NGHIEN cOfU-TRAODOl DIEU KHIEN THICH NGHI PHI TUYEN NANG CAO CHAT lyfOHC HE THONG CAN CAU TREO MO HINH BAT€>INH NONLIEAR ADAPTIVE CONTROL SYSTEM IMPROVE THE QUALITY OF MODEL UNCERTAINLY OVERHEAD CRANE LS Xuan Hai', Tr3n Van ThuoTig^ 'Tnrong Cao dang Xay dung Cong trinh Do thj ^Tnrcmg Dai hge Cong nghiep Quang Ninh TOM T A T Dieu khien cdu treo thuc ti vdn phdi su dung nguoi diiu khien cung vdi sic ho tro bdi he thdng chong lac lu, nhiin, chdt luong diiu khiin vdn hdu hit phu thugc vdo kinh nghiem vd khd nang cua nguoi dieu khiin Di cd thi ndng cao chdt lugng diiu khien cdu treo, chiing ta cdn CO gidi phdp si^ dung dieu khien thich nghi chiin lugc diiu khien phi tuyen bdm chuyin dgng dgng luc cda xe trued theo hai true x vd y Tir khoa: Dieu khien thich nghi, cdu treo ABSTRACT Control overhead crane in fact still have to use the controller with support by anti-sway system, but quality control is mostly dependent on the experience and ability of the operator that In order to improve the quality control we need overhead crane solutions using adaptive control strategy nonlinear control stick moves the dynamics of sleds in two axes x andy Keywords: Nonlinear adaptive control, overhead crane ISSN 0866 - 7056 TAP CHi CO KHI VI$T NAM, S6 nam 2015 «wTv.cokhivietnam.vn '^ NGHIEN C U T U - T R A G D O I l.DATVANDE c i u treo dirge sir dung rgng rai van chuyen vat lieu eong nghiep va xay dimg Do yeu cau ve ehinh xac cao cua vi tri, goc dao dgng nho, thoi gian van chuyen ngan, an loan cao, ca thuat toan dieu khien hoat dgng va dieu khien on dinh cho cau treo tro chii de tap trung sir ehii y gicri nghien cmi He thong cau treo dugc xep vao loai he thong hut ca cau chap hanh, he thong ma chi eho phep mgt s6 lugng dau vao giai ban cho so lugng dSu lan hon CI truong hgp nay, dao dgng khong kiem soat co the gay van de nghiem trgng ve on dinh va an loan he th6ng Hon niia, he thong eau treo cflng phai chip nhan sir thay d6i ve tham so he thong doi voi tai khac Mac du hau het chien luge dieu khiin thong thuang da dat dugc kit qua viec 6n dinh thich nghi he thong cau treo, sir on dinh ciia goc dao dgng van hiem dat tieu chuan Do do, bai bao nay, chien lugc diiu khiSn phi tuyen bam ca chuyen dgng dgng lire cua xe trugt theo hai true x va y PHirONG PHAP VA PHlTONG TIEN 2.1 Phifffng phap mo hinh c3u treo thang va van toe ciia trugt la dugc Khoi lugng tai dugc tap tnmg a mgt diim va gia tri khoi lugng dugc biet chinh xac, han nua, khoi lugng va dai trugft ciing dugc bilt ro Diem noi giiJa tai va trugt khong co ma sat Hinh J: H4 thong cdu treo 3D dugc xdy dung difa tren dinh ludt Euler-Lagrange Xem xet he thong cau treo nhu hinh Xe trugt co th8 di chuyin ngang theo true xy, of khoang each di chuyin ciia xe trugt theo true x dugc mo ta la x(t) va y la y(t) Do dai day bing I Goc giUa day tai va hinh chiiu ciia no xuong mat phang yz la a(t) va goe giiia hinh chiiu voi chuc am la b{t) Do do, dgng nang va thi nang ciia he th6ng dugc thi hien theo phuang trinh sau: Muc dich ciia chuong ia tim mo hinh toan hgc cua he thOng cku treo Mo hinh K= -W|i:^ + -(»/|+m,)y^+ -m^{x^^-^y^^+z^^) (1) dugc xay dimg dua tren phuang phap Lagrange -mgl cos a cos P Chien lugc dugc mo ta hinh hiSn thi (2) m^gt he thdng cku treo ba chiiu ba bac tu D i de dang qua trinh thiit ki, nhutig gia dinh Vai x^, y^ la vi tri tuang ung ciia tai mieu sau duge dat ra: ta he tpa Cartesian, co thi dugc viit lai nhu sau: Tai va trugt dugc kit nii bai lien ket ran va khong trgng lugng Vi tri goc va van tdc cua tai va vi tri — X -i- / sin « (3) yc = >" + / COS a sin ^ (4) z /cosacos;^ (5) ISSN 0866.7056 TAP CHI CO KHi VIET NAM, S6 nam 2015 www.cokhivietnam.vn NGHIEN CUfU-TRAODOI Nhirng phuong trinh tiip theo mo ta van Voi W^ la ma ban h6i quy (regressor mattk) toe bang each tinh dao ham cua phuang trinh vi hi nen tren va t, la vector tham so he thong x^ = x + ldcosa ,-,_,•, 7-c • n ,^ ^ y^ = ; ' - / a s m a s m ^ + /^coscrcos^ i^ = -Ice sin acos/3- ip cos a sin ^ Phuang trinh Lagrange - Euler: i ( i ^ ) - f ^.,.-1,2,3,4 dt dq, (6) /-,^ 2.2 Phirofne trinh mo hinh (7) ^ (8) , , , De thuan tien qua trinh thiet ke, true tga dp chung dugc dinh nghia nhu sau: (9) / = K ?n dq, Vai L ^ K - V, q^ la phhi cua vector q = [x y a p\ /• i j • i j var,ladauvaohrangimgcuahcth6ng,chungta ^^ ' * '* "^" '"ô ^^' P''^"'^ '"ã* CO Hen he toan hoc sau: d9"g 'vc cua cau treo (10) dugc chuySn Af(9)q+C(q,q) + G(q) = r (10) dang sau day: Voi Mp la ma tran 4x4 la ma tran nhcrt 1^ M^lii\ (B, Bji,] fC,(p)) (u,\ , „ ^ cua cau treo, Cq la ma tran 4x1 la gia tri phi J J +„ , + / , , HL ^'^^ tuySn dai dien cho chuy6n dong tuySn tinh va ^ " "'^l'' ^" "'^^'1 ^°''W l« J chuyen dong quay, Gq la ma tran 4x1 la gia tri cua luc, va r^fw^ u dau vao ol'^la vector Vai M,B la cac ma tran 2x2 tach tir nia tran nhat M va ma tran B, G,g la vector 2x1 Nhu mo ta tniac do, phuang trinh dong vaaj=[u^ j ^ J Truoc tim hiSm thuat toan luc ciia chuySn dgng mo ta he th6ng c4u treo jjg^ Hjjgn_ ^ ji„h „ghTa tin hieu sai lech bjng ciing CO nhung dac tinh sau day: , ,, phuong trinh; Ma tran M la ma tran doi xung va xac i-qj =(