Cong trinh Khoa hpc XAY DIJlSG CAY SU KIEN PHAN TICH AN TOAN HE THONG TiN HIEU TU DQNG DAU MAY BANG PHUONG PHAP BANG QUYET DINH TS NGUYEN DUY V [ $ T B() mdn Tin hi$u Giao thdng Khoa Difn - Di^n tu Trudng Dpi hpc Giao thdng V^n lai Tdm tdt: Su dung phirang phdp bdng quyet dinh d4 xdy dung cay su ki^n phdn tich an todn thay idu bdng cdch xdc Ipp mdi quan hi' qua Igi giira cdc trang thdi nguy hiem cua chuyen ddng dodn tdu vd cdc hi4n luong xdy a h4 thdng hinh lenh hdm he thong tin hieu ddu may vd tu dpng dirng Idu Summary: Using decision table methods to build event tree for analysis of train operation safety by establishing relationships between the dangerous states of train movements and phenomena occurring in the braking system in the cabin signal system and automatic tram stop I D A T V A N D E Khi xdy dyng he thdng kj thugt mdi, cdng viec nghien ciru cay cac trd nggi nguy hiem (mpt dgng ciia cay sy kien) cdn dugc thyc hi6n d nhiing budc ddu tien cua cdng tdc thilt ke He thdng tin hieu dau may va ty ddng dirng tau da cd mat cdc he thdng dieu khien chgy tau d mpt sd nude nhung ddi vdi nude ta se la mdi dua hp thdng vao sir dung De ddm bao an toan chay tau can xay dyng dugc cay cac trd nggi nguy hiem ciia hp thdng II NOI DUNG Trong he thdng ty ddng hinh lenh ndi mgch he thdng ham cua doan tdu (hinh I) gdm cac thilt bj ciia he thong tin hipu ty ddng dau mdy TTD, thiet bj tdc dg thyc tl ciia doan tdu DT va thiet bi hinh lenh HL khdi dpng he Va 'CI' I 'no ' •• • ——A TTD — > thdng ham cua dodn tau Khi phan tich, thiet bi TTD, thilt bj DT, thilt bj HL dugc xem nhu la cdc phan tii ciia he thdng - > ^ f , • ^ ^= , - ;- il.u- Hinh So chtrc nang hmh linh tu dpng khdi dpng he thong ham dodn tdu Thilt bj HL can hinh thdnh dugc lenh khdi done he thong ham cua dodn tdu tdc dp v & t ^ _ • thyc te V.pi- ciia doan tdu dgt den van tdc cho Tap chi KHOA HOC GIAO THONG VAN TAI S6 37 - 03/2012 59 Cong trinh Khoa hpc phep Idn nhat theo dilu kipn an loan chgy tau W^p, tuc la V,-, = V^p Gid trj ciia V(.pdugc xdc djnh bdi hp thong ddng dudng ty dgng trSn co sd cdc kit qud kiem tra sy thoat cua phan khu va sy todn vpn cua ray phgm vi ciia nd Cdc thdng tin ve gid trj ciia V,.p dugc truyen tir thilt bj ciia h? thing ddng dudng ty d$ng len d^u mdy, chinh xdc Id den dau vao ciia bg HL theo kfinh TTD Dgi lugng V^, dugc xdc djnh bdi DT, vi dy nhu so vdng quay ciia bdnh tdu mgt doii vj thdi gian Trong trudng hgp nlu nhu HL khdng hinh dugc Ipnh khdi dgng hp thong ham doan tdu Wjj = V(.p thi doan tdu cd thi di vdo phan khu bj chiem dyng bdi dodn tdu khdc hodc phan khu cd ray khdng toan vpn Trong trudng hgp dau cd thi xay va chgm vdi dodn tdu khdc, trudng hgp thir hai cd the xdy sy co trgt banh tdu Cdc nguyen nhdn ciia cdc tinh trgng nhu the cd thi Id cdc trd nggi nguy hiem ciia TTD, DT ho^c HL, dan din vipc dn dinh tdc dp cho phep qua cao ho^c xdc djdh toe dp thyc tl thap d cdc dau vdo HL so vdi cac gia trj thyc ciia chiing Nhu vgy sy kipn dugc ggi la khdng mong muon maV^^=Vcp, tham chi V,^ > V^p, Ipnh khdi dgng he thdng hdm ciia doan tdu khdng dugc hinh Cay sy kipn sg yeu cau xdc djnh cdc dieu kipn xuat hipn ciia nd Trdngai ngiiyliieiu Trdngai l;lidiig nguy liieiii Khdng CO ird USUI Trdngai nguy liieni Khong CO ird ngai —1 Vr„,>li,, ''7,0V„ V T r d nggi nguy h i l m Khdng cd ipnh V V Khdng cd trd nggi Khdng cd Ipnh V V V ID V 11 V 12 V' T T D < V' C P V„T=Vr, Khdng cd trd nggi Lpnh 13 V V„r V *TTD *rp > V "TTD *rp > V "TTD *CP < V 'TTD 'CP *TTD *C1' < V *^TTD *TTD < V *TTD = V *'TTD *CP "TTD *CP = V "TTD 18 *CP Vrro = \p *^-| f > V " DT ' T r d nggi nguy hiem Khdng cd Ipnh Khdng cd trd nggi Khdng cd Ipnh T r d nggi nguy hiem Khdng cd Ipnh Khdng ed trd nggi Lpnh T r d nggi nguy hiem Khdng cd lenh ' ! = V ' DT ' Tl > V * DT ' rr > V 'DT V 1 > V 'DT V *CP < V *DT V *tP ' l l " D T V *CP < V * n = V V < V' l l 'DI ^ V < V = V * Dl Khdng cd trd ngai Lpnh T r d nggi nguy hiem Khdng cd lenh Khdng cd trd nggi Lpnh 'TT = V ' DT ' [ [ Bang quylt djnh HL dugc dan gidn neu nhu chii y den cac Uudng hgp d trd ngai nguy hiem ciia nd vd d cdc sy kipn cd quan hp bat ky tgi dau vdo ciia nd d dau khdng cd lpnh ndi mgch he thdng ham Vi vgy cac ddng 1, 3, 5, 7, 9, 11 13 15 17 dugc thay the bdng mgt ddng Tir bdng quyet djnh, ta logi bd cac ddng 10, 12, 16, 18 vdi sy kipn dau ciia HL "Lpnh" bdi dgt su quan tam cho van de an toan ddi vdi cdc trudng hgp khdng cd lpnh khdi dgng hp thdng ham dodn tdu Ket qua vipc riit gpn Id se nhgn dirge bdng quyet djnh ciia HL don gidn hon (bang 4) Biing Bang quyet dinh dan rut gpn cho HL TT Sy kipn ddu vao I I V V V >V 'TTD 'CP >V *TTD V V 62 ^DT < V^-, Khdng cd trd nggi Khdng cd lenh V.T > V^T Khdng cd trd nggi Khdng cd lenh VDT=Vrr Khdng cd trd nggi Khdng cd lenh VoT