KHOA HOC VA C O N G CNM NGHC M XAY DUNG VA MO PHONG BO DIEU KHIEN SO MAY C A N THEP TRONG CONG NGHIEP TS N G U Y I N DCrc KHOAT Trudng D^i hgc Mo-D'ia chat Bai toan Hien nay, tai Viet Nam nganh cdng nghidp thdp ddng mQt vai tro rat quan trpng ndn cdng nghiep chung dLPOC su dyng rdng rai cac nganh chd tao may, xdy dyng, giao thdng vdn tai, ndng nghiep, nang luo'ng, san xudt hdng gia dyng, y te, an ninh quoc phdng Dk ddp ung nhu cdu su dung thep cdng tang, cdc nhd mdy san xuat phdi thep vd thep tam dai ung dyng cdng nghd san xudt hien dgi Trong bai todn thay ddi dp ddy cua thep can bdng each didu khiln lyc ep cua cdc tryc gid can bang he thdng xy lanh thuy lyc vd cdc dpng co dien xoay chidu hoac he true vit dpng eo 6k cdn 6v/ac ede san phdm thep tdm vol cdc dp ddy mong mudn Cdc bp didu khiln eho cdc ddi tup-ng cdng nghiep cdn thep ndy Id ede cdng trinh mang :::::,::; ' I.JM, tinh bi mdt cdng nghd khdng dup'c cdng b6 chi cd san phim Id cdc bd didu khiln dp dyng eho cdc doi tup'ng cy thi, vd hodn todn phy thudc vdo cdc chuydn gia nud'c ngodi TCF thyc t l dd tdc gia gioi thieu chi tilt cdc budc xdy dyng bd dieu khiln sd eho he tnjc vit ddng CO trdn co so ly thuylt dilu khiln sd vd so dd nguydn ly' dilu khiln mdy cdn (H.1) Trong hlnh ve ndy, mdy tinh so su dyng vi dilu khiln, PLC hoac mdy tinh ed nhdn PC k i t hp-p vdi cdc bp chuyin doi tuong ty sang so (ADC), bd chuyin ddi so sang tuong ty (DAC), ede bd khulch dgi tin hipu vd cam biln dp ddy, cam biln ndy dugc lap phia sau vj tri tnjc cdn mpt khoang Id m Hd dpng eo tme vit su dyng ddng co mpt chilu cua hang AXEM vd he ed budc chgy 0.01 m/2TT rad hay 0.0016 m Mdy ed tde dp cdn 10 m/s, chilu ddy vgt lipu vdo 0,005 m, vdt lieu sau cdn ed chilu ddy 0,001 m If"" m D/A 12 bits -1Ov~10v £>$ng CC chieu Khulch d^i e^' May tfnh s6 Yd A/D12bits -10v*10v KhuSch d^j Tryc cdn y yô, 0.005 m Q.001 m iX Yi: ã*.'ôã: d m biln dp day T TF T 10 m/s /////// frz: 1m ^ H Sa nguyen ly h$ may can su' di^ng tme vit dgng ca Xay d y n g mo hinh didu k h i l n so Tren eo so nguyen ly hogt dpng eua mdy can thep, xay dyng so dd khdt dilu fchiiit'he may edn tren nguyen tie cua he dilu khiln sd nhu H.2 do: • Mdy tinh sd ehua dyng chuang trinh d i l u khiln bao ham cdc lugt d i l u khiln, a bdi bdo tdc gia trinh bdy ehi t i l t ede buac xay dyng bp dieu khiln ty le va chuang trinh md phong tren Matlab CdNG NGHIEP MO Sd - 1 CNM KHOA HQC VA C O N G • Bd giao tilp bao gdm: + Bd chuyin ddi tuang ty sang sd ADC chuyin ddi tin hidu phan hdi tu ddi tup-ng dilu khiln v l mdy tinh so NGHC M + Bd chuyin d i i s6 sang tuang ty DAC chuyin ddi tin hidu s6 tir mdy tinh s6 sang tin hidu lidn tyc 6k dilu khiln ddi tup-ng Ddi tup-ng dilu khiln Id h$ dpng ca tryc vit ' I f t Chuydn d6i D/A E' R" M* K K, Bo(8) KAW ii May itnb s6 J* ^WA 17.7 *(0.0&+l) Tryc vft 0.0016 T=0.058 I ! Y-* DOng ca chilu Chuyin ddi A/D '" IOOO -Td* Khulch d9l Tri •-fi D ! tirprng fliAu khl^n B(J giao tifep 1-1.2 Sa khoi h$ tiiong dieu khien so \'P 17.7 s(0.08s-l) Ko(s) T=0.05s K^- 1000 0.0016 • Y„ H(s) hi So' cija he tren mien so R(7) '~'^1H M(z) BoGp(z) Kp Y(z) ^ Y.(7) BoGpll(z) ,:;:;a'i&f,-;*^,.-'-,-:Sfe*; H.4 Sa rut ggn cua hg tren mi4n so Vdi cdc tham sd cua md hinh nhu thai gian trd, hd sd chuyin ddi ADC, vd DAC dup'c xdc ^nh nhu sau: Ta=——- = 0.1s lOm/s KA/D K D/A 2^2|sb = 409.6 Isb/v lOv MOv = 0.002441V/Isb 2^ Isb K,=1000*KA/N CONG NGHIEP MO SO - 1 Dpng ea mpt chieu cua hang AXEM cd md hlnh nhu sau (cdch xay dyng md hinh tham sd eua dpng ea se dup'c trinh bdy a bdi bdo rieng): DC=17.7.[s.(0.08s+10] 2.2 Xac djnh chu ky lay mau Dya theo hdng sd tho'i gian eua ddi tuo'ng t=0.08, ta xac djnh dup'c chu ky ldy mau cua he dilu khiln sd theo cdng thuc: T< = Z T = - = 0.0628 (1) 2f,max KHOA HOC VA CONG NGHE MO Bien ddi z cua ddi tup'ng cd tre: CNM Ddt: z|e"""'"^F(s)| = ^ Z { F ( s ) } vdi n Id sd duong bi = 0.0000691 ( T / 0.08 -1 + e-'^'°°^ )o.08 Do dd chu ky ldy mlu eua he phai thda man yeu edu: = 0.00000088631 (2) T = I^ = ^ n n TCP (1), (2), chpn n=2 hay: t=(0,05.s) 2.3 Mo hinh toan cua h$ tren mien so Tren ea sd cdc tham sd vua xde djnh, tiln hdnh xay dyng so dd cua hp tren miln sd (H.3) vd vilt Igi dudi dgng H.4 Thyc hien cdc phdp biln ddi z (tra bang biln ddi) b2 =0.00006913(1-e-'^'°°^ T/0.08e-'^'°°^)o.08 = 0.00000072 a^ =-(l-e-T/o°8) = -1.5353 Thudu(?e: BoGp(z) = - ^^^'^^2 z + a^z + 32 Biln ddi z khdu hdi tilp: BoGpH(z) = Z{Bo(s)Gp(s)H(s)} = BoGp(z) = Z{Bo(s)Gp(s)} = ^ Z j ^ ^ ^ ^ = z-1.,fGp(s)H(s)]_z-1., (4) 28.32e-2'^^ s^ (0.08s+ 1)J (5) z - ^ f 0.00006913' ^s^ (0.08s+ 1) 28.32 Hay: BoGpH(z) = - — Z z^ z s^ (0.08s+ 1) z(T/0.08-1+e-'^'°°8j + BoGp(z)=0.00006913 az = e-"r'°°« = 0.5353 z-1 (l-e™°8-T/0.08e-™°8) z 1/0.08(z-f(z-e™°8) Nhan vd chia ea tu vd m l u vdi 0.00006913, ta thu dup'c: BOGPH(Z) = K O B O G P ( Z ) = KobiZ^Kob2 ^g^ z(T/0.08-1+e-8) + (l.e-.08_T/o.08e-ô) BoGp(z)=0.00006913 l/0.08(z-1)( z-e ãT/0.08 m^i "^(z^ (3) 28.32 Vdi Kn== 409660 0.00006913 T u dd xay dyng so dd eua he tren miln Z t h i hien tren H.5 M(z) b | Z + bj 7.-'+ai7-a: Kp Y,(/) Y(z) ^ K,b|Z + K,b, z'+aiz-'+ajZ" H.5 Sa toan cua fie tren miSn so 2.4 Md phong he SUP dung bg dieu khien ti le Tren co sd so dd eua he tren miln sd t i l n hdnh md phdng qud trinh dilu khiln, d bdi bdo ndy tde gia su dung bd dilu k h i l n ti Id Vdi md hinh sd tim duoc d tren ta ed: Y(z)= ^^^^^ -M(z) z + a^z + a2 (7) z^ Y(z) + aizY(z) + a2Y(z) = bizM(z) + b2M(z) Y(z)+a^z-VCz) + a2Z-2Y(z) = b i z ^ ^ z ) + b2Z-2M(z) y(k)+aiy(k -1) + a2y(k - 2) = bim(k -1) + b2m(k - 2) y(k) = -aiy(k -1) - a2y(k - 2)+b^mCk -1)+b2m(k - 2) Yd(z) = ^ ^ e ^ l ^ ± ^ M ( z ) z^ + a^z^ + a2Z^ (8) z^Yd(z)+aiz3Yd(z)+a2z2Yd(z) = KobizM(z)+Kob2M(z) Yd(z)+aiZ-Vd(z)+a2Z-2Yd(z)=Kob,z-^z)+Kob2Z^z) yd(k)+aiyd(k-1)+a2yd(k-2)=Kobinn(k-3)+Kob2m(k-4) yd(k) = - a i y d ( k - ) - a y d ( k - ) + K o b i m ( k - ) +Kob2m(k-4) Vdi: e(k) = K^rCk)-y^Ck) m(k) = Kpe(k) Theo yeu edu cua cdng nghe tam thep dua vdo mdy cdn ed chilu ddy 0.005m Do vdi gia thilt: CdNG NGHIEP MO SO 6-2011 CNM KHOA HOC VA CdNG N G H C M y(-1) = y(-2) = 0.005m y d H ) = yd(-2) = Kr0.005m Vd cdc dilu kidn diu khdc bdng Hd tdng hp'p dup'c Id bde 4, dd v6i vdng ldp ddu cua hd dup'c xde djnh nhu sau: k=0 y(0) = -aiy(-1) - a2y(-2) + bim(-1) + b2m(-2) = -aiy(-1)-a2y(-2) = 0.005 yd(0) = -aiyd(-1) - a2yd(-2) + Kobim(-3) +Kob2m(-4) = -aiyd(-1)-a2yd(-2) = 0.005Kr e(0) = Krr(0)-yd(0) m(0) = Kpe(0) k=1 y(1) = -aiy(0) - a2y(-1) + bim(0) + b2m(-1) = -aiy(0)-0.005a2 +bim(0) ydO) = -aiyd(0) - a2yd(-1) + Kobim(-2) +Kob2m(-3) = -aiyd(0) - a20.005Kr e(1) = Krr(1)-yd(1) m(1) = Kpe(1) k=3 '-'"" y(3) = -aiy(2) - a2y(1) + bim(2) + b2m(1) yd(3) = -aiyd(2) - a2yd(1) + Kobim(0)+Kob2m(-1) = -aiyd(2)-a2yd(1) + Kobim(0) e(3) = Krr(3)-yd(3) m(3) = Kpe(3) Vdng lap dup-c xde djnh vdi k = K (K sd vdng lgp mong mudn) y(k) = -a^yCk -1) - a2y(k - 2) + bim(k -1) + b2m(k - 2) yd(k)=-a,yd(k-1)-a2yd(k-2)+Kobim(k-3)+Kob2n'^*ô**>*!PSôPM>ôS* 1"Xjf"i 1 D B • > • • • • TAI LIEU THAM KHAO Farid Golnaraghi, Benjamin C Kuo, Automatic Control Systems, John Wiley & Sons Ltd Chi-Tsong Chen, Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods, Saunders College Publishing/ Harcourt Brace, 1993 35 25 • ^ 05 Bai bao da trinh bay chi tiet cdc budc cung nhu thugt todn, chuang trinh vd kit qua tren Matlab cho bai toan xdy dyng bp dieu khiln sd su dung bd dilu khiln ty ie cho ddi tup'ng dpng co tnjc vft he dieu khiln may c^n thep cdng nghiep Mot so bp dilu khien khac cho cac doi tuo'ng cong nghiep cu the cung nhu' trinh ti/ cac bu'O'c xay dyng va chu'ang trinh se du'O'c tac gia gidi thieu cac bai bao tdi.n Dap uiig CU3 he Kp = x i o ' S M , Kdt lugn ] Ngudi bien tap: Dao Dac Tao * ; mmiifm^ H Dap ung cue he Kp=0.1 File tait view D a? H S Insert toz-is UesiJc-p Cj Si