SCIENCETECHNOLOGYl XACDINHH/CPHAPTUYENTACDUNG LEN RANG CUA BANHRANGHOPSOOTO DETERMININGTHENORMALFORCEEXERTEDONTHETOOTHFLANKOFTHEGEARBOXOFTHECAR Tom t i t Npi dung bai bao, trinh bay each xac dinh lire phap tuyen tac dung len sUdn rang cua cac banh rang hdp so td.Tren cosdaddng truyen momen mot tay so cu the cua hdp so, tac gia da xay dung md hinh co hoc cua hop sd va ap dung cRnh ly Balambe thiet lap cac phuong trinh toan hpc md ta ddng luc hgc an khdp cua cac banh rang Ket qua tfnh toan ldc phap tuyen tac dur5g len sudn rang dugc xac dinh lam co so! cho viec tfnh toan ben cua banh rang thiet ke che tao Til khoa' Hdp so, banh rang, li/c phap Uiyen Abstract Thisartkle shows how to determine the normal force exerted on the tooth llank of the gear box of the car Based on a hand line specific torque gearbox, the authors build a model of the mechanical gearbox and applytheoremsDalambeto built mathematical equations describing the dynamics ofthe wheels fitteeth The calculation results of determining the normal force exerted on the tooth flank are used as tfte basis for cakulating the strength ofthe gears in the design and manufacture Keywords: Gearbox, gears, normal force TS.Le Van Anh Khoa Cong nghe to, Trudng Dai hoc Cdng nghiep Ha Moi Email:! evananhdhcnhn@yahaa.com.vn I.MdOAU Khi to chuyen dpng tren dudng, dudi tac dyng cua mo men xoan truyen tir dpng coqua he thong truyen lUetdi banh xe, eac banh rang hop so luon nhan va truyen lUc an khdp, viec xae dinh luc phap tuyen tac dung len rang ciia eae banh rang thiet ke rat quan trong, no ia cO sd eho viec xac dinh mon, hdng, bi gay, vd rang qua trinh an khdp Viec nghien cdu xac dinh ii/c phap tuyen tac dung len rang cua cac banh rang hop so d td la mot van de phdc tap va co nhieu hudng nghien Ngaynhanbai: 04/07/2013 Ngay chap nhan dang: 25/12/2013 ciru khac Bai bao dUa phuang phap nghien cdu va l , - ^ J + r,k„(q3+e,p,-i-e;p,}-F,,jr,,-0 ' lA-T, (1) Trong do: 1^ - Mo men quan tinh he dao ddng xoan true khuyu dpng CO quy dan ve true sa cap hdp so; 9^ - Gdc chuyen vj ciia true so cap ciia hop so (true vao); T^ - Md men xoan tac dyng vao dau tryc sa cap eiia hop sd - Phuong trinh chuyen dpng quay cua banh rang so (Z^^): 1,6*, +r,q|j(r,^, -r^f?; - y, + y j + r,k,j(r,^, -r^i?, - y, + y j + k,,(^,-^J-r,k„(e„+^p,+e;p,) + F„jrf, - (2) Trong do: k^j-Dpcdng xoan cua true; 9, - Goc chuyen vj ciia banh rang so (Z^_); li - Momen quan tinh quanh tryc tam banh rang so 1; r^ -Ban kfnh vdng tron cosd cua banh rang sd 1; r^ - Ban kinh vong tron cP sd eiia banh rang sd (Z^^); y^, y^ - Lan luot la dich ehuyen theo phuang tiep tuyen thang ddng cua banh rang so va 2; e,j - Sai so prophin tfch liiy eiia cap banh rang an khdp 1-2; e,p^-Sai so budc rang cua banh rang so 1; e^p, - Sai so budc rang cua banh rang so 2, F|,j-Lucma sat gida cap banh rang an khdp 1-2; r^, -Canh tay don momen ma sat eiia banh rang sd 1; 9j - Gde chuyen vj cua banh rang sd 2; TapchiKHOAHOC&CONGNGHE S o Trong dd: IJ - Md men quan tinh quanh true tam banh rang so 2; 9j - Gdc ehuyen vj ciia banh rang so 3; Cjj - Canh tay don mo men ma sat ciia banh rang so - Phuang trinh chuyen dpng quay eua banh rang so [ZJ: + k^6*3 -0^] - rjkjjej, + e^^, + e,^,) + F (^^r,^ = '^' Trong do: IJ- M O men quan tfnh quanh true tam banh rang so 3; y,, y^ - Lan luat la djch chuyen theo phUOng tiep tuyen thSng ddng eua banh rang sd va 4; r^ - Ban kinh vong tron cO sd ciia banh rang so 3; r^ - Ban kinh vdng trdn co sd cua banh rang sd 4; 9^ - Gdc chuyen vi ciia banh rang so 4; kj^ - Dp cdng uon rang ciia cap banh rang 3-4; q^^ - He so can giam chan ciia cap banh rang 3-4; ^3^ - Sai sd prophin tfch luy cua cap banh rang an khdp 3-4; e - Sai so bUde rang ciia banh rang so 3; e^^^ - Sai so bude rang ciia banh rang so 4; F,j^-Lye ma sat gida cap banh rang an khdp 3-4; i',j - Canh tay ddn md men ma sat cua banh rang so - Phuong trinh ehuyen ddng quay eua banh rang s64(Zj SCIENCETECHNOLOGYl - Phuang trinh dao ddng theo phuong x cua banh rang so 4: rr^x, + k,(x3 - x j -i- k^Cx, - Xb4) -F Ff j ^ - (14) - Phuang trinh dao dpng theo phuang y eCia bi so 1: fn,i Ybi + cfc Ybi + K Vbi + k, (y^i - y,) = (15) Trong do: \A + u^ih^i - h^3 + y^~ yi)+rAKiu^A - h^i + y4 - y^} (5) -Ff„r,,-0 9^) + hK\%.+^,p + kJ Trong do: i^ - Md men quan tfnh quanh true tam banh rang so 4; 9p - Gdc chuyin vj cua true ra; r,^ - Canh tay don md men ma sat ciia banh rang sd - PhUPng trinh chuyen dpng quay cua tai trye thir cap: (6} I ^9^ =T« Trong dd: t^- Md men quan tfnh cua true tai quy dan ve true thd cap; T^ - Md men t i i tai dau true thd cap m^^, - Khoi luong ciia bi sd 1; k^ - Dp cdng theo phuang hudng tam cua bi; Pij - He so can giam chan ciia bi - Phuang trinh dao ddng theo phuang y cua bi so 2: "\i%2 +qbyb2 +ki,yb2 + k , ( y , , - y j ^ = (16) Trong do: m^^^ - Khoi liipng eiia d bi so - Phuang trinh dao ddng theo phupng y eiia bi sd 3: "nsYw +qbyb3 + k^y^3 + k,(y^3 - y j = (17) Trong dd: m^^j - Khoi lapng cCia bi sd - Phuong trinh dao dpng theo phuang y ciia bi so 4: - PhUcng trinh dao dpng theo phuang y ciia banh rang sd 1: n^y,+k,(y,-yb,) + kjy,-yb2} + k i , ( y , - y , - r , ^ , + r , ^ , ) r%A%A +%%A + kbyb4 + K(yb4 - y j = (is) Trong dd: m,^^ - Khdi lupng cua bi sd - PhUPng trinh dao ddng theo phuang x ciia bi sd 1: -k,2(ei2+e,p,+e,p,) + q , j ( y , - y j - r , ^ , - i - r , ) = Trong do: m, - Khdi lUPng cua banh rang sd 1; k^ - Dp cdng cua true; n\,Xbi+Qb'M) = ^ t^^' - Phuong trinh dao ddng theo phupng x ciia bi so 2: 'n,2J^2+qb!cosa.cosyS(23) ^^^ LUe ma sat gida cap banh rang an khdp -2 {F„j): Ff,2 = fF,2 Trong do: m, - Khdi luong banh rang sd 3; y^_, - Djch chuyen theo phuang tiep tuyen thang ddng :ua bi sd - Phaong trinh dao dong theo phdang y cua banh rang sd 4: n \ y + k , ( y , - y „ ) + k,(y,-ybJ + k3,(y,-y,-r,^,+r303) ^-k3.k+e3,,-Fe,J-Fq3,(y,-y3-rA-Fr34) = C,+K(X,-X,J-FK{X,-X,J-F,I2-0 k , ( y - y i + r A - r ^ ) + k„(e„-Fe,p,-Fe,pJ| , ,, ^f.cosa.cos/9(24) +q>2(y.-yi-''2^2+'',^i) J d day: f - He sd ma sat tai be mat rang an khdp; p - Gdc nghieng rang Luc an khdp phap tuyen va ldc ma sat gida cap banh rang sd va sd 4, dupe xae dinh bdi phuang trinh (25) va (26) Lye an khdp theo phaang phap tuyen ciia cap banh rang 3-4 (F3J: (11) - PhUPng trinh dao dong theo phdang x cOa banh rang so 2: F m,x,+kjx,-x^)-Fkjx,-X3) + F , „ - (12) - Phuang trinh dao dong theo phuong x cua banh rang so 3: rT^X3-^k,(x3-xJ-^k,(x3-x,J-FF,3,=0 (13) k34[y3-y4+^3^3-r4^4) + k3,(e3,+63^,+e,pj] >cosc(.cos^(25 + q34(y3-y4+r3^3-r4'^4) Ldc ma sat gida cap banh rang an khdp 3-4 (F So Tap dll KHOA HpC&CONGNGH| H9!BQ!S9cdNG NGHE Kiy,-y>+'A-'A) 1, ,34 = fFj^ = „ f cosa.cos/? + k,.(e,.+e,„+e,,,) (26) [+