NGHIEN Cflu - TRAO D I DU BAO HANH TRJNH GIOI HAN TRUNG BINH THEO SU BI^N DPl THONG S6 TRANG THAI DETERMINING THE AVERAGE BOUND DURATION OF A VEHICLE PART BASED ON THE CHANGE OF OPERATION FACTOR TS Nguyen Van Dung Hoc vi^n Ky thugt Quan sd TOM TAT Hdnh trinh gidi han trung binh (T) cua mdt phdn til tren xe co the xdc dinh bang nhieuphMn phdp khdc Bai bdo de cap den phUdng phdp xdc dinh T theo sti bien doi thong so trgng thdi, phl^Ongphdp ddn gidn vd hieu qud ABSTRACT Average bound duration of a vehicle part (T) can be determined by deferent methods The pa pressents aT - determining method based on the change of operation factor, this is a simple and eff method CO s d PHUONG PHAP XAC D I N H H A N H TRlNH Gldl HAN Z - Luong bien ddi gia tri thong so phu thupc cac yeu to khai thac Su bien doi thong so trang thai (TSTT) Cac gia tri U, A, Z cho mpt phan tii bieu theo hanh trinh khai thac phu thuoc hai yeu td: dien tren hinh Ket cau va khai thac Cho mgt tap hop phan tii cung ten, chi tinh den yeu td ket cau, sU thay ddi TSTT se la cac dudng cong tron (dudng cham) c6 cimg quy luat bien doi, nhUng khae ve tdc Con tinh den ca yeu td khai thac se la cac dudng gay khuc (Hinh 1) Luong bien ddi gia tri thdng sd trang thai cia mpt phan til U tai mdt thdi diem dupc md ta bang bleu thitc: U=A+Z (1) A - Luong bien ddi gia tri thdng sd phu thudc cac ydu td ket cau; TAP CHI CO KHi V I £ T NAM Hinh I: Bo thi U= fit) Sd (Thing nam 2012) NGHIEN Cflu - TRAO D I U| - Thdng so dae trUng cho giai doan chay ri Him (4) cd kha ning xap xi tdt nhat qui trinh thUc Vi vay thUdng dung nd cho cae qui trinh dU bao Dl' xic dinh T, theo [1] ed the tien hinh theo him xap xi, neu bilt dflpe ham phin bd hinh trinh (p(t) va him phin bd tdc dp bien doi thdng so (p(v), nhien se rat phfle tap PhflPng phap si ddn giin sU dung khii niem "dp bin liu chu ddng" » 'i t Hinh 2: Cdc gid tri i' \.Z Theo |1] Iflpng bien ddi niy theo thdi gian U(t) la mpt him ngau nhien rat phUe tap Tuy nhien sfl dung khai tril'n chinh tic v i cic bil'n doi thich hdp 12], ed the dfla ve dang: U(t)=Vcf(t)+VtT(t) (2) Trong dd: f(t) va f (t) - cac ham xac dinh quy luat bien ddi cua A va Z theo hanh trinh; VcVt'-TdcddbienddicuaAvaZ Mudn dil bao tinh trang ky thuat phan til xe may, thi tii cac sd lieu thdng ke gia tri TSTT ciia phan til phai lap duoc ham xap xi md ta dung quy luat bien ddi TSTT, it nhat tii sau chay den dat den trang thai gidi ban Tuy theo qua trinh Men doi thilc, chi can thay f(t) ciia ham (2) bang mpt ham thich hpp, ta duoc ham xap xi U|(t) Khi qua trinh bien ddi tuyen tinh, ham xap xi CO dang: U,(t) = Vet + U, Iheo ll], 13] sfl biln ddi dp liu bin chu ddng (B,,) eua eic phin tfl xe miy deu tuin theo quy luat tuyen tinh, ed gii tri la "0" d dau chu ky khai thic va bing dat din trang thai gidi ban vi phin anh sfl biln ddi thdng sd thflc De chuyen cac ham xap xi ham Bed = f(t), tien hanh theo trinh tU: Chuyen U| sang ve trai; bien ddi de t d hai ve deu cd bac 1, sau chia ca hai ve cho luong bien ddi gidi han UG Vi du, ham xap xi dang (4) duoc chuyen ham Bed nhU sau: U,(t) = Vet"+U, » U,(t) - U, = Vet" « U(t)=Vct" Chia ca hai ve cho lUong bien ddi U^, va kha' can bac a, ta duoc B^_,: V^ - Tdc dd bien ddi TSTT da chuan hoa, la dai lUpng ngau nhien V cho mdt phan til la gia tri khdng ddi (3) Trong dd: Khi qua trinh thUc bien ddi phi tuyen, ham xap xi se cd dang khae nhu ham luy thvta (4), ham mil (5),v.v U|(t)=Vct° + U| U,(t) = a e " + U, (4) (5) (6) " U(t) = U,(t) - U, = ( P(t) - VJ - U,; U^ = U,^ - U, = (P„ - P„) - U, (7) PO, P(t), P( - Gia tri ban dau, gia tri duoc tai thdi diem t va gia tri gidi han cua thdng sd '^ TAP CHi CO KHI V I £ T NAiVI • Sd (Thang nam 2012) ^ J NGHIEN Cflu - TRAO o6l Do B^j bien ddi tuyen tinh til 0+1, nen neu thieu biet P^ va hanh trinh tuong ilng t^, de dang xac dinh duoc hanh trinh gidi han cda phan til i (T) Bddc 3: Tinh HTGH trung binh T, he so phdn tin hdnh trinh V theo cdng thiic: T = — ^ ^ ' Bcd!(.t) (8) Hanh trinh gidi ban trung binh (T) va he sd phan tan hinh trinh (V) tinh theo cac cong Khi da cd cac gii trj Ti ciia cic phan td rieng biet, ta co day thdng ke Tim hinh trinh gidi thiic: han trung binh cua phan tii, thilc chit 14 tim gii tri trung binh ciia day thdng ke dd: -yri=-(a-i) "(10) QUY TRlNH XAC DINH H A N H T R I N H GlOl HAN De xic dinh T cho mdt phan til ta can chpn thdng sd dac trUng, sd luong ddi tiiong thi nghiem, gii tri cac thdng sd va xii ly ket qua Thdng sd dupc chon can dam bao cic yeu ddi vdi thdng sd chan doin; cd gia tri tieu chuan (P^) va gidi han (P^,) Sd lupng ddi tupng thi nghiem chpn theo [4] Trong dd: (a-1) - Sd lan nam khoang hinh trinh dau tien xie dinh U,; n- Kich thfldc mau Hilu chinh ket q u i (thflc chat li lo?i bo sai sd thd) theo quy tic trie nghiem sd lac [1], gdm ba bfldc Viec gia tri thdng sd va xd ly ket qui tien hanh theo trinh tU sau: - Tinh p; Biidc 1: Lap ddy thong ke gid tri thong so •m (11) - So sinh vdi /3p (tra bang) Gii tri bj loai Do gii tri P va ghi hinh trinh ti cho moi phan tfl mau Sap xep P theo gii tri ting ^ ^ f t- , & • dan cua t va tinh Iflpng biln ddi ^\ it) = Pi-P j; " '' ^, , , , , _ , , , ^ , , LI • - Tinh lai eac gii tri T v a V Gia tri tinh lai sau hi^u chinh la gia tri T va V can tim Bfldc 2: Lap hdm xap xl lUdng bien doi thdng so, tflc li tim quy lu^t biln ddi H i m xip xi chpn dang luy thfla: U,(t) = m^ t" + U^ CfNG DVNG XAC D I N H GlOil HAN " HANH TRlNH a Dat bai toan: Cho cdc gid tri lUdng U xuong cdc te P(t) cda ddng ed CMM (bdng 1) Cdc gid tri ndy deu lan cho tiing ddng cd tai cac De lap h i m xap xi, chia nhdm cac gia tri hdnh trinh rieng biet Gid tri tieu chuan Pg = 28li U (t) theo cae khoang h i n h trinh bang nhau, tinh ph; Gid tri tdi han P^ = 90 l/ph Cdn xdc djnh hanh gii tri Uj(^(t), t^^ mdi khoing, ve dfldng cong trinh gidi han T cho ddng cd bien ddi thflc \J^^ = f(t) va xac dinh U, Gia tri m^ a xac dinh bang phUdng phip binh phUdng toi Cic tham sd can xac dinh: U|, a, m^ TAP CHi CO KHI VIET NAM V Sd (Thing nam 2012) b Phfldng phap tien hanh: Budc 1: Lap day thong ke gid tri thdng sd' Budc 2: Lap hdm xap xl lUdng bien doi thdng so - Sdp xep cdc P^(t) theo chieu tdng ddn cua hdnh trinh, tinh ui(t) = Pft) - P^ (bdng 1) ' Theo hdnh trinh chia so lieu ldm m khodng (m = 7), tinh gid tri trung binh U, vdt (bdng 2) - Ve thj dexdc dinh u, (Hinh 5) Bdng I - Gid tri thdng so Thii tuCi) Hanh trinh P,(t) (I'ph) t,(h) 20 21 Gia so Thu uu(t)=P,(t)-Po: L'ph tu(i) IT 1700 1800 2730 31 28 30 35 33 31 23 24 25 26 27 1570 38 55 10 27 40 41 1610 P.(t) Gia so aph) uu(t)=P,(t)-Po: l/ph 52 50 50 68 70 50 24 22 22 40 42 22 60 70 32 42 t,(h) 120 130 260 480 480 720 Hanh trinh 1830 1880 1920 1920 2800 Bang2- Khodng chia hdnh trinh (h) 100-500 500- 9001300 13001700 17002100 21002500 25002900 900 7 10 10 12 24 27 17 22 27 32 32 42 32 42 48 Ten khoang Hanh trmh Cac gia •? tri ui(t) n=5 " Z«uW 30 14 2' N=3 N=4 n=ll n=ll N=5 28 27 1940 2230 40.7 18.3 12.4 f =J—=290 22 22 27 12 12 n=2 T) 730 1000 1610 2670 n TAP CHI CO KHI VIET NAM Sd (Thing nam 2012) NGHIEN Cflu - TRAO D O I Bang cdng thflc trin ta cd: * Xdc dinh u^ De xic dinh u, la cd the sfl dpng hai • ^ 6V+L-3-2L', + 13-2.7 ' phflpng phap: * Xdc dinh m^_ vd a - Keo dii dfldng VUA ve den cit Iruc 'I heo cic dil'm U = U - U, xie dinh mv tung Gii tri tfl den diem cat la u, vi a bing phUdng phip binh phfldng tdi thi^u.Ti/ bil'u thflc: l/ph U, = mvt" + U, ^ U,_ - U, = mvt" (13) lay In hai v l dflpe: l n ( U , , - U , ) = lnmv + alnt (14) Dat:y = l n ( U l j - U l ) ; x = lnt Hinh 5- Dd thi U^^ =f(tj Ta ed: y = In mv + ax; - Tren dd thi u, t vfla ve chpn diem (t^^, t „ Bing phfldng p h i p BPNN se dflpc: t,); tfldng flng si cd u^^, u^, u^ tji - lay tai phan diu dfldng cong, ndi cd diem lech xa nhat I(> ->» - v ) tj - lay tai diem cat gifla dudng cong v i biln trUdc cua khoing thfl hay eae khoang a - - : In m = v - ax; sau dd I, = JiJ^; Khi do: U,= ^°^' ^' (11) v d i V = ' ' • •• ; V = m-\ d vi du niy t„ 500 h; U^ - ^ m-\ — (15) 1/ ph; tj - 1300 h miy nd; U, = 13 l/ph Suy Gia tri U = Uj - U^, t va cic gia tri khic de tinh a '2 = A M = V 0 1300*800/1 m i y nd, theo dd va m^ cho bing thi, u,= l/ph TAP CHi CO KHi VIET NAJVI V Sd (Thing nam 2012) NGHIEN CIJfU-TRA0D6l Bang 3- Ket qud tinh cdc gid iri de Udc lUdng a vd mv Hanh trinh tj Xj=hitj j 290 5.66 3.4 2.4 0.88 730 6.59 1.39 1000 6.91 12.4 11.4 1610 18.3 n.3 1940 387.57 28 2230 7.71 2670 7.80 TT khoing Uij-ui Y=hi (xi-S) -1.34 -1.6 14 1.8 -0.41 -1.1 0.45 0.17 43 -0.09 -1.07 0.006 0.008 2.85 0.38 0.35 0.13 0.14 27 3.29 0.57 0.79 0.45 0.32 27 26 3.25 0.71 0.75 0.53 0.5 40^ 39.7 3.68 0.80 1.18 0.94 0.64 4.65 3.58 17.7 49,02 Tinh toin cu the: x = - = VJA- Xj-.T (uij-ni) 49.02 -1 l = - 3.58 -^xf (xr xy^ Yi-v Ui, L'ph - = 17 = 1,3 In m =}.-ax = n, =l,2.10-n.ph hi-" Ket qua cho ham xap xi: U|(t) = l,2.10-'t'' + Biidc 3: Tinh HTGH trung binh T, he sdphdn tdn hdnh trinh V Gia tri cac thdng sd tinh toin dupc bieu dien bing T xic dinh theo bieu thdc (10): r = J YT = ^ ,yi " - ^ Theodd: r = — ! — Y 192700 = 5340h «-(a-l)tr ' « - ( o - l ) i : IC/.W 4-5^ He sd phan tan hanh trinh V xac djnh theo bieu thirc ( I I ) 'f'MH '''• •• i^M-' TAP C H i CO KHi V I £ T NAM 'l* 81.3=1,55 Sd (Thing nam 2012) NGHIEN cflu-TRAO Ddi tiling 4: CM gid tri dSHnh T viV "a (^ ,Y tt(i) t, u,(t) 10 11 12 13 14 15 720 740 930 960 960 960 960 960 960 960 11 18 13 19 11 13 9864 4366 3441 2400 3168 2304 3552 2664 3168 4128 0.003 0.17 0.05 40 41 2730 2800 31 41 4640 3640 0.017 0.10 I:T,=192700 Z=84.3 T,=t Ir-'J 0.72 0.03 0.12 0.3 0.17 0.32 O.ll KET LUAN Nhu vay, bing phuong p h i p niy, ta ludn diJ b i o duoc hanh trinh gidi han trung binh cua bat cii phan t i nio (chi tiet, mdi ghep, cum, he thdng) tren xe neu cd thdng sd tr^ng thai (P), dtldc cac gii tri (pi) tuong dng vdi hanh trinh sti dung (ti), cd cic gii tri ban dau (PJ va gidi han (P ) ciing nhii cic dieu kien khao sit ngau nhien cua phan td dd • Ngay nhan bai: 08/7/2012 Ngay phin bien: 15/7/2012 Ngiidi phan bien: GS, TSKH Pham Van Lang Tai lieu tham khao: [1] Mikholin V.M., DU bao tinh trang ki thuat xe may, M, 1976 [2] Pugatrep V.S., Nhap mdn xac suat, M, 1968 [3] Xelivanop A.I., Co sd li thuyet gia hoa xe may, M, 1971 [4] Nguyen Cao Van, Tran Thai Ninh, Li thuyet xac suat va thdng ke toan Ha ngi, 1999 [5] Nguyen Ngoc Ban, Nguyen Hoang Nam (bien dich), Khai thac trang bi xe tang thiet giap, HVKTQS, 1992 [6] Tran Quang Hiing (bien dich), Giao trinh siia chiia xe may cdng binh, HVKTQS, 1985 ^ TAP CHi C O KHi V J £ T NAM *t* Sd (Thing nam 2012) ... Bddc 3: Tinh HTGH trung binh T, he so phdn tin hdnh trinh V theo cdng thiic: T = — ^ ^ '' Bcd!(.t) (8) Hanh trinh gidi ban trung binh (T) va he sd phan tan hinh trinh (V) tinh theo cac cong Khi... Thdng so dae trUng cho giai doan chay ri Him (4) cd kha ning xap xi tdt nhat qui trinh thUc Vi vay thUdng dung nd cho cae qui trinh dU bao Dl'' xic dinh T, theo [1] ed the tien hinh theo him xap... thdng so - Sdp xep cdc P^(t) theo chieu tdng ddn cua hdnh trinh, tinh ui(t) = Pft) - P^ (bdng 1) '' Theo hdnh trinh chia so lieu ldm m khodng (m = 7), tinh gid tri trung binh U, vdt (bdng 2) -