsawayfromtheotheraubritesinFig.14.Theaubritedataof Newtonetal.(2000)showsmorescatterthantherecentanalyses ofBarratetal.(2016b),whichprobablyreflectsbothimprovements

Fig 14 Whole-rock oxygen isotope analyses of aubrites and enstatite chondrites Data from Newton et al (2000) and Barrat et al (2016b) Elipses show the 2␴ variation of mean ␦ 18 O and 17 O values for the EH, EL and aubrite groups All 17 O values are linearized using a slope value of 0.5247 (Miller, 2002) Full data given in Table S3.

Summary of aubrite and enstatite chondrite oxygen isotope analyses.

A full listing of aubrite and enstatite chondrite data is given in Table S3 *Newton et al (2000); **Barrat et al (2016b) C Falls = Cumberland Falls. inanalyticalprecisionandaslightlyhighernumberofweath- eredfinds in theearlier study(Table3, TableS3) Barrat et al.

(2016b)concludethat thesamplestheyanalyzedwere derived fromtwoparentbodies,oneforthe“regular”main-groupaubrites andasecondfortheanomaloussamplesMountEgertonandLarned.

Asaresultoftheiroverlappingoxygenisotopecompositions, therehasbeengeneralagreementthattheenstatite chondrites andaubritesareinsomewaygeneticallyrelated(e.g.,Rubin,1983;

Claytonand Mayeda, 1996;Keil, 1989,2010; Keilet al., 1989), althoughthereisdiscussionabouttheexactnatureofthisrelation- ship.Rubin(1983)suggestedthattheaubritesrepresentedmelted

ELchondrites.Keiletal.(1989)proposedthat,althoughrelatedto theenstatitechondrites,theaubritescomefromtwoparentbodies, onerepresentedbyShallowater,withtheremainingaubritesfrom asecondbody.Shallowaterappearstohaveexperiencedaunique three-stagecoolinghistory,whichmayhavebeentheresultofa collisionbetweentwoenstatite-richbodies,onemoltenandone solid(Keiletal.,1989).Barratetal.(2016b)suggestthatMount

EgertonandLarnedmaybederivedfromthesameparentbody asShallowater.Thederivationofaubritesandenstatitechondrites fromthesamenebularreservoirissupportedbytheirsimilariso- topicvariationforarangeofelements,includingCa(Dauphasetal.,

(1994)calculateda␦ 18 OvaluefortheEarth’smantleof5.5‰.This isclearly veryclosetothe␦ 18 Ocompositionof theEH,EL and aubrites,which havevalues of5.309±1.253(2␴),5.485±0.789

(2␴)and5.404±0.334(2␴)respectively(Table3).Basedonthis evidenceand overlappingisotopicvariationforarangeofother elements,enstatitechondriteshavebeenproposedassuitablepre- cursormaterials for theEarth(Javoy,1995; Javoyet al., 2010).

However,basedonSiisotopedifferencesbetweenthesilicateEarth andenstatitemeteorites,SavageandMoynier(2012)excludethe possibilityofadirectgeneticrelationshipbetweenthetwo.

TheHowardite,Eucrite,Diogenitesuite(HEDs)isthemostabun- dantgroupofdifferentiatedmeteoritesarrivingonEarthtoday, comprisingroughly6%ofallwitnessedfalls(statisticsfromMete- oriticalBulletinDatabase;seealsoBurbineetal.,2002a).Eucrites arebasalticrocksthatformedeitheraslavaflowsorintrusions, diogenitesareorthopyroxene-rich,coarser-grainedigneouscumu- lates, and howardites are complex impact breccias containing bothdiogeniticandeucriticfragments(Mittlefehldtetal.,1998; Mittlefehldt,2015;Barratetal.,2008,2010;Yamaguchietal.,2009; McSweenetal.,2011).Arangeofevidence,includingspectraldata, orbitaldynamicsandrecentremotesensingobservationsbythe NASADawnspacecraftindicatesthattheHEDsoriginatefromthe asteroid4Vesta,thesecondlargestbodyinthemainbelt(McCord etal.,1970;BinzelandXu,1993;DeSanctisetal.,2012;McSween etal.,2011,2013;Mittlefehldt,2015;McCoyetal.,2015). Despite showing significant mineralogical and geochemical diversity(Mittlefehldtetal.,1998;McSweenetal.,2011,2013), themajorityofdiogenitesandmonomicteucritesdisplayrelatively restrictedvariationwithrespectto 17 O(Wiechertetal.,2004; Greenwoodetal.,2005,2014).Acompilationof144publishedand unpublishedHEDanalysesperformedat theOpenUniversity is giveninTableS4andasummaryofthisdatainTable4.Diogenite andeucritefalls(n&)displayahighlevelofisotopichomogene- itywithrespectto 17 O,withameanvalueof−0.240±0.014‰

(2␴) (Table4, TableS4) A much larger dataset of eucrite and cumulateeucritefallsandfinds(na)hasthesamemean 17 O value,butwithaslightlylowerprecisioni.e.−0.240±0.018‰(2␴) (Table4,TableS4).Likewise,analysesofdiogenitefallsandfinds (nD)haveamean 17 Ovaluethatisonlyslightlymoreneg- ativethanthat ofthefallsonly data,i.e.,−0.243±0.016‰(2␴) (Table4,TableS4).ThediogenitedatainTableS4includestheanal- ysesofGreenwoodetal.(2014)(n"),whichwereallleachedin EATG.Theslightlymorenegativemean 17 Ovalueobtainedinthat study,i.e.,−0.246±0.014‰(2␴),comparedtothelargerdiogenite datasetgiveninTableS4ispresumablyduetotheeffectsofterres- trialweatheringinthelatter.Itisclearfromtheseresultsthatthe diogenitesandeucriteshavevirtuallyidenticalcompositionswith respecttotheirmean 17 Ovalues,andthisevidenceisconsistent withtheirderivationfromasingleisotopicallyhomogeneouspar- entbody.Thisisfurtherillustratedbythefactthattheprecision ofthecombineddiogeniteandeucrite(n5)mean 17 Ovalue of−0.241±0.018‰(2␴)isalmostidenticaltothatoftheeucrites alone(Table4,TableS4).

Compared to the diogenites and monomict eucrites, the howarditesand polymicteucrites(n9)aresignificantlymore heterogeneouswithrespect to 17 O,as reflected bythe much

Summary of HED oxygen isotope data.

Eucrite, falls and finds (inc Stannern trend and cumulate eucrites) A 61 1.732 0.132 3.761 0.250 −0.240 0.009

Eucrites and diogenites, falls only 26 1.642 0.112 3.591 0.219 −0.240 0.007

Eucrites and diogenites, falls and finds 105 1.646 0.158 3.600 0.299 −0.241 0.009

17 O‰ linearized using a slope of 0.5247 (see Section 2.2 for further details) All analyses undertaken at the Open University.

A full listing of Open University HED data is given in Table S4.

Fig 15 Oxygen isotopic composition of HEDs (n = 144) Central zone (labelled “1”): ±2␴ precision for eucrite and diogenite falls only (n = 26) Intermediate zone (labelled

“2”): ±2␴ precision for eucrite, cumulate eucrite and diogenite falls and finds (n = 105) Outer zone (labelled “3”): ±2␴ precision for howardites and polymict eucrites (n = 39). EFL = Eucrite Fractionation Line: average 17 O value for 26 eucrite and diogenite falls = −0.240 ± 0.014 (2␴) (All data: Table S4). greater2␴variationoftheirmeanvalue:−0.247±0.050‰(2␴)

(Table4,TableS4)(Fig.15).Howarditesandpolymicteucritesare heterogeneousbrecciaswhich,inadditiontoindigenousclastand matrixmaterial,oftencontainasignificantnon-HEDcomponent

(Mittlefehldtetal.,1998).Inparticular,a numberofhowardites containa significantfraction ofcarbonaceous chondrite-related material.InthecaseofJodzieandBholghatithiscanbeupto5vol.%

06040containsabundantCM2-relatedclasts(Herrinetal.,2011) andthis isreflected inits 17 Ocomposition,which plotsclose tothatofJodzieand BholghatiinFig.15 Muchhigherconcen- trationsofCM2-likematerial(∼40–50%inplaces)arepresentin thehowarditePRA04401(Herrinetal.,2011;Greenwoodetal.,

2015b).Carbonaceouschondritematerialinhowarditesisgener- allybelievedtoresultfromimpactmixinginaregolithenvironment andisprobablyrelatedtothedarkmateriallocatedbytheDawn spacecraftonVesta’ssurface(McCordet al.,2012;Reddyetal.,

Thepresenceofcarbonaceouschondritematerialinhowardites andpolymicteucriteswillhavetheeffectofdisplacingtheir 17 O compositionstomorenegativevaluescomparedtothemeanvalue fordiogenitesandmonomicteucrites(Fig.15).Ontheotherhand, impactormaterialwith 17 OvaluesmorepositivethantheHED meanvalue,suchasordinarychondrite-relatedcompositions,will movethe 17 Ovalueintheoppositesense.Thisisonepossibilityto explainthecompositionsofhowarditeNWA2738orthepolymict eucriteDho1480(Fig.15).However,terrestrialweatheringwillalso resultinshiftsin 17 OvaluestowardstheTFL.Possiblescenarios fortheformationofHED-likecompositionsthatplotoutsidethe normalHED 17 OrangedefinedinFig.15arediscussedfurtherin

AsisclearfromFig.15andTables4andS4,allofthemainHED lithologies,withtheexceptionofhowarditesandpolymicteucrites, havevirtuallyidentical 17 Ocompositionsanddisplayahighlevel ofisotopichomogeneity.Infact,thelevelof 17 Ohomogeneity shownbydiogenitesandmonomicteucrites(n5)(±0.018‰

(2␴)) (Table4)iscomparable tothat ofother bodiesthat have experiencedhighlevelsofmeltingi.e.,theangrites(±0.014‰(2␴))

Incontrast,primitiveachondritegroups,whichexperiencedlower degreesof melting,have moreheterogeneous 17 Ovalues e.g., ±1.00‰ (2␴) in the case of the ureilites, and ±0.36‰ (2␴) in the case of the acapulcoites and lodranites (Greenwood et al.,

2012)(Table1).Thisevidencesuggeststhatboth thediogenites andmonomicteucritesarederivedfromasinglesourcethatwas extremelyhomogeneouswithrespectto 17 O.Suchhighlevels ofoxygenisotopehomogeneitysuggestthattheHEDparentbody underwentaphaseoflarge-scalemelting(Greenwoodetal.,2005, 2014).

Mo,WandP),ithasbeensuggestedthattheHEDparentbodyexpe- riencedanearlyglobal-scale melting event(Righterand Drake,

1997).Theextremelylowabundancesofhighlysiderophileele- ments(HSE)(Os,Ir,Ru,Pt,Pd,Re)inHEDsarealsoconsistentwith earlylarge-scalemelting,resultinginrapidcoreformation(Dale etal.,2012;Dayetal.,2012b).Usingarangeofpossiblechondritic sourcecompositions,RighterandDrake(1996,1997)calculateda percentagecoremassfortheHEDparentbodyofbetween5and 25%.ModellingbyToplisetal.(2013)derivedvaluesofbetween10 and30%.ThepreferredHEDprecursorcompositionofToplisetal.

(2013)(75%Hchondrite:25%CMchondritemix)givesacalculated coreradiusof114.2km,whichisaclosematchtothatderivedfrom Dawnobservations(110±3km)(Russelletal.,2012).Basedonthe resultsoflaboratorystudies,AshcroftandWood(2015)alsocon- cludethattheeucritesand diogenitescanbederivedbypartial meltingofachondriticbodywithacoresizeofbetween15and 20%themassofVesta.

Whilemoderatelyandhighlysiderophileelementabundance dataindicatethattheHEDparentbodyunderwentcoreformation, thisevidencealonedoesnotunambiguouslydemonstratethata phaseofglobalmeltingwasinvolved.Taylor(1992)concludedthat highdegreesof partialmelting (∼50%)wererequiredfor metal

“todrainaway andformacore”.While partialmeltingexceed- ing 50%hasbeengenerally acceptedby mostrecentmodelling studies(HeveyandSanders,2006;MoskovitzandGaidos,2011), coreformationatlowerdegreesofmeltingmayalsobepossible (Neumannetal.,2012).Themagmaoceanmodeldevelopedby RighterandDrake(1997)indicatesthattheHEDmantlemayhave beenbetween65%–77% molten(1500–1530 ◦ C)andwouldhave undergone turbulentconvection duringits initialstages Under suchconditions,global-scalehomogenizationofoxygenisotopes wouldhavebeenanefficientandrapidprocess(Greenwoodetal.,

2005,2014).However,whilemagmaoceanmodelshavehadsome successinexplainingthelarger-scalefeaturesofVesta’sdifferenti- ation(RighterandDrake,1997;MandlerandElkins-Tanton,2013), thereremainsignificantproblemswithourunderstandingofmany aspectsofHEDmagmaticevolution,inparticular,therelationship betweendiogenitesandeucrites(Barratetal.,2008,2010;Barrat andYamaguchi,2014).

Mesosideritesarebreccias consistingofsilicate-richmaterial enclosedinFe,Nimetal(plustroilite),withbothfractionsbeing presentinroughlyequalproportions(Weisbergetal.,2006).Asa consequence,likethepallasites,mesosideritesaregenerallyclas- sifiedasstony-irons(Krotetal.,2014).In themesosideritesthe silicatefractionispredominantlycomposedofbasaltic,gabbroic andorthopyroxene-richclasts Incontrast topallasites,olivine- richmaterialisrareinthemesosiderites(Mittlefehldtetal.,1998;

Scottetal.,2001; Greenwoodet al.,2015a).Sowhilepallasites appeartorepresentamixofcoreandmantle-derivedmaterials,the mesosideritesappeartorepresentacore-crustmix.Mixingmateri- alsderivedfromanasteroidalcorewiththosefromtheouterlayers ofadifferentiatedbody,withoutalsosamplingsignificantamounts ofolivine-richmantlematerial,necessarilyimpliescomplexforma- tionconditions(Mittlefehldtetal.,1998).Afurthercomplicating factoristhetwo-stagethermalhistoryofthemesosiderites,which cooledextremelyrapidlyathightemperatures(0.1–100 ◦ Cperyear at850–1150 ◦ C) and much more slowly at lowertemperatures

Althougha widerange of modelshave beenputforwardto explaintheoriginofthemesosiderites(Hewins,1983),itisnow generallyagreedthattheirmetalfractionmusthavebeenlargely moltenatthetimeofitsemplacement(WassonandRubin,1985;

Hassanzadeh et al., 1990; Rubin and Mittlefehldt, 1993; Scott et al., 2001) The main evidence in favour of emplacement of moltenmetal comesfromthe factthat the mesosideritemetal fraction is so homogeneous in composition and that it is dif-

ficultto solidify an asteroidal core without causing significant elementalvariation(WassonandRubin,1985;Hassanzadehetal.,

1990).Emplacementofmoltenmetalisalsoconsistentwiththe extensivemetamorphismandpartialmeltingexperiencedbythe mesosideritesilicate fraction.Recentdiscussionsconcerningthe formationofthemesosideriteshavefocusedonwhetherthemetal andsilicate-richfractionswerederivedfromthesame,ortwodis- tinctasteroids,aswellastheextentofparentbodydisruptioni.e., totalorlocal.Thus,Hassanzadehetal.(1990)putforwardamodel involvingtheimpactofadenudedmoltencoreintothesurfacelay- ersofaseconddifferentiatedasteroid,whereasScottetal.(2001) considerthatonlyasingledisruptedasteroidisrequiredtoexplain theformationofthemesosiderites.

Conventionaloxygenisotopeanalysis(i.e.,usingtheexternally- heated“bomb”technique)indicatedthattheaverage 17 Ovalue ofthemesosideriteswasindistinguishablewithinerrorfromthat oftheHEDsandsoconsistentwithasinglesourceforbothgroups

(ClaytonandMayeda,1996).However,conventionalanalysisalso suggested that the HEDs and main-group pallasites had indis- tinguishableisotopiccompositions(ClaytonandMayeda, 1996).

DerivingtheHEDs,mesosideritesandmain-grouppallasitesfrom the same parent body is problematic in view of the evidence thatboth theHEDsand mesosiderites lacka significantmantle component,whereasthemain-grouppallasitesareessentiallya core-mantlemix(Section3.3.5.1).

Thehigher precision provided bylaser-assisted fluorination, whencomparedtotheconventionaltechnique(Section2.3),has givenanimportantnewperspectiveontherelationshipbetween thetwomajorstony-irongroups.Inastudyof12main-grouppalla- sitesand17mesosiderites,Greenwoodetal.(2006)foundthatthey hadfullydistinguishableaverage 17 Ovaluesof−0.183±0.018

(2␴) and −0.245±0.020 (2␴) respectively The average 17 O value for the main-group pallasites changed only slightly to

−0.187±0.016(2␴)inamorerecentstudy,withanincreasedsuite of24individualsamples(103replicates)(Greenwoodetal.,2015a) (Fig.16)(Table1).Laserfluorinationdataforthemain-grouppal- lasitesandmesosideritesshownooverlapwithrespectto 17 O andindicatethatbothgroupsformdistinctpopulationsderived fromseparateparentbodies.Incontrast,laser-fluorinationdatafor mesosideritesandHEDsshowcomplete overlapwithrespectto

17 O(Greenwoodetal.,2015a)andthereforeconfirmthefind- ingsofearlierstudies(ClaytonandMayeda,1996;Clayton,2006) (Fig.16).

AlthoughmoreabundantthanintheHEDs,olivine-richmate- rialsare still rare in mesosiderites, making up between 0 and

6vol.%oftotal silicates(Ruzickaet al.,1994; Kongetal.,2008). However,aspointedoutbyMittlefehldt(1980),therearecompo- sitionalandtexturalsimilaritiesbetweenolivineinpallasitesand mesosiderites.Thisraisesthepossibilitythatsuchmaterialsmaybe co-geneticwiththeproposedmetal-richimpactor,ratherthanthe crustalunitsfromwhichthebulkofthesilicatefragmentswere derived.However,recentanalysisofolivine-rich materialsfrom theVacaMuerta,MountPadburyandLamontmesosideritesand fromthemesosiderite-relateddunitesNWA2968andNWA3329 showsthatthesesampleshave 17 Ovaluesidenticalwithinerror totheaveragemesosiderite 17 Ovalue(Greenwoodetal.,2006, 2015a)(Fig.16).Themostlikelyexplanationforthesedataisthat theolivine-richmaterialinmesosideriteswasnotderivedfromthe metal-richimpactor,butinsteadoriginatesfromthesamesource astheothersilicateclasts.However,thisinterpretationisdepen- dentontheproposedimpactorandtargethavingdistinctoxygen isotopecompositionsthataredetectableatthelevelsofprecision availableusingthelaserfluorinationtechnique.

3.3.5 Pallasites Pallasites are stony-iron meteorites that consist of coarse- grainedsilicates,predominantlyolivine,enclosedinFe,Nimetal, withthesilicatesandmetalbeingpresentinroughlyequalpro- portions (Mittlefehldt, 2008; Krot et al., 2014) Pallasites are sub-dividedintothreemaintypesonthebasisoftheirmineralogy andoxygenisotopecomposition:(i)main-group,(ii)EagleStation groupand(iii)thepyroxenepallasites(Krotetal.,2014).

3.3.5.1 Main-grouppallasites Olivineinmain-grouppallasitesis generallyverycoarse-grained,displayingbothroundedandangu- lar morphologies (Scott, 1977a).In most samplesit hasa very uniformcomposition(Fo 88 ± 1 ),althougha fewexamplescontain moreFe-richolivines,whichmaybeaslowasFo 82 (Mittlefehldt, 2008;Krotetal.,2014).Inadditiontoolivine,main-grouppallasites containminor amounts of calciumpyroxene,chromite, various phosphates,troiliteandschreibersite(Buseck,1977a,b;Krotetal., 2014).

Untilrecently,therewasgeneralagreementthatmain-group pallasiteswerederivedfromthecore-mantleinterfaceofasingle, differentiatedasteroid(ScottandTaylor,1990;Ulff-Mứlleretal., 1998;WassonandChoi,2003).Toexplaintheangularmorphol- ogyof many pallasitic olivines(Scott,1977a), an impactevent wasgenerallyinvokedinvolvingcrushingofmantleolivineintoan underlyingmoltencore(ScottandTaylor,1990;Ulff-Mứlleretal., 1998;WassonandChoi,2003).However,basedonNiprofilesacross taenitelamellae,Yangetal.(2010)showedthatmain-grouppal- lasitesdisplayevidenceforvariablecoolingrates;afeaturethat isinconsistentwithacore-mantleboundaryorigin.Instead,Yang etal (2010)suggested thatmain-group pallasitesoriginatedin anasteroidthathadexperienceddisruptioninahit-and-runstyle

Ungrouped and anomalous achondrites

Ungroupedachondritesareofparticularinterestbecausethey maybederivedfromuniqueparentbodiesthatwouldotherwise beunrepresented in themeteorite record In a similarway to ungroupedirons,theyhavethepotentialtosignificantlyexpand therangeofearlySolarSystembodiesavailableforscientificinves- tigation Oxygen isotope analysis is an important technique in establishingpossiblelinksbetweensuchmeteoritesandthemore well-definedgroupsforwhichwehavelargersamplesuites.

Anincreasingnumberofungroupedolivine-richachondritesare beingidentified whichshowmineralogical,texturalandoxygen isotopicaffinitiestothebrachinites(Dayetal.,2012a;Greenwood etal.,2012;Krotetal.,2014).Theseinclude:AlHuwaysah010,

Divnoe,NWA1500,NWA4042,NWA4518,NWA5400(andpairs),

Zag(b)(TableS5;Fig.19).Thenatureoftherelationshipbetween thebrachinitesandtheseungroupedolivine-rich achondrites is notalways clearcut.In partthis reflects thesomewhat poorly definedcharacteristicsofthebrachinitegroupitself(Section3.2.2).

Afewexamplesservetoillustratetheproblemsinvolvedindecid- ingwhetherthesemeteoritesareactuallybrachinites,orwhether theyarecompositionallysimilar,butotherwiseunrelatedsamples.

(Fig.19).ThecompositionofolivineinDivnoe(Fa20-28)justoverlaps thebrachiniterange(Fa 27-36 )(Petaevetal.,1994;Goodrichetal.,

2010).IthasbeensuggestedbyDelaneyetal.(2000)thatDivnoe mayberelatedtothebrachinitesbyaprocessinvolvingreduction ofiron-richolivineofthetype:

Fe2SiO4+CO →FeSiO3+Fe+CO2

However,Divnoeplotsofftheredoxtrenddefinedbyotherbra- chinites(Goodrichetal.,2010)andconsequently,despiteshowing mineralogicalsimilaritiestothebrachinites,isprobablyderived fromadistinctparentbody.NWA1500wasoriginallyclassified asabasalticureilite(Bartoschewitzetal.,2003),buthasanoxy- genisotopecomposition that plotsin themain brachinite field

(Fig.19).Morerecentstudiesofthemineralogyandgeochemistry ofNWA1500haveconcludedthatitshouldbereclassifiedasabra- chinite(Kitaetal.,2009b;Goodrichetal.,2010).Inkeepingwith thissuggestion,NWA 1500wasincludedwithinthebrachinites discussedinSection3.2.2.Theolivine-richachondriteNWA4042 showstexturalsimilaritiestothebrachinitesandhasanoxygen isotopecompositionthatplotstowardstheedgeofthebrachinite field(Fig.19).However,likeDivnoe, thecomposition ofolivine inNWA4042(Fa 20.3 )(MeteoriticalBulletinDatabase)islessFe- richthanthatofthebrachinites.Furtherworkisrequiredbefore NWA4042canbereclassifiedasabrachinite(Rumbleetal.,2008). Zag(b)(currentlyclassifiedasawinonaite)hasanoxygenisotope compositionindistinguishablefromthebrachinites(Delaneyetal., 2000;Dayetal.,2012a)(Fig.19).Itcontainsrelativelymagnesian olivines(Fa 22 )comparedtonormalbrachinites,butmaybelinked tothelattergroupviaasimilarredoxprocesstothatoutlinedfor Divnoe(Delaneyetal.,2000).Furtherevidencethat suchredox reactionsmaybeanimportant factorin thegenesis ofolivine- rich achondrites is given by the olivine-rich ultramafic breccia NWA4518(Lorenzetal.,2007,2011).Theoxygenisotopecom- positionofthismeteoriteplotsontheedgeofthebrachinitefield (Fig.19).Itcontainstwogenerationsofolivine:theequigranular groundmass hasa composition of Fa32, whereas olivine inclu- sionsinpyroxenemegacrystshaveamoreMg-richcompositionof

Fa 19.4 (Lorenzetal.,2007).NWA5400(andpairedsamples)(Table S5)isacoarse-grained,olivine-rich(∼Fa30)(79vol.%)rock,which hasabrachinite-likemineralogy,butanoxygenisotopecompo- sitionwhichplotsessentiallyontheterrestrialfractionationline (Fig.19)(Irvingetal.,2009;Dayetal.,2012a,MeteoriticalBulletin Database).Thus,includingNWA5400withinthebrachiniteswould furtherextendthegroup’soxygenisotopefield(Fig.19).

A number of meteorites which plot close to the brachinite fieldinFig.19,basedontheirmineralogy,areunrelatedsamples. NWA8777consistspredominantlyoforthopyroxene(88.6vol.%), with subordinate olivine (9.0vol.%) (∼Fa 31 ) and minor calcic feldspar.Thelowolivinecontentandcalcicplagioclasecomposi- tionsuggestthatNWA 8777isanungroupedachondrite(Irving et al.,2015).NWA 2993 is a coarse-grained, metal-rich achon- dritewhichhasareducedmineralogythatresemblesthatofthe acapulcoite/lodranitesandwinonaites,buthasanoxygenisotope compositionthat plotswellawayfromeithergroupand would appeartorepresentauniquesample(Bunchetal.,2007)(Fig.19). Dho1441plotsontheedgeofthebrachinitefieldinFig.19,but based onits MeteoriticalBulletin descriptionappears to bean impactmeltbrecciacontainingavarietyofclasttypes.

The unique, paired, sodic plagioclase-rich achondrites GRA

06128andGRA06129(=GRA06128/9)plotinthebrachinitefield in Fig.19 (Day etal., 2009,2011, 2012a;Sheareret al., 2010). Experimentalandpetrologicalstudiesindicatethatmeltswitha composition similarto GRA06128/9are produced at tempera- turesbetweenFe,Nisulphidemelting(950–980 ◦ C)andtheonset ofbasalticmelting(>1050 ◦ C)(Sheareretal.,2010).Inthistemper- atureinterval,partialmeltingofbetween13and30%ofanoxidized chondriticsource,followedbyinefficientremovalofthefelsicmelt, willleavearesiduewithabrachinitecomposition(Sheareretal., 2010;Dayetal.,2011;Gardner-Vandyetal.,2013).Onthebasisof thisevidenceithasbeensuggestedthatGRA06128/9mayrepre- sentevolvedfelsiccrustalmaterialfromthebrachiniteparentbody (Dayetal.,2009,2011).

LEW 88763is still currently classifiedas a brachinite, how- ever,a variety of evidence,including itsoxygen and noblegas isotopic compositions,suggeststhat it is not a member of this group (Clayton and Mayeda, 1996; Swindle et al., 1998) LEW

88763plotsattheedgeoftheacapulcoite-lodranitefield(Fig.19),but has a mineralogy and geochemistry indicating that it is a unique,ungroupedachondrite(Swindleetal.,1998).LEW88763 mayberelatedtothemetal-richachondriteTafassasset(Fig.19)(Nehruetal.,2003,2010;Gardner-Vandyetal.,2012).Twoother brachinite-like,ungroupedachondritesNWA6962andNWA7680 plotclosetoeachotherinFig.19andarebothcomposedpredomi-

Fig 19 The oxygen isotopic composition of anomalous and ungrouped primitive achondrites shown in relation to the main primitive achondrite groups (data: Table S5). nantlyofrelativelyFe-richolivinei.e.,∼Fa47andFa45respectively, suggestingthattheymayberelatedorpaired(Hydeetal.,2013).

Dho732andNWA1058plotinthewinonaitefieldinFig.19, whileDho500liesalongtheextensionofthewinonaitetrendat higher␦ 18 Ovalues.Allthreemeteoritesshowmineralogicalsimi- laritiestothewinonaites,butfurtherworkisrequiredtovalidate thisclassification(Lorenzetal.,2003;Greenwoodetal.,2012).

Ungrouped achondrites with affinities to the acalpulcoite- lodraniteclanappear toberare.While theorthopyroxene-rich, highlyoxidizedachondriteNWA6693,andrelatedsamplesNWA

6704andNWA 10132,plotin theacapulcoite-lodranitefield in

Fig.19mineralogicalevidencesuggeststhattheyarenotrelated tothelattergroup(Warrenetal.,2013;Irvingetal.,2015).The

MeteoriticalBulletinentryforNWA5517suggestssomeaffinities withtheacapulcoitesandlodranitesonthebasisofitssimilaroxy- genisotopecomposition.However,NWA5517plotsawayfromthe acapulcoite-lodranitefieldinFig.19.TheentryforNWA5517also pointstoitslackoforthopyroxeneandpaucityofmetalasreasons forexcludinga directlinkwiththeacapulcoitesand lodranites.

NWA7325,whichplotsrelativelyclosetoNWA5517inFig.19is anunrelatedsamplebasedonitsmineralogy;consistingof56vol.% calcicplagioclase(An 88.1-89.2 ),27%diopsideand16%olivine(Fa 3 )

(Irvingetal.,2013).IthasbeensuggestedthatNWA7325isapos- siblecandidateforbeingameteoritefromMercury(Irvingetal.,

Anumberofsampleswhichspanthechondrite-achondritetran- sition(petrologictype6andabove),andwhichsometimescontain relictchondrules,havebeendescribed as“metachondrites”and linkedtotheCRparentbody(Bunchetal.,2008;Sanbornetal.,

2014).InadditiontoNWA6693,NWA6704andTaffassasset,this groupalsoincludestheprimitiveachondrites NWA3100,NWA

3250,NWA6901andtheungroupedchondriteNWA2994(Sanborn etal.,2014).Onthebasisofits 54 Crcomposition,thecoarse-grained achondriteNWA8054,whichplotsclosetoNWA3100inFig.19, appearstobeanunrelatedsample(Sanbornetal.,2014).However, inthecaseofNWA6901andthepairedsamplesNWA2994and

Anumberofungroupedandprimitiveachondriteshavevery negative 17 Ovaluesandappeartoberelatedtovariouscarbona- ceouschondrite groups (Fig.20) While both ofthe ungrouped achondrites NWA7822andNWA8186arecomposedpredomi- nantlyofolivine,andplotclosetoeachotherneartheCCAMlinein Fig.20,theyappeartobeunrelatedsamples.NWA8186contains magnetiteandnometalortroilite;thisalongwiththepresenceof Cl-richapatiteandhighNicontentsinolivinesuggestsanaffinity withtheCKchondrites(Ageeetal.,2014;Srinivasanetal.,2015).In comparison,NWA7822containsaccessorytaeniteandmagnetite andshowsaffinitiestotheCVchondrites(Kuehneretal.,2013).The primitiveachondriteNWA3133doesnotcontainchondrules,has arecrystallizedmetamorphictexturewith120 ◦ triplegrainjunc- tionsandmayberelatedtotheCVchondritegroup(Irvingetal., 2004;Schoenbecketal.,2006).

Someungrouped achondrites haveoxygenisotope composi- tionsthatplotabovetheterrestrialfractionationlineand show affinitieswiththeordinarychondrites(Fig.21).NWA2353,NWA

2635andNWA7835showmineralogicalaffinitieswiththeHchon- dritesaccordingtotheirrespectiveMeteoriticalBulletinentries. However,twoofthesesamples,NWA2353andNWA7835,plot somewhatawayfromtheHchondritefieldinFig.21.Inthecaseof NWA2353thiscouldreflecttheinfluenceofterrestrialweathering. NWA7835isacomplexbrecciaanditissuggestedthatthismay explainitsveryvariableoxygenisotoperesults.Ungroupedand primitiveachondritesshowingaffinitieswiththeL(NWA4284)and

LLchondrites(NWA5297,NWA6698)arealsorecognized(Fig.21).

Asdiscussedin Section3.3.3,thefactthat thevastmajority ofdiogenite,eucriteandcumulateeucritesampleshavevirtually identical 17 Ovalueslendssupporttotheviewthatallofthemajor HEDlithologiesarederivedfromasingleparentasteroid(McSween etal.,2013).However,arelativelysmallgroupofbasalticachon- driteshave 17 Othatlieatleast3␴outsidethemeanvaluedefined bytheHEDfalls,i.e.,−0.240±0.021‰(3␴)(Fig.22)(Scottetal.,

Fig 20 Oxygen isotopic composition of ungrouped and primitive achondrites with carbonaceous chondrite affinities (data: Table S5).

Fig 21 Oxygen isotopic composition of ungrouped and primitive achondrites with ordinary chondrite affinities (data: Table S5).

NWA2400Fig.19)alltheknownanomalousbasalticachondrites plotbetweentheeucritefractionationline(EFL)andtheangrite fractionationline(AFL).NWA011,despiteitsbasalticmineralogy

(Yamaguchiet al., 2002), hasa 17 Ocomposition farremoved fromtheotherbasalticachondrites,i.e.,−1.604‰forthepaired sampleNWA2400(Table6)andplotsclosetotheacapulcoite- lodranitefieldinFig.19.The␧ 54 CrcompositionofNWA011places it in the same group as the carbonaceous chondrites (Fig 10)(Warren,2011a).As isclearfromFig 15,thehowarditesBhol- ghatti,SCO06040andJodziealsohaveanomalouslybulkoxygen isotopecompositionwhencomparedtootherHEDs.However,this

Fig 22 Oxygen isotopic composition of anomalous basaltic achondrites shown in relation to the HED analyses plotted in Fig 15 (Table S4) Central shaded zone: ±2␴ precision for eucrite and diogenite falls only (n = 26) Outer shaded zone: ±3␴ precision for eucrite and diogenite falls only (n = 26) References and data for the anomalous basaltic achondrites given in Table 6 Data for angrites from Greenwood et al (2005) (Table 2) Abbreviations, EFL: eucrite fractionation line, AFL: angrite fractionation line, TFL: terrestrial fractionation line, BR-F: Bunburra Rockhole fine-grained lithology, BR-M: Bunburra Rockhole medium-grained lithology, BR-C Bunburra Rockhole coarse-grained lithology (BR analyses from Bland et al., 2009a,b).

Oxygen isotopic composition of anomalous basaltic achondrites.

Sample Name Classification FALL? N References ı 17 O‰ 1␴ ı 18 O‰ 1␴ 17 O‰ 1␴

Dhofar 007 − Lithology A Cumulate eucrite N 2 This study 2.102 0.035 4.229 0.062 −0.115 0.002

Dhofar 007 − Lithology B Cumulate eucrite N 9 This study 1.772 0.130 3.711 0.248 −0.173 0.005

EET 92023 Unbrecciated eucrite N 4 This study 1.881 0.044 3.821 0.097 −0.122 0.018

Emmaville Monomict eucrite Y 5 This study 1.993 0.036 4.069 0.093 −0.139 0.016

NWA 2400 (pair of NWA 011) ungrouped basaltic achondrite N 1 This study −0.060 2.947 −1.604

Notes: 1: Scott et al (2009); 2: Bland et al (2009a,b); 3: Wiechert et al (2004); 4; Greenwood et al (2005). reflectstheirrelativelyhighcontentofimpact-derivedcarbona- ceouschondrite-relatedmaterial(Section3.3.3)andsotheoriginof thesehowarditeswillnotbediscussedfurtherhere.Thehowardite

3␴envelopeinFig.22.Thismightreflecttheinfluenceofterres- trialcontamination,butbasedontheirMeteoriticalBulletinentries bothsamplesshowonlyminimalweathering effects.Bothsam- plesrequirefurtherdetailedstudy,butonepossibleexplanation fortheiranomalousisotopiccompositionsisthattheymaycontain animpact-derivedcomponentinwhichtheimpactorhada 17 O valuethatwasmorepositivethanisotopicallynormalHEDs(see evidencefromJaH556discussedbelow).

As pointed out by McSween et al (2013) and Mittlefehldt

Wiechertetal.(2004)proposedthatbothnormalandanomalous samplescomefromasingleheterogeneousHEDparentbody.In contrast,Scottetal.(2009)suggestedthattheisotopicallyanoma- loussamplesmayhavecomefromdistinctasteroidalsources.This latterexplanationimpliesthattheHEDparentbodyitselfhadavery homogeneous 17 Ocomposition,consistentwithmagmaocean models(Greenwoodetal.,2005).Asanexplanationfor theori- ginofatleastsomeanomalousbasalticachondrites,Greenwood etal.(2005)andJanotsetal.(2012)highlightedthepossiblerole ofimpactprocessesasamechanismforproducingisotopichetero- geneity.

881394(Nyquistetal.,2003),arangeofevidencewouldseemto indicatethattheyarenotfromthesameparentbodyasthemajor- ityofHEDsamples(Scottetal.,2009).However,thesituationis lessclearcutfortheothers,withatleastsomeshowingsignificant degreesofbrecciation,e.g.,Pasamonte(Metzleretal.,1995)and Dhofar007(Yamaguchietal.,2006).Inaddition,extremelyele- vatedsiderophileelementcontentsareobservedinanumberof anomalousbasalticachondrites,suchasEET92023(Mittlefehldt andLindstrom,1996;KanedaandWarren,1998)andDhofar007 (Yamaguchietal.,2006)andtoalesserextent,butstillsignificantly higherthannormaleucriticlevels,inothers,suchasPasamonte (Daleetal.,2012;Dayetal.,2012b).Whileitislikelythatsome anomalouseucritesarederivedfromdistinctparentbodies,anum- bermaybetheproductsofimpactmixingonthesurfaceoftheHED parentbody.

ThehighlyshockeddiogeniteDho778(shockstageS4)hasan anomalousoxygenisotopecomposition(Fig.22).Verylittlework hassofarbeenundertakenonDho778,butastheonlyknown anomalousdiogenitethis sampleclearlymeritsfurtherdetailed examination.Itsanomalouscompositionmaybeduetocontam- inationwithimpactor-derivedmaterial,oralternativelyreflectsa highdegreeofterrestrialweathering.Thislatterpossibilityseems unlikelyinviewofitsrelativelylowweatheringgrade(W1)(Mete- oriticalBulletin Database).Dhofar007wasstudiedin detail by

Yamaguchietal.(2006)anditwasconcludedthatitshowedsome affinitiestothemesosiderites.Twoseparatefractionsofthismete- orite(Dho 007A and B, Fig 22, Table 6)analyzed at the Open

Therelativelyconstrained distributionofanomalousbasaltic meteorites(withthenotableexceptionofNWA011),lyingbetween theEFLandAFL(Figs.22and23)couldbeinterpretedasreflect- ingimpactmixing betweenisotopicallynormalHED lithologies andmaterialthathasaheavier 17 Ocomposition.Anexampleof wherethishasactuallytakenplaceisprovidedbytheanomalous howarditeJaH556(Janotsetal.,2012).Thisspecimenisaweath- eredimpactmeltbreccia,comprisinghighlyshockedclastssetina

finelyrecrystallized,vesicularmatrix.Itsbulkoxygenisotopecom- positionisanomalous,witha 17 Ovalueof−0.11‰(Fig.23).In contrast,EATG-washedclastsinJaH556havenormalHED 17 O values(Fig.23).JaH556hasahighlyenrichedsiderophileelement contentandcontains claststhat appeartoberelictchondrules, witholivinecompositionsconsistentwithanHchondriteprecur- sor.BoththesiderophileelementcontentofJaH556anditsbulk oxygenisotopecompositionpointtoitcontaininga10–15%Hchon- dritecomponent.AnimpactoriginforananomalousHEDcould beoverlookedwhena lowerpercentageofimpactormaterialis present,orwasnon-chondritic(i.e.,lowsiderophileelementcon- tent),suchaswouldbethecaseiftheimpactorwasanangrite, aubrite,oranordinarychondrite-relatedachondrite.

It is clear from the preceding discussion that considerable uncertaintystillexistsconcerningtheoriginofanomalousbasaltic achondrites The tightlyconstrained distributionof the bulk of thesemeteorites,lyingbetweentheEFLandAFL(Figs.22and23), couldbeinterpretedassupportinganimpactorigin.Ontheother hand, therelatively low siderophile element contents of some anomalousbasalticachondritesarguesagainstimpact-mixingas ageneralprocessintheformationofthesemeteorites(Scottetal.,

2009).Thepossibilitythattheyaresimplysamplesofa hetero- geneous HED parent body is not supportedby theirone-sided distributioninoxygenisotopespace(Figs.22and23).Clearly,fur- therworkisrequiredtounderstandtheoriginoftheseanomalous meteorites.

Discussion

Understanding the meteorite record: an oxygen isotope/remote sensing perspective

Meteoritesprovideuswithagreatdiversityofextraterrestrial materialsthatarecapableofyieldingfundamentalinsightsinto earlySolarSystemevolution.However,inordertointerpretthe meteoriterecordeffectivelyweneedtoevaluateitsrelationship, both tothecontemporary asteroid populationand alsotohow thatpopulationhasevolvedwithtime.Thisinvolvesaddressing anumber ofkey issues.Firstly,it isimportanttoevaluatehow manyasteroids/parentbodiesarerepresentedintheworldwide meteoritecollection(e.g.Burbineetal.,2002a;Hutchison,2004). Secondly, we need to assess how representative the meteorite recordisbothoftheNEOandmainbeltpopulations(Burbineetal., 2002a;Vernazzaetal.,2008;ThomasandBinxel,2010).Finally, weneedtoaddressthequestionofjusthowusefulcontemporary meteoritesandasteroidsareasindicatorsofthecompositionand structureofthefirstgenerationplanetesimalsthatpopulatedthe SolarSystempriortotheaccretionoftheterrestrialplanets?Rel- evanttothisfinalquestionaretheproposalsthat:(i)migrationof thegiantplanetsplayedacriticalroleincontrollingthepresent structureoftheasteroidbelt(Walshetal.,2011);(ii)thatexist- ingdifferentiatedasteroids,suchas4Vesta,aresecondarybodies (Consolmagnoetal.,2015),and (iii)thatearlyfragmentationof planetesimalsresultedindifferentiallossofmantlematerials(Bell etal.,1989;Burbineetal.,1996;Jacobsonetal.,2016).

Inthissection,welookfirstattheevidenceprovidedbyoxygen isotopesconcerningthelikelynumberofdifferentiatedparentbod- iesrepresentedwithinthemeteoriterecord.Wethenuseremote sensingobservationstoassesshowsamplesthatarriveonEarth arerelatedtotheasteroidspresentinboththeNEOandmainbelt

Fig 23 Oxygen isotopic composition of clasts, matrix and bulk for the howardite JaH 556 All of the JaH 556 fractions were treated using EATG to mitigate the effects of terrestrial weathering (JaH 556 data: Janots et al., 2012) Abbreviations as Fig 22. populations.Finally,weevaluatethelikelyrelevanceofourexist- ingsamplestothepopulationofplanetesimalsformedinthefirst fewmillionyearsofSolarSystemhistory.

ItwasestimatedbyBurbineetal.(2002a)thatourmeteoritecol- lectionscouldrepresentasfewas∼100asteroids(∼27chondritic,

∼2primitiveachondritic,∼6differentiatedachondritic,∼4stony- irons,∼10irongroups,∼50ungroupedirons).Theysuggestedthat this number couldincrease to∼150dependingon theinterre- lationshipsbetweenungroupedirons(117 ungroupedironsare currentlylistedontheMeteoriticalBulletindatabase).Inlinewith theseestimates,Hutchison(2004)suggestedthatmeteoritesare sourcedfromapproximately120asteroids,withabout80ofthese bodiesbeingrepresentedbyungroupedirons.However,Wasson

(2013b)ismoreconservativeandsuggeststhatonly17asteroids aresampledbytheungroupedirons,makingatotalof26asteroids representedbyironsasawhole.AspointedoutbyBurbineetal.

finds,principallyfromAntarcticaandtheSahara.Asaconsequence oftheirrelativelyhighcommercialvalue,achondritesareparticu- larlysoughtafterandsothereiscurrentlyahighrecoveryrateof uniqueandunusualspecimensfromtheSahara.Here,weusethe oxygenisotopeevidencereviewedearlier(Sections3.2,3.3,3.4)to assessthenumberofdistinctparentbodiesthatwerethesourceof theachondrites(Table7).

Inthecaseofthemainprimitiveachondritegroups(acapulcoite- lodraniteclan,brachinites,ureilitesandwinonaites)aminimumof

4parentbodiesisrequired.AsdiscussedinSection3.4.1,thereis considerableuncertaintyaboutwhichsamplesshouldbeincluded inthebrachinite group.We haveessentiallyseparatedthebra- chinitesand brachinite-likeachondrites intotwogroups onthe basis of olivine composition One group we designate as “bra- chinitesandbrachinite-relatedsamples”andasecondgroupwe havetermed“Mg-rich,brachinite-like”.Thissecondgroupcom- prises samples such as Divnoe, which contain olivines with a relativelymagnesiancomposition.Apartfromthepallasites,which appeartobederivedfromsixdistinctparentbodies(Section3.3.5.4) andtheaubriteswhichareprobablysamplesfromtwo(seeSection

3.3.2),alloftheothermaindifferentiatedandstony-irongroups appeartobesamplesfromjustasingleparentbody.Greenwood etal (2015a) havereviewed theevidencein favourof asingle parentbody forthemesosideritesandHEDs.However,herewe haveadoptedthemoreconventionalapproachandassignedeach toa distinctsourceasteroid.Basedontheanalysispresentedin

Section3.4.1ungroupedprimitiveachondritesandrelated sam- ples would appear tobederived fromabout16 parent bodies.

Thereisconsiderableuncertaintyassociatedwiththis figure,as theinterrelationshipsbetweenthevarioussamplesare,inmany cases,speculativeandrequirefurtherdetailed studytobefully evaluated.Finally,theungroupedandanomalousbasalticachon- dritescouldbederivedfromasfewas4parentbodies (Section

3.4.2).Therelationshipbetweenthesesamplesispoorlyunder- stoodandthesubjectofactiveresearch.Anextremepositionwould bethateachanomalousbasalticachondritesampleisderivedfrom adistinctsource,inwhichcaseabout10differentparentbodies arerequired.Alternatively,bysolelyinvokingimpact-relatedpro- cesses,orahighlyheterogeneouscompositionforVesta,onlytwo parentbodieswouldbeneeded,oneforNWA011andanother(4

In summary, it would seem that silicate-rich achondrites

(Table7)aresamplesfromapproximately35parentbodies.This estimatelieswithintherangeof26to60parentbodiesthoughtto berepresentedbytheironmeteorites(Scott,1972;Burbineetal.,

1996;Mittlefehldtetal.,1998;HaackandMcCoy,2005;Chabotand Haack,2006;Wasson,2013b;Benedixetal.,2014b).Assumingthat ironsarederivedfromahighernumberofparentbodiesthanthe achondrites,thismaysimplybeareflectionofthegreaterspace survivabilityofironsandstony-ironscomparedtostones(Burbine etal.,2002a).

Animportantquestionthatnow arisesiswhetherironsand silicate-richmeteoritesarederivedfromthesame,ordistinctaster- oid populations A range of evidence indicates that the parent bodiesoftheironsaccretedoveraverybrieftimeintervalandthen heatedupanddifferentiatedrapidly(seeSection4.4).Contraryto thesuggestionthatsuchasteroidsmayhavebeensurroundedby a chondriticshell(Elkins-Tantonetal.,2011;Weissand Elkins- Tanton, 2013), it would seem that heating may have been too intensetohavepreservedanythingotherthanathinvestigialchon- driticsurfacelayer(HeveyandSanders,2006).Coolingratestudies ofironmeteoritesindicatethatsuchearly-formedbodieswerethe subjectof rapidfragmentation,withtheironsessentiallylosing most,ifnotall,oftheirsilicatemantlesandcrust(Goldsteinetal.,

Oxygenisotopestudiesprovidesomeevidencetolinksilicate andironmeteoritegroups,themostnotableexamplesbeingthe winonaiteswiththeIAB-IIICDirons,IVAironswithLorLLgroup chondrites,IIEironswithH groupchondrites,and possiblyalso main-grouppallasiteswiththeIIIABirons(Section3.3.6).However, apartfromthedisputedrelationshipbetweenmain-grouppalla- sitesandIIIABs,theotherirongroupsareinassociationwithmore primitivesilicatematerialthanwouldbeproducedbyafullydif- ferentiatedasteroid.Withoutadditionalevidencetolinkthem,it seemslikelythatthemajorityofironsarederivedfromseparate parentbodiestothechondriticandachondriticmeteorites.Onthis basiswecanupdatetheparentbodyinventoryofBurbineetal. (2002a) asconsistingof∼110asteroids(∼60irons,∼35 achon- drites,∼15chondrites).Inthemainbeltthenumberofasteroids withdiameters>1,50and100kmis1.36×10 6 ,680and220respec- tively(Bottkeetal.,2005).Providedmeteoritesarejustsampling thelargerbodies(e.g.diameters>100km),thenthefigureof110 asteroidsmightsuggestthatwehavearepresentativesampling oftheasteroidbelt.However,themechanismsinvolvedinmete- oritedeliveryfromthemainbeltarecomplexanditisextremely unlikelythatwehavematerialfromjustthelargerasteroidsinour collections(Burbineetal.,2002a).

Intheprevioussectionweusedtheoxygenisotopeevidence presentedearlierinthisreviewasameansofassessinghowmany distinctparentbodies wehavesamplesofinourmeteoritecol- lections Remote sensing observations provide an independent meansofexamininghowrepresentativethemeteoriterecordis oftheoverallSolarSystemdistributionofdifferentiatedasteroids (Burbine,2014,2016a).Arewejustsamplingmaterialfromafew relativelyrecently-formedasteroidfamilies,ordowehavesamples fromawiderrangeofsources?V–typeasteroidsprovideaninter- estingcasestudy.ThebulkofHEDs(V–types)appeartocomefrom Vesta.However,oxygenisotopeevidencesuggeststhatasmallsub- grouphaveanomalouscompositions(Section3.4.2).Arethesealso fromVestaandhenceisVestamoreheterogeneousthanpreviously suggestedbymagmaoceanmodels(Greenwoodetal.,2005,2006), orarethereothersourcesofVtypesinthemainbelt?

Remotesensingobservationsofasteroidshaveidentifiedpossi- blemeteoriteparentbodiesforalldifferentiatedachondrites.The reflectanceofpowderedmeteoritesamplesinthevisibleandnear- infraredcaneasilybemeasuredinthelaboratoryandcompared tothereflectancespectraof asteroidsmeasuredat a telescope.

Estimate of the number of parent bodies sampled by primitive and differentiated achondrites.

Meteorite groups Related samples and pairs Comments Parent bodies (N)

Winonaites (plus IAB, IIICD irons) Dho 500, Dho 732, Dho 1441, NWA 1058 1

Brachinites and brachinite-related samples Al Huwaysah 010, GRA 06128/9, Mil 090206 (and pairs),

Differentiated achon and stony irons

HEDs Dho 778, Dho 1480, JaH 556, NWA 1240, NWA 2738 1

Mg-rich, brachinite-like Divnoe, NWA 4042, NWA 4518, RBT 04255, RBT 04239,

Tafassasset chondrule-bearing/primitve achondrite 1

NWA 6962 NWA 7680 Brachinite-like mineralogy 1

NWA 3100 NWA 2994, NWA 3250, NWA 6901, NWA 8548 CR Chondrite-related 1

NWA 3133 NWA 7822 CV Chondrite-related 1

NWA 5297 NWA 6698 LL Chondrite-related 1

NWA 2353 NWA 2635, NWA 3145, NWA 7835 H Chondrite-related 1

A-881394 Bunburra Rockhole, Emmaville, Dho 007, EET 92023 1

Manyminerals(e.g.,olivine,pyroxene)havedistinctiveabsorption featuresinthiswavelengthregion(e.g.,Burns,1993).

Ureilites were traditionally linked withS-complex asteroids

(Gaffeyetal.,1993).However,thisinterpretationchangedwhen near-Earthasteroid2008TC 3 collidedwiththeEarth’satmosphere inOctoberof2008andhadfragmentsrainingdownovertheSudan

TC3wasobtained(Jenniskensetal.,2009)beforeimpactandwas foundtobeaC-complexbody.Theasteroidwasclassifiedasan

F-type,whichisa classdefinedintheTholen(1984)taxonomic system,duetoitsrelativelyflatreflectancespectrum.Inhindsight, thisshouldnothavecomeasasurprise,sinceureiliteshadbeen notedtobespectrallysimilartoC-complexasteroidsduetotheir weakabsorptionfeaturesresultingfromtheirhighcarboncontents

(CloutisandHudon,2004;Cloutisetal.,2010).However,someure- iliteshavestrongerabsorptionbands(Cloutisetal.,2010)andtheir parentbodiescouldpotentiallybeclassifiedasK-types(Burbine,

Angritespectrahavebeenfound(Burbineetal.,2006)tohavea verybroad1␮mfeature,butaweaktoabsent2␮mband,con- sistentwithamineralogy ofdiopside-hedenbergiteand olivine.

(2006)interpretedthereflectancespectrumout to∼1.65␮mof O-type(3628)Boˇznˇemcovátobeconsistentwithanangrite-like mineralogy,butnear-infraredspectraoutto2.5␮mofBoˇznˇemcová (DeMeoetal.,2009;Burbineetal.,2011)showa2␮mbandthatis notconsistentwithanangritemineralogy.

AubriteshavebeentraditionallylinkedtoE-typeasteroids(e.g., Zellner, 1975; Zellner et al., 1977), since both typesof objects havehighvisualalbedosandflatreflectancespectra.Aubritesare enstatite-rich,awhite,virtuallyFeO-free,mineral.E-typesarecom- monlyfoundintheHungariaregion(Clarketal.,2004; ´Cuketal.,

2014)oftheinnerasteroidbelt.BusandBinzel(2002a,b)identified afeatureshortwardsof0.5␮minanumberofX-types(flatvisible reflectancespectra)thathasbeenattributedtooldhamite(Burbine etal.,2002b),amineralcommonlyfoundinaubrites(Wattersand Prinz,1979;Mittlefehldtetal.,1998).

Duetospectralsimilaritiesinthevisible(McCordetal.,1970) andnear-infrared(LarsonandFink,1975)HEDshavebeenlinked toasteroid4Vesta.Thiscompositionalsimilaritywasconfirmedby theDawnmission,whichalsofoundthatVesta’ssurfacehadele- mentalratiosfromgammarayanalysesthatareconsistentwithHEDs(Prettyman etal.,2012).Binzeland Xu(1993)had previ- ouslyidentifiedanumberofsmallobjects(calledVestoids)with

3:1and 6 meteorite-supplyingresonances.However,anumber ofVestoidshavebeenidentifiedpastthe3:1resonance(e.g.,Roig andGil-Hutton,2006;Roigetal.,2008)anditisunclearwhetherit isdynamicallypossibletoderiveallthesebodiesfromVesta.The mostnotableofthesebodiesis(1459)Magnya(Lazzaroetal.,2000;

3.14AU,farfromVesta’slocation(2.36AU).AsdiscussedinSection

3.4.2,oxygenisotopeevidencedemonstrates thatasmallgroup ofbasalticachondriteshaveanomalouscompositionsandmaybe derivedfromatleastthreeparentbodiesinadditionto4Vesta.

Isitpossiblethat(1459)Magnyamaybethesourceforatleast someoftheseanomalousbasalticachondrites?Analysisofthefire- ballassociatedwiththefalloftheBunburraRockholeanomalous eucriteindicatedthatitoriginatedintheinnermainbelt,farfrom

Vesta(Blandetal.,2009a).Thisagainsuggeststhatwehavebasaltic achondriteswithinourcollectionsderivedfrommultipleparent bodies.

Cloutisetal.,2015).Traditionallytheparentbodiestothesegroups arethoughttobefoundamongthepyroxene-rich(mesosiderite- like)andolivine-rich(pallasite-like)S-complexasteroids(Gaffey etal.,1993).Fieber-Beyeretal.(2011)identifiedanumberofS- complexMariafamilymembersashavinginterpretedmineralogies similartomesosiderites.Cloutisetal.(2015)identifiedanumberof

Acapulcoites/lodranites and winonaites are typically linked withS-complexbodies(Gaffeyetal.,1993;Burbineetal.,2001) sincetheyhaveolivine-pyroxenemineralogiesandmostS-types haveabsorptionfeaturesduetoolivineandpyroxene.However,it isunclearhowabundanttheseprimitiveachondritesareamong main-beltbodies, sincemostobservedS-complexasteroid have interpretedmineralogiessimilartoordinarychondrites(Vernazza et al., 2014) Olivine-rich brachinites are commonly linked to somemembersoftheA-typeclass(Sunshineetal.,2007;Sanchez etal.,2014),whichhavespectralpropertiesdominatedbyolivine.

Mothé-Diniz and Carvano (2005) noted the spectral similarity betweenDivnoeandtheK-typeasteroid(221)Eos.

Based on the above analysis it is clear that differentiated achondritesarederivedfromawiderangeofasteroidalsources.

However, most of the work so far undertaken is based on well-characterizedmeteorite groups.Therecoveryofincreasing numbers of ungrouped and anomalous achondrites, principally fromNorthAfrica,representsanewchallengeforremotesensing studies.Mostofthesesampleshaveyettobeclassifiedspectrally andtheirrelationshiptoexistinggroupsislargelyunknown.The diverseolivine-richbrachiniteandbrachinite-likesamplesareof particularinterestasitisunclearhowmanyparentbodiesthese meteoritesrepresent(Section3.4.1).

4.1.3.1 Asteroidbeltevolution DynamicmodelsofearlySolarSys- temevolution indicatethat,compared totheterrestrialplanets, thegas giantsformed rapidly and underwent an inward-then- outwardmigration(Walshetal.,2011;O’Brienetal.,2014).Ithas beensuggestedthatsuchascenariocanexplainthepresentstruc- tureoftheasteroidbelt,sothatmigrationinitiallycleansoutthe beltregionbutthenrepopulatesitsinnerregionswithplanetesi- malsthataccretedintheinnerSolarSystem(1–3AU)anditsouter regionswithbodiesthatformedbetweenandbeyondtheorbitsof thegiantplanets(Walshetal.,2011;O’Brienetal.,2014).Evenifthe influenceofthegasgiantsisneglected,modellingstudiesindicate thattheplanetesimalsfromwhichtheironmeteoriteswerederived mostlikelyaccretedintheterrestrialplanetregionand,follow- ingintensecollisionalevolution,theirremnantsweresubsequently scatteredintothemainbelt(Bottkeetal.,2006).Ofcoursethebulk ofthisinitialplanetesimalpopulationwouldhavebeenconsumed toformtheterrestrialplanets,includingEarth(Chambers,2004; Izidoroetal.,2014).Aclearimplicationofthesemodelsisthatthe asteroidbeltwillcontainmaterialthataccretedatwidelyvary- ingheliocentricdistances;anoutcomethatiscompatiblewiththe bimodalityobservedinanumberofstableisotopesystems(Section 4.4)(Warren,2011a,b).Inaddition,theremnantsoftheplanetes- imalsthatarescatteredintothemainbeltarelikelytobehighly deformedbyvirtueofmultipleimpactencounters(Asphaugetal.,

4.1.3.2 Do we haveany samplesfrom pristineplanetesimals? As isclearfromtheprecedingsection,samplesofearly-formeddif- ferentiatedplanetesimals,deliveredtoEarthasironsstony-irons andachondrites,arelikelytohavehadcomplexdeformationand impacthistories.Collisionalreprocessingis likelytohavetaken placebothbeforeandafteremplacementintothemainbelt.While theevidencepresentedinthisreviewclearlyshowsthatwedohave samplesfromtheveryearlieststagesofplanetbuildingthisrecord needstobecarefullyevaluated.Asanexampleofthis,4Vesta,the archetypalintactprotoplanet(Russell etal.,2012), mayprovide somevaluableinsights.

PriortotheDawnmission,Hubbletelescopeandground-based observationhadsuggestedthatsomeregionsofVestamaycon- tainasubstantialolivinecomponent(Binzeletal.,1997;Gaffey,

1997).Suchobservationswereinkeepingwiththeprotoplanetary paradigm,whichhypothesizedthatVestawasaleft-overdifferenti- atedprotoplanet(Russelletal.,2012).Thebasisofthismodelbeing that,givena“chondritic”bulkcomposition,andasaresultofearly heatingby 26 Al,Vestashouldhave differentiatedintoa layered bodycomprisingametalliccore,athickolivine-dominatedman- tleandarelativelythin,predominantlybasalticcrust(Righterand Drake,1997;Ruzickaetal.,1997;MandlerandElkins-Tanton,2013; Toplisetal.,2013).Infact,theDawnmissionfailedtodetectany endogenousolivineonVesta(Nathuesetal.,2015).Olivineappears tobeabsenteveninthedeepsoutherncraterwhereolivine-rich materialshouldhavebeenexposedifVestaaccretedfrombroadly chondriticprecursormaterials(Chenetetal.,2014).TheHEDsalso displayextremelevelsofalkalidepletion,withvaluesthataremuch lowerthanpredictedonthebasisofachondriticprecursor(Righter andDrake,1997).Suchnon-chondriticcharacteristicshaveledto thesuggestionthatfarfrombeingapristineprotoplanet,Vestaisin factasecondarybodythatexperiencedextremepost-formational collisionalreprocessing(Consolmagnoetal.,2015).Collisionalpro- cesses have alsobeen invoked toexplain the formation of the main-grouppallasites(Section3.3.5.1),whichshowvariablecool- ingratesandhencecouldnotsimplyrepresentsamplesfromthe core-mantleboundaryoftheirparentasteroid(Yangetal.,2010).Recentproposalsinvolveformationinahit-and-runstylecollision(Yangetal.,2010),orimpactofadenudedasteroidalcoreintothe mantleofaseconddifferentiatedbody(Tardunoetal.,2012).Given thatpallasitessensulatoappeartobederivedfromsixdistinctpar- entbodies(Section3.3.5.4)suchcollisionalprocesseswereclearly commonplaceintheearlySolarSystem.Adenudedandmolten asteroidalcoreappearstoberequiredtoexplainthegenesisofthe mesosiderites(Section3.3.4).However,incontrasttothemain- grouppallasites,themesosideritesilicate-richfractionwasderived fromtheregolithoftheimpactedbody,ratherthanitsmantle.Coolingrateevidencefrommagmaticironmeteoritessuggests thattheyformedascorestodifferentiatedasteroidsthatwerethen denudedoftheirsilicatemantleandcrustshortlyafterformation

∼60parentbodies(4.4.1),olivine-richmantlematerialsappearto besignificantlyunderrepresentedinboththemeteoriteandaster- oidrecords(Chapman,1986;Belletal.,1989;Burbineetal.,1996;

(1989)asthe“GreatDuniteShortage”,thebasisofthisproblem isthatcompletemeltingofachondriticasteroidshouldproduce a layered body comprising a metallic core,a thickolivine-rich mantleandarelativelythin,predominantlybasalticcrust(Righter andDrake,1997;Ruzickaetal.,1997;MandlerandElkins-Tanton.,

Arangeofprocesseshavebeenproposedtoexplainthisappar- entpaucityofolivine–richmaterials:(i)olivine-richasteroidsare

Sasaki,2012), (ii)themeteoritic recordprovidesa poorindica- tionofthematerial presentin theasteroidbelt (Burbine etal.,

2002a),(iii)olivine-richsamplesmaybepreferentiallydestroyed byterrestrialweatheringprocesses(Scott,1977b),(iv)highviscos- ityandrapidheatlossinsmallplanetesimalsinhibitstheformation ofsignificantvolumesofolivinecumulates(Elkins-Tantonetal.,

2014), and(v)differentiated asteroidsaccretedintheterrestrial planet-formingregionandweredisruptedearlyinSolarSystem history,withthemechanicallyweakerolivine-richmaterialbeing effectively destroyedby continuouspulverization, thesocalled

“battered-to-bitsscenario(Burbineetal.,1996;Bottkeetal.,2006;

The abundance of olivine in the mantle of a differentiated asteroid would have been dependent on its bulk composition.

Only planetesimals with carbonaceous chondrite bulk compo- sitions would have developed true dunitic mantles with>90% olivine(Toplisetal.,2013),whereasbodiesderivedfromordinary chondriteprecursorswouldhavehadharzburgiticmantles,with betweenabout55%to80%olivine(Toplis etal.,2013; Mandler andElkins-Tanton,2013).Inthecaseofenstatitechondritebulk compositions,olivinewouldhavebeensubordinatetopyroxene

(Toplis et al., 2013).Soan additional explanationfor thegreat duniteshortageiscompositional.Iftheprecursormaterialswere predominantlyenstatitechondrite-like,thenolivine-rich mantle materialsmightbelessabundantthansuggestedbymodelsinvok- ingmeltingofordinaryorcarbonaceouschondrites.Arecentsurvey suggeststhatA-type(olivine-rich)asteroidsmaybemorecommon inthemainbeltthanpreviouslythought(DeMeoetal.,2014)and ithasbeensuggestedthatthereisinfacttoomuchmantlematerial intheasteroidbelt(Jacobsonetal.,2016).

4.1.3.3 Howrepresentativeistheachondriterecord? Itisclearfrom theprevioussectionthattheachondriticsamplesinourmeteorite collectionsarederivedfromparentbodiesthatwereextensively modified bycollisional processingin theearlySolar System.In

Section4.1.1wesawthatmeteoritesderivedfromdifferentiated asteroids (irons, stony-irons and achondrites) can plausibly be sourcedfromapproximately95parentbodies.However,thishas tobesetagainsttheenormousnumber ofdifferentiatedbodies thatmusthavecontributedtotheformationoftheterrestrialplan- ets.The combined mass of the inner planets is approximately

1.2×10 25 kg.Themass ofasteroid 4Vesta is 2.6×10 20 kg.This impliesthatataminnimumatleast46,000Vesta-sizedasteroids arerequiredtoformtheterrestrialplanets.Iftheparentbodiesthat contributeddifferentiatedmaterialtoourcollectionswereVesta- sized,thesefigures suggestthat,atbest,wehave samplesfrom about0.2%oftheprotoplanetarypopulation Infact,asthepar- entbodiestotheachondrites,stony-ironsandirons-weregenerally muchsmallerthanVesta,thisfigureisasignificantoverestimate.

Fig 24 Oxygen isotopic composition of acaplucoites, lodranites, winonaites and

CR chondrites in relation to the Y&R, CCAM and PCM lines Acapulcoite-lodranite and winonaite data: Greenwood et al., 2012; CR chondrite data: Schrader et al.,

2011 (Key: TFL: Terrestrial Fractionation Line; Y&R: slope 1 line (Young and Russell, 1998); CCAM: Carbonaceous Chondrite Anhydrous Mineral line (Clayton et al., 1977; Clayton and Mayeda, 1999) PCM: Primitive Chondrule Minerals line (Ushikubo et al., 2012; Tenner et al., 2015). unrepresentative,highlydeformedremnantsoftheoriginalpro- toplanetarypopulation.Withthesecaveatsinmindwenowlook atwhatthesesamplescantellusconcerningearlySolarSystem processes.

The slope 1 oxygen isotope anomaly: an achondrite perspective

Theoriginofthemass-independentoxygenisotopevariation displayedbySolarSystemmaterialsremainscontroversial.While self-shieldingofCO,eitherintheearlysolarnebula(Clayton,2002; LyonsandYoung,2005),orprecursormolecularcloud(Yurimoto andKuramoto,2004),appearstobeaviablemechanism,alternative modelshavealsobeenproposed(Dominguez,2010).Theoxygen isotopecompositionofachondritesprovidesadditionalconstraints onthenatureoftheprocessinvolved,inparticular,whetherasingle slope1linecanbeusedtodefinetheprimordialoxygenisotope variationintheearlysolarnebula.

Animportantaspectofthisproblemrelatestotheinterpreta- tionofvariousreferencelinesonoxygenthree-isotopediagrams (Fig.24).TheCarbonaceousChondriteAnhydrousMineral(CCAM) line,derivedfromanalysesofAllende(CV3)refractoryinclusions, isthemostwidelyusedreferenceandhasaslopeof0.94(Clayton etal.,1977;ClaytonandMayeda,1999).However,thefundamental significanceoftheCCAMlinehasbeenquestionedbyYoungand Russell(1998).BasedontheresultsofaUVlaserablationstudy ofanAllendeCAI,theseauthorssuggestedthatalineofexactly slope1wasofmorefundamentalsignificance.Theypointedout thatalmostallSolarSystemmaterials(withtheexceptionoftheR chondrites)ploteitheronortotherightoftheslope1line.They wentontosuggestthat thisvariationcouldbeexplainedifthe primitiveoxygenisotopecompositionoftheSolarSystemwasrep- resentedbytheslope1line,withsubsequentmassfractionation orisotopicexchangeshiftingcompositionsawayfromthislineto theright.Thefactthatahighly 17,18 O-enrichedphase(␦ 18 Oand

Theslope1(Y&Rline)andCCAMlinesareshowninFig.24along withoxygenisotopeanalysesforthewinonaites,acapulcoitesand lodranites,andCRchondrites(ClaytonandMayeda,1999;Schrader etal.,2011;Greenwoodetal.,2012).Itisimportanttonotethatthe

Ithasbeensuggestedthatthe 16 O-richcompositionmeasuredin suchCAIs maybeclose tothat of theprimordial Solar System

(Clayton,2002).Thisproposalisbroadlyconsistentwithmeasure- mentsofcapturedsolarwindfromGenesisconcentratorsamples, whichindicatethattheSunhasacompositionof␦ 18 O=−58.5‰ and␦ 17 O=−59.1‰(McKeeganetal.,2011).

AsnotedinSection3.2.4.(Fig.12),chondrule-bearingwinonaites, whichmayhaveacompositionsimilartothatofthegroup’sprecur- sormaterial,plotclosertotheslope1linethanothermoreevolved winonaitesamples.TheCRchondritesdisplayasimilarrelation- ship,withtheleastaqueouslyaltered samplesplottingcloseto theslope1lineandprogressivelymorealteredonesfurtheraway

99177,whichcontainsabundantamorphousmaterialandappears tohavesufferedrelativelylowlevelsofasteroidalaqueousalter- ation(AbreuandBrearley,2006),plotsimmediatelytotherightof theslope1lineinFig.24.

ItwassuggestedbyGreenwoodetal.(2012)thattheacapul- coites and lodranites may have experienced an earlyphase of aqueousalteration.Onthisbasisitispossiblethattheprecursor materialtotheacapulcoite-lodraniteclanmayoriginallyhavehad acompositionclosertotheslope1lineandthiswassubsequently shiftedtotherightduringtheaqueousalterationandlaterdehy- dration(Greenwoodetal.,2012).Alternatively,thepresentbulk compositionoftheacapulcoite-lodraniteclan,whichliesbetween theslope1andCCAMlines,suggeststhatprimordialoxygeniso- topevariation mayhave fluctuatedsomewhatbetweenthetwo referencelines.However,thefactthattheprecursormaterialto thewinonaitesandCRchondritesappearstolieclosetotheslope

Thereisgrowingevidencethatchondrulesfromrelativelypris- tine carbonaceous chondrites (Acfer 094, MET 00426 and QUE

CCAMandY&Rlines(Fig.24)(Ushikuboetal.,2012;Tenneretal.,

2015).AscanbeseenfromFig.24,thislinetransectstheacapul- coitesand lodranites,winonaites andthebulkofprimitive CRs.

COphoto-dissociationexperiments(Chakrabortyetal.,2008) andmodellingstudies(Lyons,2011,2014)yieldslopevaluesthat divergesignificantly from1 Chakrabortyetal (2008)reported slopevaluesthatrangedfrom∼0.6to1.8,dependingonthewave- lengthofradiationused.AnalternativemodeltoCOself-shielding proposed by Dominguez (2010) is that the 17,18 O-enrichment tookplacebylowtemperatureheterogeneouschemicalprocesses, whichformwatericearoundgrainsintheparentmolecularcloud.

Dominguez(2010)discountstheimportanceofCOself-shielding, but instead invokes a process analogous to the slope 1 ozone formationexperimentsofThiemensandHeidenreich(1983).The mechanismproposedbyDominguez(2010)hasyettobeexperi- mentallyverified.

Chromiumisotopestudiesofbothchondritesandachondrites provideanewandpotentiallyimportantinsightconcerningtheori- ginoftheslope1anomaly.AsnotedinSection3.2.3ureilitesplot on,orjusttotheleftof,theCCAMline(Figs.7and8).Inviewofthe factthattheCCAMlinewasdefinedusinganalysesofmaterialsfrom theCVchondrites(Claytonetal.,1977;ClaytonandMayeda,1999), thisrelationshipcouldbetakenasevidencethattheureiliteswere derivedfromaCV3precursor.ClaytonandMayeda(1996)were notinfavourofsuchadirectlink,merelynotingthattheureilite precursormayhavebeenC3orCR-like.Infact,basedontherela- tionshipsdisplayedonan␧ 54 Cvs 17 Oplot(Fig.10),itisclearthat theureilitesareunrelatedtoanygroupofcarbonaceouschondrite (Warren,2011b).Thisraisesthequestionastowhy,iftheyareunre- lated,shouldbothdisplayoxygenisotopevariationdefinedbythe CCAMline?Oneexplanationforthisapparentco-variationisthat itreflectstheoperationofsecondaryprocessesonbothsetsofpar- entbodies.AspointedoutbyYoungandRussell(1998),secondary processeswillalwaysacttoshiftprimaryvariationtotherighton athree-isotopediagram.Alternatively,thiscoincidenceindicates thattheCCAMlineisofmorefundamentalsignificancethanindi- catedbythemodelofYoungandRussell(1998).Itisalsopossible thatthereisnosingleprimordialline,butratherconditionsfluc- tuatedbetweentwoend-membersdefinedbytheCCAMandslope

1Y&Rline.ThePCMlinemaythereforerepresentanintermediate stagebetweentheseend-membersthatwasestablishedwhilethe bulkofchondruleformationwastakingplace.Suchfluctuatingcon- ditionsarebroadlyinkeepingwiththeresultsoftheexperimental andmodellingstudiesdiscussedabove(Chakrabortyetal.,2008; Lyons,2011,2014).

2bytheNASAStardustmissionincludedchondrulesandrefractory inclusionsthatweremostlikelyformedclosetotheearlySunand thensubsequentlytransportedtothecoldouterregionsoftheSolar System(Brownlee,2014).Thissuggeststhattherewasrelatively widespreadmixingofmaterialswithintheearlysolarnebula(Boss,

2012).Andyet,asisclearfromtheearliersectionsofthisreview, oxygenisotopecompositionswerenothomogenizedbysuchmix- ingprocesses;afeaturewhichallowsoxygentobesuchaneffective tracerofearlySolarSystemprocesses.Sowhydidoxygenlargely escapethisearlyphaseofmixingandhomogenization?

AsdiscussedinSection2.1,partoftheanswertothisquestion relatestothefactthatoxygenisanabundantelementinSolarSys- temmaterialsand,dependingonthephysicalconditions,would have been present simultaneously in various states i.e., within solids(silicates,ices),liquids(water)andvapor.Modelsof oxy- genisotopefractionationintheearlysolarnebulasuggestthatthe oxygenpresentineachofthesedifferentstateswouldhavehad distinctisotopiccompositions(Krotetal.,2010).Accordingtothe

COself-shieldinghypothesis,UVphoto-dissociationofCOwould favourisotopologuescontainingheavyoxygencomparedtothose withthemoreabundant 16 Oisotope(Clayton,2002;Yurimotoand Kuramoto,2004;LyonsandYoung,2005).Theheavyoxygenatoms liberatedbythisprocesswouldhavereactedwithhydrogentopro- ducewaterthatasaresultwouldhavebeenrelativelyenrichedin

(2004),self-shieldingtookplacewithinthegiantmolecularcloud thatwastheprecursortothesolarnebula.Yurimotoetal.(2007) suggestthatself-shieldingofCO,leadingtoheavyisotopeenrich- mentsofwaterice,isprobablyacommonprocessinsuchdiffuse, dark,giantmolecularcloudsand,ifcorrect,thisimpliesthatthe mass-independentvariationinoxygenseeninmeteoritesisessen- tiallyapresolarprocess.

16O-richsilicategrainscoatedby 16 O-poorwaterice,surrounded by 16 O-richnebular gas(Yurimotoet al.,2007).A fundamental questionthatarisesfromthismodelconcernsthenatureofthe mechanismbywhichtheoxygenisotopeheterogeneitiespresentin submicrongrainscametobetranslatedintotheisotopicdifferences observedinasteroidsandplanets.Thisproblemremainspertinent evenifself-shieldingtookplacewithinthesolarnebula(Clayton,

2002;LyonsandYoung,2005),orifalternativemechanismsare invokedtoexplaintheoriginofoxygenisotopemass-independent fractionation(ThiemensandHeidenreich,1983;Dominguez,2010;

Thepreservationand propagationofmass-independentoxy- genisotopevariationwithinSolarSystemmaterialsisinextricably linkedtothermalprocessingofgasanddustintheearlynebula

(Krotetal.,2010).Initialrefractorysolids(CAIsandAOIs)formed inthenebula4567–4568Myrago(Amelinetal.,2002;Krotetal.,

2009)andweremostlikelyproducedbymultipletransientheat- ingevents,withhighambienttemperaturesandinfairlylocalized regionsclosetotheProto-Sun.Atthisearlystage, 16 O-richnebu- largaswouldstillhavebeenpresent,swampinganycontribution fromvapourized 16 O-poorices and ensuring that pristine CAIs remainedclose tothebulk Solar Systemcomposition (Clayton,

2002;McKeeganetal.,2011).Asnebulargasdispersed,theinflu- enceof 16 O-pooriceswouldhaveincreased,asseeninthetransition fromreducedType-I(MgOand 16 O-rich)tooxidizedtype-II(FeO- richand 16 O-poor)chondrules(e.g.Tenneretal.,2015).Accretion ofplanetesimalsisnowknowntohaveoccurredextremelyearly inSolarSystemhistory,possiblyaslittleas0.1–0.3MyrafterCAI formation(Kruijeretal.,2014)andmayhaveprecededchondrule formation(Kleineetal.,2009).Infact,anumberofstudieshavepro- posedthatchondruleformationmayhavetakenplaceasaresult ofimpactsbetweensuchearly-formedbodies(SandersandScott,

Attheaccretionstage,planetesimalsthatformedbeyondthe snowlinewouldhaveincorporatedasignificantfractionof 16 O- poorice.Thismaysubsequentlyhavebeenlostfromthebodyasit underwentheatingduetothedecayofshort-livedradionuclides, principally 26 Al(FuandElkins-Tanton,2014).However,priorto dehydration,heatedfluidswouldalmostcertainlyhaveinteracted withthesolidmaterialthroughwhichtheyflowed.Theexactnature oftheprocessesinvolvedinthehydrothermalalterationofchon- driticparentbodies,andinparticularwhetherthistookplacein anopenorclosedsystemenvironment,remainmattersofongo- ingdebate(Youngetal.,1999,2003;Blandetal.,2009b;Fuetal.,

2015,2016).However,comparisonbetweentheoxygenisotope compositionofchondritegroupsthathaveexperiencedsignificant levelsofaqueousalteration(e.g.CRsandCMs)andthosewhich havenot(e.g.COs)(Section4.3.2,Fig.25)demonstratestheefficacy ofhydrothermalalterationinmodifyingthe 17 Ocompositionof meteoriteparentbodies(ClaytonandMayeda,1999;Youngetal.,

Asdiscussedin variousearlier sectionsofthis review, there appearstobeageneralrelationshipbetweenthelevel of 17 O homogeneityshownbyindividualmeteoritegroupsandthedegree ofmeltingthattheyexperienced(Table1,TableS1)(Fig.25).Not unsurprisingly,thecarbonaceouschondrites(CV,CR,CMandCK) display thelargest ranges in 17 O values of anyof the major chondriteorachondritegroups(withthenotableexceptionofthe ureilites).Incontrast,theCOsdisplayless 17 Ovariation,which is probably a reflection of a number of factors, including their lowerlevelsofsecondaryalterationandmorerestrictedlithologi- caldiversitycomparedtotheothercarbonaceouschondritegroups (Weisbergetal.,2006;Krotetal.,2014).Thetwoenstatitechondrite groups(EH,EL)showsomewhatdifferinglevelsof 17 Ohetero- geneity, whereastheordinarychondrite groups (H,L,LL)show similarlevels.Animportantimplicationofthe 17 Ovariationdis- playedbyallchondritegroups(Table1,TableS1)(Fig.25)isthat achondriticasteroidswouldinitiallyhavebeenheterogeneouswith respectto 17 O.

Followingaccretion,theprimitiveachondritesappeartohave experiencedvariable,butgenerallylow,degreesofpartialmelting, fromafewdegreesatbestinthecaseoftheacapulcoites(McCoy etal.,1997a),toamaximumofabout30%fortheureilites(Goodrich etal.,2007;Wilsonetal.,2008).Theparticularlyhighlevelsof 17 O heterogeneitydisplayedbytheureilites,whichiscomparableto thatseenintheCVchondrites,alongwiththeirdistributionalong theCCAMline(Figs.7and8),mightbetakenasevidencethatthe twogroupsaregeneticallyrelated.However,asdiscussedinSection 3.2.3, 54 Crsystematicsappeartorulethisout(Fig.10).Despitethis evidence,thelevelof 17 Oheterogeneityseenintheureilitessug- geststhattheirprecursormaterialsdisplayedmuchhigherlevels ofoxygenisotopeheterogeneitythanthatoftheotherprimitive achondrites(ClaytonandMayeda,1996).Thismayindicatethat someformofhydrothermalalterationtookplaceontheureilite parentbodypriortheonsetofmelting.Duringprogressiveradio- genicheatingvolatileswouldhavebeenefficientlyremovedfrom thebody,leavingitessentiallydryandcreatinganetworkoffrac- turesthatmayhavebeenusedbylatersilicatemelts(Wilsonetal., 2008;FuandElkins-Tanton,2014).

Incomparisontotheprimitiveachondrites,thedifferentiated achondrites(HEDs,main-grouppallasites,mesosiderites,angrites andaubrites)areessentiallyhomogeneouswithrespectto 17 O, acharacteristictheysharewithlargerbodiessuchastheEarth, MoonandMars(Fig.25).Estimatesoftheamountofmeltingof chondriticprecursormaterialsinvolved intheformationof dif- ferentiatedachondritesvarysignificantly.Basedontheresultsof experimentalstudiesit hasbeensuggestedthat bothHEDsand angrites couldbe formedbybetweenapproximately15 to30% melting of chondritic precursor materials (Stolper 1977; Jones, 1984;Jurewiczetal.,1993;Mikouchietal.,2008).Incontrastto theserelativelylowlevelsofmelting,muchhighervalueshavebeen proposedbasedonevidenceforefficientcoreformationonminor bodies(e.g.RighterandDrake,1996).Thus,asdiscussedinSection 3.3.3,arangeofevidence,includingmoderately(Ni,Co,Mo,Wand P)andhighly(Os,Ir,Ru,Pt,Pd,Re)siderophileelementabundances inHEDlithologiespointtorapid,efficient,low-pressurecorefor- mationonVestainresponsetoglobal-scalemelting(Righterand Drake,1996,1997;Daleetal.,2012;Dayetal.,2012b).

The magma ocean model for Vesta, developed by Righter and Drake (1997) invokes between 65% and 77% melting (1500–1530 ◦ C),withturbulentconvectionduringitsinitialstages.

Atsuchelevatedtemperatures,highdegreesofpartialmeltingand turbulentmixing,global-scalehomogenizationofoxygenisotopes wouldhavetakenplacerapidly(Greenwoodetal.,2005,2014). Thedevelopmentofmagmaoceanshasbeenproposedforother differentiatedachondriticasteroids,includingthatoftheangrites, aubritesandmain-grouppallasites(Tayloretal.,1993).Magma oceansarealsoimplicatedintheoriginofthemesosiderites,based onthepropositionthattheirsilicatefractionwasderivedfromthe HEDparentbody(Scottetal.,2014;Greenwoodetal.,2015a). Thefactthatdifferentiatedasteroidsshowlevelsofoxygeniso- topehomogenization comparable tothat of largerbodies, such astheMoon,MarsandEarth,allofwhichhadprotracted high-

Fig 25 17 O variation in Solar System materials expressed in terms of the difference between the highest and lowest values for each major meteorite group (range). Abbreviations: C chon: carbonaceous chondrites; E chon: enstatite chondrites; O chon: ordinary chondrites; Prim achon: primitive achondrites (Ur: ureilites, A-L: acapulcoite- lodranite suite, Br: brachinites, W: winonaites); Planets (L: lunar rocks, M: martian meteorites, T: terrestrial high He-olivines); Diff achon: differentiated achondrites (ED: eucrites and diogenites, MP: main-group pallasites, Me: mesosiderites, An: angrites, Au: aubrites) Full data and references: Table S1. temperature evolutions (e.g.Warren, 1985; Tonks and Melosh,

2010;Elkins-Tanton,2012)demonstratesthat isotopichomoge- nizationwasextremelyefficientonthesemuchsmallerbodies.In keepingwiththepredictionsoftheoreticalmodelsof asteroidal heatingthroughdecayofshort-livedradionuclides,suchas 26 Aland

Gaidos,2011),themostlikelysettinginwhichthisequilibration tookplacewasasaconsequenceofglobal-scalemeltingleadingto theformationofmagmaoceans(Greenwoodetal.,2005,2014).

Thereisaclearhiatusinthe 17 OrangeseenonFig.26,which mayreflectatransitionfrombodieswithlowlevelsofmelting,to thosethatexperiencedhigherlevelsandwereasaresultisotopi- callywell-mixed.However,withinthegroupofbodiesthatdisplay limited 17 Ovariationtherearesignificantdifferencesinthelev- elsofalkalidepletion,whichmaypointtoadiversityoforigins.

TheangritesandHEDsshowlevelsofalkalidepletionsimilarto thosedisplayedbylunar rocks.It hasbeensuggestedthat such alkalidepletionmayhavebeencausedbyaprocessofvolatileloss throughevaporationintospacefromanessentiallymoltenplanet, orplanetesimal(IkedaandTakeda,1985).Suchaprocessisclearly notsupportedbytherelativelyhighalkalicontentoftheaubrites

(Fig.26).Inaddition,experimentalstudiesindicatethathadvolatile losstakenplacesimplybyevaporationintospace,i.e.byRayleigh distillation,significantmassfractionationofKisotopesshouldhave occurred,with␦41Kvaluesofupto90‰undercertainconditions

(Yuetal.,2003).However,Kisotopestudieshavefailedtodetect thepresenceofsuchlargeanomalies,eitherintheHEDs,orlunar rocks(HumayunandClayton,1995;WangandJacobsen,2016).The recentdetectionofa0.4-0.6‰␦41Kenrichmentinlunarcompared toterrestrialrocks,hasbeenexplainedintermsoftheformation oftheMoonby partialcondensationfromthevapour discpro- ducedbyagiantimpactevent(WangandJacobsen,2016).Inthe caseoflunarrocks,volatiledepletionappearstohavebeendirectly inheritedfromtheEarth-orbitingdiscformedfollowingthegiant impact,ratherthanasaconsequenceofsubsequentprocessesin thelunarmagmaocean(Canupetal.,2015;Locketal.,2016).The parentbodiesofthedifferentiatedachondriteshadcomplexfor- mationalhistories,asisclearfromtherecentdetailedstudiesof VestabytheDawnmission(Russelletal.,2012;McSweenetal.,

2013).Thefactthatalkalisandoxygenisotopesappeartobedecou- pledisareflectionofthiscomplexformationalhistory.Thus,while oxygenisotopichomogeneityprobablyresultsfromearlyglobal- scalemelting,alkalidepletionmayhavebeencausedbyavarietyof mechanismsincluding:(i)‘hot’nebularprocessespriortoaccretion (WassonandChou,1974;Cassen,1996;BlandandCiesla,2010),(ii) parentbodyhydrothermalprocesses(Delaney,2009;Youngetal., 2003;FuandElkins-Tanton,2014,2016),or(iii)byimpact-related processes(Asphaugetal.,2006,2011;Canupetal.,2015;Locketal., 2016).

The angrites are even more alkali depleted than the HEDs (Fig.26),perhaps indicatingthattheirparentbodyexperienced asimilarly complexevolutiontoVesta Aspeculativepossibility isthatbothVestaandtheangriteparentbodyarederivedfrom asteroidsthataccretedfromthedebrisproducedduringrelatively high-energy collisional eventsthat tookplace in theterrestrial planetregionandwerethenejectedintotheasteroidbelt.Alkali depletioninthesebodiesmayhavetakenplacebyamechanism similartothatproposedfortheMoon(Canupetal.,2015).

The relationship between chondrites and achondrites

AsnotedbyWeisbergetal.(2006):“thechondritesareamong themost primitiveSolar Systemmaterialsavailable forlabora- torystudy”andtheircomponents(CAIs,AOAs,chondrules,matrix)

“aregroundtruthforastrophysicalmodelsofnebularevolution”.The“primitive”natureofchondritesingeneralandcarbonaceous chondritesinparticular,issupportedbyalargebodyofevidence.Thisincludesthefactthat theyare thehosttoCAIs, theoldest datedSolarSystemsolids,(MacPherson,2014), containpresolar grains (Zinner, 2014), display a wide range of isotopic anoma- lies(Meyerand Zinner,2006; MacPhersonand Boss,2011)and include an organic component that probably originated in the interstellar medium (Alexander et al., 2007,2010).In contrast,achondrites arethermallyprocessed materialsthatexperienced variabledegreesofmeltinginanasteroidalenvironment(Weisberg

Fig 26 17 O vs total alkalis for selected chondrite and achondrite groups Abbreviations as Fig 25. etal.,2006).Theprimitivenessofchondritesincomparisontothe thermallyprocessed characterof achondrites is suggestive of a parent-daughterrelationshipbetweenthesetwomajormeteorite subdivisions.However,whilesucharelationshipmaybeaccurate onthemacroscalei.e.chondrite-likematerialsweretheprecursors totheachondriteparentbodies,indetailthepictureisextremely complex.

Aubritesarethegroupofachondrites whichshowtheclear- estlinkwithachondriticprecursoranditisalmostcertainthat theyrepresentthedifferentiationproductsofenstatitechondrite- relatedmaterials(Barratetal.,2016b).Bothaubritesandenstatite chondriteshavecloselysimilarmineralandaveragebulkoxygen isotopecompositions(Section3.3.2).Acloserelationshipbetween theaubritesandenstatitechondritesisalsosupportedbythesim- ilarisotopicvariationtheydisplayforarangeofotherelements, includingCa,TiandCr(Dauphasetal.,2014).

CRchondrite-likeprecursorshavebeenproposedinthecaseof theacapulcoite-lodraniteclan(Rubin,2007)andformembersofthe winonaite-IAB-IIICDsuite(Rubinetal.,2002).However,whilethe oxygenisotopecompositionofbothoftheseprimitiveachondrite groups,likethatoftheprimitiveCRs(e.g.QUE99177)(Fig.24)lies welltotheleftoftheCCAMline,theyareisotopicallydistinct.This suggeststhat,althoughtheprecursormaterialstothewinonaites andacapulcoite-lodranitesprobablyresembledCRs,bothminer- alogicallyandisotopically,theywerenotanexactmatch.

Ureilitesshowasomewhatambiguousrelationshipwithcar- bonaceouschondrites While oxygen isotopeevidence suggests thatthetwogroupsmaybegeneticallylinked(Figs.7and8),aclose relationshipbetweenthemappearstobeexcludedonthebasisof

Incontrast,bothoxygenisotope(Fig.18)and 54 Crdata(Fig.10) indicatethattheEagleStationpallasitegroupformedfromacar- bonaceouschondrite-likeprecursor.However,inthecaseofmany achondritegroups,includingtheangrites,HEDs,main-grouppalla- sites,mesosiderites,brachinitesandalsothemajorityofungrouped achondrites,thereappeartobenoknownchondriteswithsimilar oxygenisotopecompositions.Thisgenerallackofaclosematch betweenchondriteandachondritegroupsmaybeareflectionof thefactthattheknownchondritegroupsformedlate(Kleineetal.,

Dating studies using the extinct 182 Hf- 182 W chronometer (t ẵ =8.9Myr)haveshownthattheparentbodiesofthemagmatic ironmeteoritesaccretedlessthan1Myr,andpossiblyaslittleas 100,000years,afterCAIs(Kleineetal.,2009;Kruijeretal.,2014). Suchrapidtimescalesarebroadlyconsistentwiththepredictions ofdynamicalmodelsforplanetesimalgrowthin theearlysolar nebula(WeidenschillingandCuzzi,2006).Incontrasttotheearly accretionofmagmaticirons,anumberofdatingstudiesindicate thatthemainphaseofchondruleformationtookplaceapproxi- mately2MyrafterCAIformation(Amelinetal.,2002;Kleineetal., 2009;Buddeetal.,2016).However,theexistenceofadistincttime gapbetweentheCAIand chondruleformingeventsisdisputed byConnellyetal.(2012).BasedonU-correctedPb–Pbdatathey suggestthatCAIsformedina brieftimeintervalwithanageof

4567±0.16Myr,whereaschondruleformationtookplaceovera moreprotractedintervalof∼3Myr,butcommencedatthesame timeasCAIs.Despitethesedifferencesininterpretation,itseems likelythatthemainphaseofchondruleformationtookplaceafter theonsetofplanetesimalaccretion.Thus,sincechondrulesarea majorconstituentofchondriticmeteorites,itfollowsthatthese meteoritescannotbedirectsamplesofthematerialfromwhich theseearlyplanetesimalsaccreted.

Relativelylateaccretionofchondriticparentbodiesisalsosup- portedbythermalevolutionmodellingoftheHchondriteparent body,whichindicatesthatitformedrapidly,2MyrafterCAIsandso immediatelyafterthemainphaseofordinarychondritechondrule formation(Henkeetal.,2013).Carbonaceouschondriteparentbod- iesprobablyaccretedeven later.Schraderetal.(2016)estimate thattheCR parentbodyaccreted>4MyrafterCAIs.Lateaccre- tionofchondritesisfurthersupportedbypalaeomagneticevidence fromAllende(CV3),whichindicatesthatitwasmagnetizedover severalmillionyearswithintheouterlayersofapartiallydiffer- entiatedasteroidwithaconvectingmetalliccore(Carporzenetal.,

2011).Basedonthisevidence,ithasbeenproposedthatatleast someofthecarbonaceouschondritespresentinourmeteoritecol- lectionsareessentiallylate accretingmaterialsthatformedthe outerlayerstointernallydifferentiated,early-formed planetesi- mals(Elkins-Tantonetal.,2011;WeissandElkins-Tanton,2013).

Apotentialdifficultyformodelsinvokingrapid,earlyaccretion ofachondriticparentbodiesisthatat“canonical”valuesof 26 Al

2008),heatingwouldhavebeentooefficientandnothaveresulted intheformationofpartialmelt residues,asrepresentedbythe primitiveachondrites(Larsenetal.,2016).Early,rapidplanetesimal accretionmayalsobeaproblemformodelsinvokingdifferenti- atedbodieswiththickouterchondriticcrusts(Elkins-Tantonetal.,

2011;WeissandElkins-Tanton,2013).Theproblemisessentially thatearly-formed,fastaccretingbodieswouldhavebeentoohotto permitthepreservationofanythingotherthanextremelytenuous chondriticcrusts(HeveyandSanders,2006).However,accretion timescaleswereprobablynotconstantthroughouttheprotoplane- tarydiscandmayhavebeenmoreprotractedatgreaterheliocentric distances(Bottkeetal.,2006).

TheaccretiontimeofaplanetesimalrelativetoCAIformationis acriticalparameterformodelsinvokingheatingbydecayofshort- livedradionuclides,suchas 26 Aland 60 Fe(GhoshandMcSween,

1998;HeveyandSanders,2006;Sahijpaletal.,2007).Inthemodel ofGhoshandMcSween(1998),apostCAIaccretionageof2.8Myr forVestawasassumed,asthiswasrequiredinordertoincorporate therequisiteamountof 26 Altofurnishtheheatneededtocause25% melting;avaluethatwasderivedfromtheHEDmodelofStolper

(1977).AspointedoutbyGhoshandMcSween(1998),accretion earlierthan2.8Myrwouldhaveresultedinwhole-mantlemelt- ingbelowadepthof30km.InthemodelofHeveyandSanders

(2006),aplanetesimalaccretingat0.75MyrafterCAIformation wouldhavebeen50%molten0.75Myrlaterandafterafurther0.5

Myr(2MyrafterCAIs)wouldhaveresembled“aglobeofmolten, convectingslurryinsideathinresidualcrust.”Similarconclusions concerningtheimportanceofaccretiontimeontheextentofmelt- inginearly-formedplanetesimalswerereachedbySahijpaletal.

CAIs,i.e.significantlylaterthantheaccretionagesoftheironmete- oriteparentbodiesderivedfromHf-Wdatingstudies(Kleineetal.,

ItwaspointedoutbyWarren(2011a,b),basedondatafromear- lierstudies(e.g.ShukolyukovandLugmair,2006;Trinquieretal.,

2007,2009;Qinetal.,2010a,b),thatSolarSystemmaterialsdisplay abimodaldistributionwithrespecttoarangeofstablenuclides, including 54 Cr, 50 Tiand 62 Ni.Thesetwogroupingsconsistofone thatisenrichedinsuchnuclidesandcomprisesthecarbonaceous chondritesplusrelatedachondrites(NWA011,EagleStationpall- asites)andasecondclusteressentiallymadeupofallothertypes ofchondritesandachondritesthatarerelativelydepletedinsuch nuclides(Fig.10).Warren(2011a,b)speculatedthatthisbimodality mightrepresentanextremereflectionofheterogeneousaccretion withintheprotoplanetarydisc,withthecarbonaceousgrouporig- inatingintheouterSolarSystemandthenon-carbonaceousgroup intheinnerSolarSystem.Such bimodaldistributionshavealso beenobservedfor 48 Ca(Dauphasetal.,2014), 84 Sr(Moynieretal.,

2012;Patonetal.,2013), 97 Mo(Dauphasetal.,2002)and␮ 26 Mg*

Patonetal.,2013;Schilleretal.,2015a;Larsenetal.,2016).Onepos- sibleconsequenceofthisprocessisthatdustwithinthehotinner regionmayhavehadalowerinitialabundanceof 26 Alduetoprefer- entialsublimationofitscarrierphase(Schilleretal.,2015b;Larsen etal.,2016).Astudyofthree angritesbySchilleretal.(2015b) indicatesthattheyaccretedfromprecursormaterialwithaninitial

( 26 Al/ 27 Al)0ratioof1.33×10 −5 ,avaluethatissignificantlylower thantheCAI-derivedcanonicalvalueof5.3×10 − 5 Ifdecayof 26 Al wasthechiefheatsourcedrivingdifferentiationoftheangritepar- entbodythensuchlowinitiallevelsindicatethataccretiontook placewithin250,000yearsofCAIformationandsowasessentially contemporaneouswithformationofthemagmaticironmeteorites (Kleineetal.,2005,2009;Kruijeretal.,2014).

Insummary,withthepossibleexceptionoftheaubrite/enstatite chondriteandEagleStationpallasite/carbonaceouschondriteasso- ciations,oxygenisotopestudiesprovidelittleevidencetosupport aparent/daughterrelationshipbetweenthemajorgroupsofchon- drites and achondrites This is unsurprising if the majority of achondritic parentbodies essentially accretedearly,within the morethermallyprocessedinnerregionsoftheprotoplanetarydisc,whereaschondritesaresamplesderivedfromlater-formedaster- oids,orarethelateaccretedrindstodifferentiatedbodies.Thus,ratherthanbeingthepoorrelationtochondrites,achondritesfur- nish essential information about the processes that tookplace duringtheveryearlieststagesofSolarSystemevolution.

Summary and conclusions

Oxygenisotopeanalysisofextraterrestrialmaterialshasplayed, and continues to play, a major role in improving our under- standingofearlySolarSystemprocesses.Conventionaltechniques, employingexternallyheatedNi“bombs”,havenowbeensuper- sededbylaser-assistedfluorination,whichcurrentlyachievesthe highest level ofprecision availablefor oxygenisotope analysis. Laser-assistedfluorinationisatamaturestageinitsdevelopment, butfurtheranalyticalimprovementsarepotentiallyavailablevia refinementstotheconstructionofsamplechambers,cleanuplines andtheuseofultra-highresolutionmassspectrometers.

High-precisionoxygenisotopeanalysishasbeenanextremely effectiveandpowerfultechniqueinfurtheringourunderstanding ofearlySolarSystemprocesses.Inparticular,ithasprovidedunique insightsintotheinterrelationshipsbetweenvariousgroupsofboth primitiveanddifferentiatedachondrites.Oxygenisotopeanalysis hasshownthatmain-grouppallasites,angritesandHEDsallorig- inatefromdistinctasteroids,whereasmesosideritesmaybefrom thesamebodyastheHEDs.Oxygenisotopeanalysisprovidesan importantmeansofassessingtheextenttowhichtheparentbod- iestotheachondritesunderwentmeltingandsubsequentisotopic homogenization.Oxygenisotopeanalysisisalsoimportantindeci- pheringpossiblerelationshipsbetweentheungroupedachondrites andthemorewell-populatedgroups;agoodexamplebeingthe suggestedlinkbetweentheevolvedGRA06128/9meteoritesand thebrachinites.

Theevidencefromoxygenisotopes, inconjunctionwiththat fromothertechniques,indicatesthatwehavesamplesofapprox- imately110asteroidalparentbodies(∼60irons,∼35achondrites andstonyirons,and∼15chondrites).However,comparedtothe likelysizeoftheoriginalprotoplanetaryasteroidpopulationthis valueisextremelylowandinaddition,thesampleswehaveinour collections appeartobealmostexclusivelyderivedfromexten- sivelydeformedbodies.High-precisionlaserfluorinationanalysis ofachondritesprovidesadditionalconstraintsontheoriginofthe mass-independentoxygenisotopevariationinSolarSystemmate- rialsand suggeststhat both theslope 1 (Y&R)and CCAMlines maybeofprimordialsignificance 17 Odifferencesbetweenwater ice and silicatesmay originally have ariseneither in thegiant molecularcloudthat was theprecursor tothesolar nebula,or alternatelywithintheearlynebulaitself.Thesmall-scaleisotopic heterogeneitiesproduced by this processwere propagatedinto larger-sizedbodies,suchasasteroidsandplanets,asaresultofearlySolarSystemprocesses,includingdehydration,aqueousalteration,meltingandcollisionalinteractions.

Thismayaccountforthefactthatwithafewnotableexceptions, suchastheaubrite-enstatitechondriteassociation,knownchon- dritegroupscouldnothavebeenthedirectparentstothemain achondritegroups.

WewouldliketothanktheAssociateEditorKlausKeilforsolic- itingandhandlingthisInvitedReview.Hehasshownthroughout anextraordinarylevelofpatienceandunderstandingandthereis nodoubtthatwithouthispoliteandtactfulpersistencethiscontri- butionwouldnothavebeencompleted.Weowehimanimmense debtofgratitude.Themanuscriptwassignificantlystrengthenedas theresultofathoughtfulandconstructivereviewprovidedbyEd

Scottforwhichweareparticularlygrateful.Wewouldliketothank ananonymousreviewerforhissupportivecomments.JennyGib- sonisthankedforherhelpwithallaspectsofsamplepreparation andoxygenisotopeanalysis.Ourunderstandingofthetopicscov- eredinthisreviewhavebenefittedgreatlyfromdiscussionswith awiderangeoffriendsandcolleaguesInparticular,wewouldlike tothankJean-AlixBarrat,AkiraYamaguchi,EdScott,IanSanders,

DuckMittlefehldt,BobClayton,ConelAlexander,DougRumble,Ed

OxygenisotopestudiesattheOpenUniversityarefundedby aconsolidatedgrantfromtheUKScienceandTechnologyFacili- tiesCouncil(STFC)(GrantNumber:ST/L000776/1).THBwouldlike tothanktheRemote,InSitu,andSynchrotronStudiesforScience andExploration(RIS 4 E)SolarSystemExplorationResearchVirtual

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.chemer.2016.09.

Abreu, N.M., Brearley, A.J., 2006 Early solar system processes recorded in the matrices of CR2 chondrites MET 00426 and QUE 99177 (abstract) Lunar Planet.

Adams, F.C., 2010 The birth environment of the solar system Annu Rev Astron.

Agee, C.B., Muttik, N., Ziegler, K., McCubbin, F.M., Sanborn, M.E., Yin, Q.-Z., 2014.

NWA 8186 an ungrouped achondrite from the CK/CV chondrite parent body

Agee, C.B., Miley, H.M., Ziegler, K., Spilde, M.N., 2015 Northwest Africa 8535:

Unique dunitic angrite (abstract) Lunar Planet Sci 46 (#2681).

Alexander, C.M.O.’D., Fogel, M., Yabuta, H., Cody, G.D., 2007 The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter Geochim Cosmochim Acta 71,

Alexander, C.M.O.’D., Newsome, S.D., Fogel, M.L., Nittler, L.R., Busemann, H., Cody,

G.D., 2010 Deuterium enrichments in chondritic macromolecular materials-implications for the origin and evolution of organics, water and asteroids Geochim Cosmochim Acta 74, 4417–4437.

Ali, A., Jabeen, I., Banerjee, N.R., Tait, K.T., Hyde, B.C., Nicklin, I., Gregory, D., 2013.

Potential for bimodality in main group pallasites: an oxygen isotope perspective (abstract) Meteorit Planet Sci 48 (#5243).

Ali, A., Jabeen, I., Banerjee, N.R., Osinski, G.R., Tait, K.T., Hyde, B.C., Nicklin, I.,

Ganderon, T., Gregory, D., 2014 Oxygen isotope variations in main group pallasites and HEDs (abstract) Lunar Planet Sci 45 (#2390).

Allègre, C.J., Poirier, J.-P., Hofmann, A.B., 1995 The chemical composition of the

Earth Earth Planet Sci Lett 134, 515–526.

Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A., 2002 Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions Science 297, 1678–1683.

Ashcroft, H.O., Wood, B.J., 2015 An experimental study of partial melting and fractional crystallization on the HED parent body Meteorit Planet Sci 50,

Asphaug, E., Agnor, C.B., Williams, Q., 2006 Hit-and-run planetary collisions. Nature 439, 155–159.

Asphaug, E., Jutzi, M., Movshovitz, N., 2011 Chondrule formation during planetesimal accretion Earth Planet Sci Lett 308, 369–379.

Baertschi, P., Silverman, S.R., 1951 The determination of relative abundances of the oxygen isotopes in silicate rocks Geochim Cosmochim Acta 1, 317–328. Baghdadi, B., Jambon, A., Barrat, J.-A., 2015 Metamorphic angrite Northwest Africa 3164/5167 compared to magmatic angrites Geochim Cosmochim Acta 168, 1–21, http://dx.doi.org/10.1016/j.gca.2015.07.022.

Barrat, J.-A., Yamaguchi, A., 2014 Comment on the origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma processes on vesta by B.E Mandler and L.T Elkins-Tanton Meteorit Planet Sci.

Barrat, J.-A., Yamaguchi, A., Greenwood, R.C., Benoit, M., Cotten, J., Bohn, M., Franchi, I.A., 2008 Geochemistry of diogenites: Still more diversity in their parental melts Meteorit Planet Sci 43, 1759–1775.

Barrat, J.-A., Yamaguchi, A., Zanda, B., Bollinger, C., Bohn, M., 2010 Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites Geochim Cosmochim Acta 74, 6218–6231. Barrat, J.-A., Greenwood, R.C., Verchovsky, A., BGillet, Ph., Bollinger, C., Langlade, J., Liourzou, C., Franchi, I.A., 2015 Crustal differentiation in the early solar system: clues from the unique achondrite Northwest Africa 7325 (NWA 7325). Geochim Cosmochim Acta 168, 280–292.

Barrat, J.-A., Jambon, A., Yamaguchi, A., Bischoff, A., Rouget, M.-L., Liorzou, C., 2016a Partial melting of a C-rich asteroid: Lithophile trace elements in ureilites Geochim Cosmochim Acta 194, 163–178.

Barrat, J.A., Greenwood, R.C., Keil, K., Rouget, M.L., Boesenberg, J.S., Zanda, B., Franchi, I.A., 2016b The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotopic compositions Geochim Cosmochim. Acta 192, 29–48.

Bartoschewitz, R., Wlotzka, F., Clayton, R.N., Mayeda, T.K., 2003 NWA 1500: The first basaltic ureilite? (abstract) Meteorit Planet Sci 38 (#5114).

Bell, J.F., Davis, D.R., Hartmann, W.K., Gaffey, M.J., 1989 Asteroids: The Big Picture. In: Binzel, R.P., Gehrels, T., Matthews, M.S (Eds.), Asteroids II University of Arizona Press, Tucson, pp 921–945.

Benedix, G.K., McCoy, T.J., Keil, K., Bogard, D.D., Garrison, D.H., 1998 A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism Geochim Cosmochim Acta 62, 2535–2553. Benedix, G.K., McCoy, T.J., Keil, K., Love, S.G., 2000 A petrologic study of the IAB meteorites: Constraints on the formation of the IAB-winonaite parent body. Meteorit Planet Sci 35, 1127–1141.

Benedix, G.K., McCoy, T.J., Lauretta, D.S., 2003 Is NWA 1463 the most primitive winonaite? (abstract) Meteorit Planet Sci 38 (#5125).

Benedix, G.K., Lauretta, D.S., McCoy, T.J., 2005 Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons Geochim. Cosmochim Acta 69, 5123–5131.

Benedix, G.K., Bland, P.A., Friedrich, J.M., Mittlefehldt, D.W., Sanborn, M.E., Yin, Q.-Z., Greenwood, R.C., Franchi, I.A., Bevan, A.W.R., Towner, M.C., Perotta, G.C., 2014a Bunburra Rockhole: Exploring the geology of a new differentiated basaltic asteroid (abstract) Lunar Planet Sci 45 (#1650).

Benedix, G.K., Haack, H., McCoy, T.J., 2014b Iron and stony-iron meteorites In: Davis, A.M (Ed.), Meteorites and Cosmochemical Processes, Treatise on Geochemistry, vol 1, second edition Elsevier, Oxford, pp 267–285.

Bild, R.W., 1977 Silicate inclusions in group IAB irons and a relation to the anomalous stones Winona and Mt Morris (Wis.) Geochim Cosmochim Acta

Binzel, R.P., Xu, S., 1993 Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites Science 260, 186–191.

Binzel, R.P., Gaffey, M.J., Thomas, P.C., Zellner, B.H., Storrs, A.D., Wells, E.N., 1997. Geologic mapping of Vesta from 1994 Hubble space telescope images Icarus

Bischoff, A., Horstmann, M., Pack, A., Laubenstein, M., Haberer, S., 2010 Asteroid

2008 TC 3 —Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies Meteorit Planet Sci 45, 1638–1656. Bischoff, A., Horstmann, M., Barrat, J.-A., Chaussidon, M., Pack, A., Herwartz, D., Ward, D., Vollmer, C., Decker, S., 2014 Trachyandesitic volcanism in the early solar system Proc Natl Acad Sci U S A 111, 12689–12692.

Bland P.A., Ciesla F.J., 2010 The impact of nebular evolution on volatile depletion trends observed in differentiated objects 41st Lunar and Planetary Science Conference, Abstract #1817.

Bland, P.A., Spurny, P., Towner, M.C., Bevan, A.W.R., Singleton, A.T., Bottke, W.F., Greenwood, R.C., Chesley, S.R., Shrbeny, L., Borovicka, J., Ceplecha, Z., McClafferty, T.P., Vaughan, D., Benedix, G.K., Deacon, G., Howard, K.T., Franchi, I.A., Hough, R.M., 2009a An anomalous basaltic meteorite from the innermost main belt Science 325, 1525–1527.

Bland, P.A., Jackson, M.D., Coker, R.F., Cohen, B.A., Webber, R.F., Lee, M.R., Duffy, C.M., Chater, R.J., Ardakani, M.G., McPhail, D.S., McComb, D.W., Benedix, G.K., 2009b Why aqueous alteration in asteroids was isochemical: High posorosity

= / high permeability Earth Planet Sci Lett 287, 559–568.

Boesenberg, J.S., Delaney, J.S., Hewins, R.H., 2012 A petrological and chemical re-examination of main group pallasite formation Geochem Cosmochim Acta

Boss, A.P., 2012 Mixing and transport of isotopic heterogeneity in the early solar system Annu Rev Earth Planet Sci 40, 23–43.

Boss, A.P., Keiser, S.A., Ipatov, S.I., Myhill, E.A., Vanhalla, H.A.T., 2010 Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave I Variable shock speeds Astrophys J 708,

Bottke, W.F., Durda, D.D., Nesvorn ´y, D., Jedick, R., Morbidelli, A., Vokrouhlick ´y, D.,

Levison, H., 2005 The fossilized size distribution of the main belt asteroid belt.

Bottke, W.F., Nesvorn ´y, D., Grimm, R.E., Morbidelli, A., O’Brien, D.P., 2006 Iron meteorites as remnants of planetesimals formed in the terrestrial planet region Nature 439, 821–824.

Brand, W.A., 2011 New reporting guidelines for stable isotopes - an announcement to isotope users Isot Environ Health Stud 47, 535–536.

Brownlee, D., 2014 The stardust mission: Analyzing samples from the edge of the

Solar System Annu Rev Earth Planet Sci 42, 179–205.

Budde, G., Kleine, T., Kruijer, T., Thomas, S., Burkhardt, C., Metzler, K., 2016.

Tungsten isotopic constraints on the age and origin of chondrules Proc Natl.

Bunch, T.T., Rumble, D., Wittke, J.H., Irving, A.J., 2005 Pyroxene-rich pallasites

Zinder and NWA 1911: Not like the others (abstract) Meteorit Planet Sci 40

Bunch, T.E., Irving, A.J., Wittke, J.H., Rumble, D., Aaronson, A.A., 2007 Northwest

Africa 2993: A coarse-grained lodran-like achondrite with affinities to winonaites (abstract) Lunar Planet Sci 38 (#2211).

Bunch, T.E., Irving, A.J., Wittke, J.H., Rumble, D., Gellissen, M., Palme, H., 2008.

Evidence for pervasive metamorphism on the CR chondrite parent body from highly equilibrated CR6 chondrites Northwest Africa 2994 and Northwest

Africa 3100 (abstract) Lunar Planet Sci 39 (#1991).

Burbine, T.H., 2014 Asteroids In: M Davis, A (Ed.), Meteorites and

Cosmochemical Processes, Treatise on Geochemistry, vol 2, second edition.

Burbine, T.H., 2016a Advances in determining asteroid chemistries and mineralogies Chem Erde Geochem 76, 181–195.

Burbine, T.H., 2016b How well does the Bus-DeMeo taxonomy classify meteorite spectra? (abstract) Lunar Planet Sci 47 (#2425).

Burbine, T.H., Meibom, A., Binzel, R.P., 1996 Mantle material in the main belt:

Burbine, T.H., McCoy, T.J., Nittler, L.R., Bell III, J.F., 2001 Could 433 eros have a primitive achondritic composition? (abstract) Lunar Planet Sci 32 (#1860).

Burbine, T.H., McCoy, T.J., Meibom, A., Gladman, B., Keil, K., 2002a Meteoritic parent bodies: their number and identification In: Bottke, W.F., Cellino, A.,

Paolicchi, P., Binzel, R.P (Eds.), Asteroids III University of Arizona Press,

Burbine, T.H., McCoy, T.J., Nittler, L.R., Benedix, G.K., Cloutis, E.A., Dickinson, T.L.,

2002b Spectra of extremely reduced assemblages: Implications for Mercury.

Burbine, T.H., McCoy, T.J., Hinrichs, J.L., Lucey, P.G., 2006 Spectral properties of angrites Meteorit Planet Sci 41, 1139–1145.

Burbine, T.H., Greenwood, R.C., Buchanan, P.C., Franchi, I.A., Smith, C.L., 2007.

Reflectance spectra of mesosiderites: implications for asteroid 4 Vesta

Burbine, T.H., Duffard, R., Buchanan, P.C., Cloutis, E.A., Binzel, R.P., 2011.

Spectroscopy of O-type asteroids (abstract) Lunar Planet Sci 42 (#2483).

Burns, R.G., 1993 Mineralogical Applications of Crystal Field Theory Cambridge

Bus, S.J., Binzel, R.P., 2002a Phase II of the small main-belt asteroid spectroscopic survey: The observations Icarus 158, 106–145.

Bus, S.J., Binzel, R.P., 2002b Phase II of the small main-belt asteroid spectroscopic survey: A feature-based taxonomy Icarus 158, 146–177.

Buseck, P.R., 1977a Pallasite meteorites mineralogy, petrology and geochemistry.

Buseck, P.R., 1977b Pallasite meteorites—mineralogy, petrology and geochemistry.

Geochim Cosmochim Acta 41, 711–721. ´Cuk, M., Gladman, B.J., Nesvorn ´y, D., 2014 Hungaria asteroid family as the source of aubrite meteorites Icarus 239, 154–159.

Canup, R.M., Visscher, C., Salmon, J., Fegley, B., 2015 Lunar volatile depletion due to incomplete accretion within an impact-generated disk Nat Geosci 8,

Carporzen, L., Weiss, B.P., Elkins-Tanton, L.T., Shuster, D.L., Ebel, D., Gattacceca, J.,

2011 Magnetic evidence for a partially differentiated carbonaceous chondrite parent body PNAS 108, 6386–6389.

Cassen, P., 1996 Models for the fractionation of moderately volatile elements in the solar nebula Meteorit Planet Sci 31, 793–806.

Chabot, N.L., Haack, H., 2006 Evolution of asteroidal cores In: Lauretta, D.S.,

McSween, H.Y (Eds.), Meteorites and the Early Solar System II University of

Arizona Press, Tucson, pp 747–771, 943 pp.

Chakraborty, S., Ahmed, M., Jackson, T.L., Thiemens, M.H., 2008 Experimental: Test of self-shielding in vacuum ultraviolet photo-dissociation of CO Science 321,

Chambers, J.E., 2004 Planetary accretion in the inner Solar System, Earth Planet.

Chapman, C.R., 1986 Implications of the inferred compositions of the asteroids for their collisional evolution Mem Soc Astron Ital 57, 103–114.

Chenet, H., Jutzi, M., Barrat, J.-A., Asphaug, E.I., Benz, W., Gillet, P., 2014 A deep crust-mantle boundary in the asteroid 4 Vesta Nature 511, 303–306.

Choi, B.-G., Ouyang, X., Wasson, J.T., 1995 Classification and origin of IAB and IIICD iron meteorites Geochim Cosmochim Acta 59, 593–612.

Clark, B.E., Bus, S.J., Rivkin, A.S., McConnochie, T., Sanders, J., Shah, S., Hiroi, T., Shepard, M., 2004 E-type asteroid spectroscopy and compositional modeling.

Clayton, R.N., 2002 Solar system: Self-shielding in the solar nebula Nature 415, 860–861.

Clayton, R.N., 2003 Oxygen isotopes in meteorites In: Davis, A.M (Ed.), Treatise on Geochemistry, vol 1 Elsevier, pp 129–142.

Clayton, R.N., 2006 Meteorites and their parent asteroids Science 313, 1743–1744. Clayton, R.N., Mayeda, T.K., 1963 The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochim. Cosmochim Acta 27, 43–52.

Clayton, R.N., Mayeda, T.K., 1988 Formation of ureilites by nebular processes. Geochim Cosmochim Acta 52, 1313–1318.

Clayton, R.N., Mayeda, T.K., 1996 Oxygen isotope studies of achondrites Geochim. Cosmochim Acta 60, 1999–2017.

Clayton, R.N., Mayeda, T.K., 1999 Oxygen isotope studies od carbonaceous chondrites Geochim Cosmochim Acta 63, 2089–2104.

Clayton, R.N., Onuma, N., Mayeda, T.K., 1971 Oxygen isotope fractionation in Apollo 12 rocks and soils Proc 2nd Lunar Sci Conf 2, 1417–1420.

Clayton, R.N., Hurd, J.M., Mayeda, T.K., 1972 Oxygen isotope abundances in Apollo

14 and 15 rocks and minerals (abstract) Lunar Planet Sci 3, 141–143. Clayton, R.N., Grossman, L., Mayeda, T.K., 1973 A component of primitive nuclear composition in carbonaceous chondrites Science 182, 485–488.

Clayton, R.N., Onuma, N., Grossman, L., Mayeda, T.K., 1977 Distribution of the pre-solar component in Allende and other carbonaceous chondrites Earth Planet Sci Lett 34, 209–224.

Clayton, R.N., Mayeda, T.K., Rubin, A.E., 1984 Oxygen isotopic compositions of enstatite chondrites and aubrites J Geophys Res 89, C245–C249.

Clayton, R.N., Mayeda, T.K., Goswami, J.N., Olsen, E.J., 1991 Oxygen isotope studies of ordinary chondrites Geochim Cosmochim Acta 55, 2317–2337.

Cleeves, I.I., Bergin, E.A., Alexander, C.M.O.D., Du, F., Graninger, D., Oberg, K.I., Harries, T.J., 2014 The ancient heritage of water ice in the solar system Science

Cloutis, E.A., Hudon, P., 2004 Reflectance spectra of ureilites: Nature of the mafic silicate absorption features (abstract) Lunar Planet Sci 35 (#1257).

Cloutis, E.A., Binzel, R.P., Burbine, T.H., Gaffey, M.J., McCoy, T.J., 2006 Asteroid 3628 Boˇznˇemcová: covered with angrite-like basalts? Meteorit Planet Sci 41, 1147–1161.

Cloutis, E.A., Hudon, P., Romanek, C.S., Bishop, J.L., Reddy, V., Gaffey, M.J., Hardersen, P.S., 2010 Spectral reflectance properties of ureilites Meteorit. Planet Sci 45, 1668–1694.

Cloutis, E.A., Sanchez, J.A., Reddy, V., Gaffey, M.J., Binzel, R.P., Burbine, T.H., Hardersen, P.S., Hiroi, T., Lucey, P.G., Sunshine, J.M., Tait, K.T., 2015.

Olivine-metal mixtures: Spectral reflectance properties and application to asteroid reflectance spectra Icarus 252, 39–82.

Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, A., Wielandt, D., Ivanova, M.A.,

2012 The absolute chronology and thermal processing of solids in the solar protoplanetary disk Science 338, 651–655.

Consolmagno, G.J., Golabek, G.J., Turrini, D., Jutzi, M., Sirono, S., Svetsov, V., Tsiganis, K., 2015 Is Vesta an intact and pristine protoplanet? Icarus 254, 190–201. Craig, H., 1961 Standard for reporting concentrations of deuterium and oxygen-18 in natural waters Science 133, 1833–1834.

Dale, C.W., Burton, K.W., Greenwood, R.C., Gannoun, A., Wade, J., Wood, B.J., Pearson, D.G., 2012 Late accretion on the earliest planetesimals revealed by the highly siderophile elements Science 336, 72–75.

Dauphas, N., Marty, B., Reisberg, L., 2002 Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula Astrophys J.

Dauphas, N., Chen, J.H., Zhang, J., Papanastassiou, D.A., Davis, A.M., Travaglio, C.,

2014 Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet Sci Lett 407, 96–108.

Day, J.M.D., Ash, R.D., Liu, Y., Bellucci, J.J., Rumble III, D., McDonough, W.F., Walker, R.J., Taylor, L., 2009 Early formation of evolved asteroidal crust Nature 457, 179–183.

Day, J.M.D., Ash, R.D., Walker, R.J., Liu, Y., Rumble III, D., Irving, A.J., McDonough, W.F., Tait, K., Taylor, L.A., 2011 Volatile-rich asteroid differentiation and links between felsic meteorites Graves Nunataks 06128 and 06129 brachinites and

‘brachinite-like’ achondrites (abstract) Lunar Planet Sci 42 (#1456). Day, J.M.D., Walker, R.J., Ash, R.D., Liu, Y., Rumble, D., Irving, A.J., Goodrich, C.A., Tait, K., McDonough, W.F., Taylor, L.A., 2012a Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies Geochim Cosmochim Acta 81, 94–128.

Day, J.M.D., Walker, R.J., Qin, L., Rumble, D., 2012b Late accretion as a natural consequence of planetary growth Nat Geosci 5, 614–617.

De Sanctis, M.C., Ammannito, E., Capria, M.T., Tosi, F., Capaccioni, F., Zambon, F., Carraro, F., Fonte, S., Frigeri, A., Jaumann, R., Magni, G., Marchi, S., McCord, T.B., McFadden, L.A., Mc Sween, H.Y., Mittlefehldt, D.W., Nathues, A., Palomba, E., Pieters, C.M., Raymond, C.A., Russell, C.T., Toplis, M.J., Turrini, D., 2012. Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697–700.

DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J., 2009 An extension of the Bus asteroid taxonomy into the near-infrared Icarus 202, 160–180.

DeMeo, F.E., Carry, B., Binzel, R.P., Moskovitz, N., Polishook, D., Burt, B.J., 2014 The distribution of mantle material among main-belt asteroids American

Delaney, J.S., 2009 The missing achondrites: Taking a pinch of salt with the nebula.

72nd Meteoritical Society Meeting Abstract #5095.

Delaney, J.S., Nehru, C.E., Prinz, M., Harlow, G.E., 1981 Metamorphism in mesosiderites Proc Lunar Planet Sci 12B, 1315–1342.

Delaney, J.S., Zanda, B., Clayton, R.N., Mayeda, T., 2000 Zag (b): A ferroan achondrite intermediate between brachinites and lodranites (abstract) Lunar

Dominguez, G., 2010 A heterogeneous chemical origin for the 16 O-enriched and

16 O-depleted reservoirs of the early solar system Astrophys J Lett 713,

Downes, H., Mittlefehldt, D.W., Kita, N.T., Valley, J.W., 2008 Evidence from polymict ureilite meteorites for a disrupted and re-accreted single ureilite parent asteroid gardened by several distinct impactors Geochim Cosmochim.

Dyl, K.A., Bischoff, A., Ziegler, K., Young, E.D., Wimmer, K., Bland, P.A., 2012 Early solar system hydrothermal activity in chondritic asteroids on 1-10-year timescales PNAS 109, 18306–18311.

Elkins-Tanton, L.T., 2012 Magma oceans in the inner Solar System Annu Rev.

Elkins-Tanton, L.T., Weiss, B.P., Zuber, M.T., 2011 Chondrites as samples of differentiated planetesimals Earth Planet Sci Lett 305, 1–10.

Elkins-Tanton, L.T., Mandler, B.E., Fu R.R., 2014 Placing Vesta in the range of planetesimal differentiation models Conference item: Vesta in the light of

Dawn: First exploration of a protoplanet in the asteroid belt Abstract #2034.

Elsenheimer, D., Valley, J.W., 1992 In situ oxygen isotope analysis of feldspar and quartz by Nd:YAG laser microprobe Chem Geol 101, 21–42.

Elser, S., Meyer, M.R., Moore, B., 2012 On the origin of elemental abundances in the terrestrial planets Icarus 221, 859–874.

Farquhar, J., Rumble, D., 1998 Comparison of oxygen isotope data obtained by laser fluorination of olivine with KrF excimer laser and CO 2 laser Geochim.

Fazio, A., D’Orazio, M., Folco, L., Gattacceca, J., 2013 The extremely reduced silicate-bearing iron meteorite Northwest Africa 6583: Implications on the variety of impact melt rocks of the IAB-complex parent body Meteorit Planet.

Fieber-Beyer, S.K., Gaffey, M.J., Kelley, M.S., Reddy, V., Reynolds, C.M., Hicks, T.,

2011 The Maria asteroid family: Genetic relationships and a plausible source of mesosiderites near the 3:1 Kirkwood Gap Icarus 213, 524–537.

Floss, C., Crozaz, G., Jolliff, B., Benedix, G., Colton, S., 2008 Evolution of the winonaite parent body: Clues from silicate mineral trace element distributions Meteorit Planet Sci 43, 657–674.

Franchi, I.A., Wright, I.P., Gibson, E.K.Jr., Pillinger, C.T., 1986 The laser microprobe: a technique for extracting carbon, nitrogen, and oxygen from solid samples for isotope measurements J Geophy Res 91 (b4), D514–D524.

Franchi, I.A., Sexton, A.S., Wright, I.P., Pillinger, C.T., 1998 Oxygen isotopic homogeneity in the ureilite population (abstract) Lunar Planet Sci 29 (#1685).

Franchi, I.A., Wright, I.P., Sexton, A.S., Pillinger, C.T., 1999 The oxygen-isotopic composition of Earth and Mars Meteorit Planet Sci 34, 657–661.

Franchi, I.A., Baker, L., Bridges, J.C., Wright, I.P., Pillinger, C.T., 2001 Oxygen isotopes and the early Solar Sytem Phil Trans R Soc Lond A 359, 2019–2035.

Franchi, I.A., Greenwood, R.C., Scott, E.R.D., 2013 The IIIAB-pallasite relationship revisited: the oxygen isotope perspective Meteorit Planet Sci., supplement abstract #5326.

Franchi, I.A., 2008 Oxygen isotopes in asteroidal materials Rev Mineral 68,

Fu, R.R., Elkins-Tanton, L.T., 2014 The fate of magmas in planetesimals and the retention of primitive chondritic crusts Earth Planet Sci Lett 390, 128–137.

Fu, R.R., Young, E.D., Greenwood, R.C., Elkins-Tanton, L.T., 2015 Fluid migration in early-accreting planetesimals (abstract) Lunar Planet Sci 46 (#1591).

Fu, R.R., Young, E.D., Greenwood, R.C., Elkins-Tanton, L.T., 2016 Silicate melting and volatile loss during differentiation in planetesimals In: Elkins-Tanton, L.T.,

Weiss, B.P (Eds.), Planetesimals Cambridge University Press, in press.

Gaffey, M.J., 1997 Surface lithological heterogeneity of asteroid 4 Vesta Icarus 127,

Gaffey, M.J., Bell, J.F., Brown, R.H., Burbine, T.H., Piatek, J., Reed, K.L., Chaky, D.A.,

1993 Mineralogic variations within the S-type asteroid class Icarus 106,

Gardner-Vandy, K.G., Lauretta, D.S., Greenwood, R.C., McCoy, T.J., Killgore, M.,

Franchi, I.A., 2012 The Taffassasset primitive achondrite: Insights into initial stages of planetary differentiation Geochim Cosmochim Acta 85, 142–159.

Gardner-Vandy, K.G., Lauretta, D.S., McCoy, T.J., 2013 A petrologic, thermodynamic and experimental study of brachinites: Partial melt residues of an R chondrite-like precursor Geochim Cosmochim Acta 122, 36–57.

Ghosh, A., McSween, H.Y., 1998 A thermal model for the differentiation of asteroid

4 Vesta, based on radiogenic heating Icarus 134, 187–206.

Goldstein, J.I., Scott, E.R.D., Chabot, N.L., 2009 Iron meteorites: Crystallization, thermal history, parent bodies, and origin Chem Erde 69, 293–325.

Goldstein, J.I., Yang, J., Scott, E.R.D., 2014 Determining cooling rates of irons and stony-iron meteorites from measurements of Ni and Co at kamacite-taenite interfaces Geochim Cosmochim Acta 140, 297–320.

Goodrich, C.A., Van Orman, J.A., Wilson, L., 2007 Fractional melting and smelting on the ureilite parent body Geochim Cosmochim Acta 71, 2876–2895.

Goodrich, C.A., Kita, N.T., Spicuzza, M.J., Valley, J.W., Zipfel, J., Mikouchi, T., Masamichi, M., 2010 The Northwest Africa 1500 meteorite Not a ureilite, maybe a brachinite Meteorit Planet Sci 45, 1906–1928.

Greenwood, R.C., Franchi, I.A., 2004 Alteration and metamorphism of CO3 chondrites: Evidence from oxygen and carbon isotopes Meteorit Planet Sci.

Greenwood, R.C., Franchi, I.A., Jambon, A., Buchanan, P.C., 2005 Widespread magma oceans on asteroidal bodies in the early solar system Nature 435, 916–918.

Greenwood, R.C., Franchi, I.A., Jambon, A., Barrat, J.A., Burbine, T.H., 2006 Oxygen isotope variation in stony-iron meteorites Science 313, 1763–1765.

Greenwood, R.C., Franchi, I.A., Kearsley, A.T., Alard, O., 2010 The relationship between CK and CV chondrites Geochim Cosmochim Acta 74, 1684–1705. Greenwood, R.C., Franchi, I.A., Gibson, J.M., Benedix, G.K., 2012 Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes Geochim Cosmochim Acta 94, 146–163.

Greenwood, R.C., Barrat, J.-A., Yamaguchi, A., Franchi, I.A., Scott, E.R.D., Bottke, W.F., Gibson, J.M., 2014 The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth Planet Sci Lett 390, 165–174.

Greenwood, R.C., Barrat, J.-A., Scott, E.R.D., Haack, H., Buchanan, P.C., Franchi, I.A., Yamaguchi, A., Johnson, D., Bevan, A.W.R., Burbine, T., 2015a Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the great dunite shortage and HED-mesosiderite connection Geochim Cosmochim Acta 169, 115–136. Greenwood, R.C., Zolensky, M.E., Buchanan, P.C., Franchi, I.A., 2015b The oxygen isotope composition of dark inclusions in HEDs, ordinary chondrites and carbonaceous chondrites (abstract) Lunar Planet Sci 46 (#2975).

Grossman, L., 1972 Condensation in the primitive solar nebula Geochim. Cosmochim Acta 36, 597–619.

Haack, H., McCoy, T.J., 2005 Iron and stony-iron meteorites In: Davis, A.M (Ed.), Treatise on Geochemistry: Meteorites, Comets and Planets, vol 1 Elsevier, pp. 325–345.

Haack, H., Scott, E.R.D., Love, S.G., Brearley, A.J., McCoy, T.J., 1996 Thermal histories of IVA stony-iron and iron meteorites: Evidence for asteroid fragmentation and reaccretion Geochim Cosmchim Acta 60, 3103–3113.

Halliday, A.N., Wood, B.J., 2010 The composition and major reservoirs of the Earth around the time of the Moon-forming giant impact In: Stevenson, D (Ed.), Evolution of the Earth: Treatise on Geophysics, vol 9 Elsevier., pp 13–50. Hallis, L.J., Anand, M., Greenwood, R.C., Miller, M.F., Franchi, I.A., Russell, S.S., 2010. The oxygen isotope composition, petrology and geochemistry of mare basalts: Evidence for large-scale compositional variation in the lunar mantle Geochim. Cosmochim Acta 74, 6885–6899.

Hardersen, P.S., Gaffey, M.J., Abell, P.A., 2004 Mineralogy of asteroid 1459 Magnya and implications for its origin Icarus 167, 170–177.

Hassanzadeh, J., Rubin, A.E., Wasson, J.T., 1990 Composition of large metal nodules in mesosiderites: Links to iron meteorite group IIIAB and the origin of mesosiderite subgroups Geochim Cosmochim Acta 54, 3197–3208. Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W.H., 2013 Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion Icarus 226, 212–228.

Herrin, J.S., Zolensky, M.E., Cartwright, J.A., Mittlefehldt, D.W., Ross, D.K., 2011. Carbonaceous chondrite-like lithologies on the HED parent (abstract) Lunar Planet Sci 42 (#2806).

Hevey, P.J., Sanders, I.S., 2006 A model for planetesimal meltdown by 26 Al and its implications for meteorite parent bodies Meteorit Planet Sci 41, 95–106. Hewins, R.H., 1983 Impact versus intenal origins for mesosiderites Proc 14th Lunar Planet Sci Conf J Geophys Res 88, B257–B266.

Hiroi, T., Sasaki, S., 2012 Asteroidal space weathering: Compositional dependency and influence on taxonomy Asteroids Comets and Meteors, Conference Proceedings Abstract #6109.

Hopfe, W.D., Goldstein, J.I., 2001 The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites Meteorit Planet Sci 36, 135–154.

Horstmann, M., Bischoff, A., Pack, A., Albrecht, N., Weyrauch, M., Hain, H., Roggon, L., Schneider, K., 2012 Mineralogy and oxygen isotope composition of new samples from the Almahata Sitta strewn field (abstract) Meteorit Planet Sci.

Humayun, M., Clayton, R.N., 1995 Potassium isotope cosmochemistry: Genetic implications of volatile element depletion Geochim Cosmochim Acta 59, 2131–2148.

Humayun, M., Weiss, B.P., 2011 A common parent body for Eagle Station pallasites and CV chondrites (abstract) Lunar Planet Sci 42 (#1507).

Humayun, M., Teplyakova, S.N., Lorenz, C.A., Ivanova, M.A., Korochantsev, A.V.,

2014 Siderophile element abundances in Karavanoe: Implications for the origin of the Eagle Station Pallasites (abstract) Lunar Planet Sci 45 (#2293). Hutchison, R., 2004 Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge University Press, Cambridge.

Hyde, B.C., Tait, K.T., Nicklin, I., Gregory, D.A., Ali, A., Jabeen, I., Banerjee, N.R., 2013. Northwest Africa 7680: an ungrouped achondrite with affinities to primitive achondrite groups (abstract) Meteorit Planet Sci 48 (#5207).

Ikeda, Y., Takeda, H., 1985 A model for the origin of basaltic achondrites based on th Yamato 7308 howardite Proc 15th Lunar Planet Sci Conf J Geophys Res.

Irving, A.J., Larson, T.E., Longstaffe, F.J., Rumble, D., Bunch, T.E., Wittke, J.H.,Kuehner, S.M., 2004 A primitive achondrite with oxygen isotopic affinities to

CV chondrites: Implications for differentiation and size of the CV parent body.

Irving, A.J., Kuehner, S.M., Rumble, D., 2006 A fresh plutonic igneous angrite containing grain boundary glass from Tamassint, Northwest Africa AGU, Fall

Irving, A.J., Rumble III, D., Kuehner, S.M., Gellissen, M., Hupé, G.M., 2009 Ultramafic achondrite Northwest Africa 5400: A unique brachinite-like meteorite with terrestrial oxygen isotopic composition (abstract) Lunar Planet Sci 40

Irving, A.J., Kuehner, S.M., Bunch, T.E., Ziegler, K., Chen, G., Herd, C.D.K., Conrey,

R.M., Ralew, S., 2013 Ungrouped mafic achondrite Northwest Africa 7325: A reduced, iron-poor cumulate olivine gabbro from a differentiated planetary parent body (abstract) Lunar Planet Sci 44 (#2164).

Irving, A.J., Kuehner, S.M., Ziegler, K., 2015 Petrology and oxygen isotopic composition of orthopyroxenitic achondrite Northwest Africa 8777 and sodic ultramafic achondrite Northwest Africa 10132 (abstract) Meteorit Planet Sci.

Izidoro, A., Haghighipour, N., Winter, O.C., Tsuchida, M., 2014 Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of mars Astrophys J 782, 31.

Jacobsen, B., Yin, Q.-Z., Moynier, F., Amelin, Y., Krot, A.N., Nagashima, K., Hutcheon,

I.D., Palme, H., 2008 26 Al- 26 Mg and 207 Pb- 206 Pb systematic of Allende CAIs:

Canonical solar initial 26 Al/ 27 Al ratio reinstated Earth Planet Sci Lett 272,

Jacobson, S.A., DeMeo, F., Morbidelli, A., Carry, B., Frost, D., Rubie, D.C., 2016 There is too much mantle material in the asteroid belt (abstract) Lunar Planet Sci 47

Janots, E., Gnos, E., Hofmann, B., Greenwood, R.C., Franchi, I.A., Bermingham, K.,

Netwing, V., 2012 Jiddat al Harasis 556: A howardite impact breccias with an

H chondrite component Meteorit Planet Sci 47, 1558–1574.

Javoy, M., Kaminski, E., Guyot, F., Andrault, D., Sanloup, C., Moreira, M., Labrosse, S.,

Jambon, A., Agrinier, P., Davaille, A., Jaupart, C., 2010 The chemical composition of the Earth: Enstatite chondrite models Earth Planet Sci Lett 293, 259–268.

Javoy, M., 1995 The integral enstatite chondrite model of the Earth Geophys Res.

Jenniskens, P., Shaddad, M.H., Numan, D., Elsir, S., Kudoda, A.M., Zolensky, M.E., Le,

L., Robinson, G.A., Friedrich, J.M., Rumble, D., Steele, A., Chesley, S.R.,

Fitzsimmons, A., Duddy, S., Hsieh, H.H., Ramsay, G., Brown, P.G., Edwards, W.N.,

Tagliaferri, E., Boslough, M.B., Spalding, R.E., Dantowitz, R., Kozubal, M., Pravec,

P., Borovicka, J., Charvat, Z., Vaubaillon, J., Kuiper, J., Albers, J., Bishop, J.L.,

Mancinelli, R.L., Sandford, S.A., Milam, S.N., Nuevo, M., Worden, S.P., 2009 The impact and recovery of asteroid 2008 TC 3 Nature 458, 485–488.

Jenniskens, P., Vaubaillon, J., Binzel, R.P., DeMeo, F.E., Nesvorn ´y, D., Bottke, W.F.,

Fitzsimmons, A., Hiroi, T., Marchis, F., Bishop, J.L., Vernazza, P., Zolensky, M.E.,

Herrin, J.S., Welten, K.C., Meier, M.M.M., Shaddad, M.H., 2010 Almahata Sitta

(=asteroid 2008 TC 3 ) and the search for the ureilite parent body Meteorit.

Johnson, B.C., Minton, D.A., Melosh, H.J., Zuber, M.T., 2015 Impact jetting as the origin of chondrules Nature 517, 339–341.

Jones, R.H., Wasson, J.T., Larson, T., Sharp, Z.D., 2003 Milton: A new unique pallasite (abstract) Lunar Planet Sci 34 (#1683).

Jones, J.H., 1984 The composition of the mantle of the eucrite parent body and the origin of eucrites Geochim Cosmochim Acta 48, 641–648.

Jurewicz, A.J.G., Mittlefehldt, D.W., Jones, J.H., 1993 Experimental: partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts Geochim Cosmomchim Acta 57, 2123–2139.

Kaneda, K., Warren, P.H., 1998 iron-nickel metal bearing unique eucrite Elephant

Morraine 92023 Siderophile concentrations, and petrogenesis (abstract).

Keil, K., Ntaflos, Th., Taylor, G.J., Brearley, A.J., Newson, H.E., Romig Jr., A.D., 1989.

The Shallowater aubrite: evidence for origin by planetesimal impacts.

Keil, K., 1989 Enstatite meteorites and their parent bodies Meteoritics 24,

Keil, K., 2010 Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies Chem Erde/Geochem 70, 295–317.

Keil, K., 2012 Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid.

Keil, K., 2014 Brachinite meteorites: partial melt residues from an FeO-rich asteroid Chem Erde/Geochem 74, 311–329.

Kita, N.T., Ikeda, Y., Togashi, S., Liu, Y., Morishita, Y., Weisberg, M.K., 2004 Origin of ureilites inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani 319 polymict ureilite Geochim Cosmochim Acta 68,

Kita, N.T., Ushikubo, T., Fu, B., Valley, J.W., 2009a High precision SIMS oxygen isotope analysis and the effect of sample topography Chem Geol 264, 43–57, ijer.

Kita, N.T., Goodrich, C.A., Spicuzza, M.J., Valley, J.W., 2009b Oxygen isotopes in ungrouped achondrite NWA 1500 and comparison to brachinites (abstract).

Kleine, T., Mezger, K., Palme, H., Scherer, E., Münker, C., 2005 Asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites, and iron meteorites Geochim Cosmochim Acta 69,

Kleine, T., Toubol, M., Bourdon, B., Nimmo, F., Mezger, K., Plame, H., Jacobsen, S.B., Yin, Q.-B., Halliday, A.W., 2009 Hf-W chronology of the accretion and early evolution of asteroidsand terrestrial planets Geochim Cosmochim Acta 73, 5150–5188.

Kleine, T., Hans, U., Irving, A.J., Bourdon, B., 2012 Chronology of the angrite parent body and implications for core formation in protoplanets Geochim.

Kong, P., Su, W., Li, X., Spettel, B., Palme, H., Tao, K., 2008 Geochemistry and origin of metal olivine clasts, and matrix in the Dong Ujimqin Qi mesosiderite. Meteorit Planet Sci 43, 451–460.

Korochantsev, A.V., Lorenz, C.A., Ivanova, M.A., Teplyakova, S.N., Kononkova, N.N., Roshina, I.A., Borisovsky, S.E., Bychkova, Y.V., Franchi, I.A., Greenwood, R.C.,

2013 Karavannoe: A new member of the Eagle Station pallasite grouplet (abstract) Lunar Planet Sci 44 (#2020).

Krot, A.N., Amelin, T., Bland, P., Ciesla, F.J., Connelly, J., Davis, A.M., Huss, G.R., Hutcheon, I.D., Makide, K., Nagashima, K., Nyquist, L.E., Russell, S.S., Scott, E.R.D., Thrane, K., Yurimoto, H., Yin, Q.-Z., 2009 Origin and chronology of chondritic components: A review Geochim Cosmochim Acta 73, 4963–4997. Krot, A.N., Nagashima, K., Ciesla, F.J., Meyer, B.S., Hutcheon, I.D., Davies, A.M., Huss, G.R., Scott, E.R.D., 2010 Oxygen isotopic composition of the Sun and mean oxygen isotopic composition of the protosolar silicate dust: Evidence from refractory inclusions Astrophys J 713, 1159–1166.

Krot, A.N., Keil, K., Scott, E.R.D., Goodrich, C.A., Weisberg, M.K., 2014 Classification of meteorites and their genetic relationships In: Davis, A.M (Ed.), Meteorites and Cosmochemical Processes, Treatise on Geochemistry, vol 1, second edition Elsevier, Oxford, pp 1–63.

Kruijer, T.S., Touboul, M., Fischer-Gửdde, M., Bermingham, K.R., Walker, R.J., Kleine, T., 2014 Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154.

Ngày đăng: 04/12/2022, 15:35

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN