1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học

30 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phương Pháp Kẻ Đường Phụ Làm Xuất Hiện Hình Vuông Trong Giải Toán Hình Học
Thể loại sáng kiến kinh nghiệm
Định dạng
Số trang 30
Dung lượng 698,55 KB

Nội dung

MỤC LỤC Mở đầu 1.1 Lí chọn đề tài 1.2 Mục đích ngiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu Nội dung sáng kiến kinh nghiệm 2.1.Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng SKKN 2.3 Các giải pháp sử dụng để giải vấn đề 2.3.1 Kiến thức hình vng 2.3.2 Phương pháp dựng trực tiếp Bài toán Bài toán Bài toán Bài toán Bài toán Bài toán Bài toán Bài toán 2.3.3 Phương pháp dựng gián tiếp Bài toán Bài toán 10 Bài toán 11 Bài toán 12 Bài toán 13 2.4 Kết luận, kiến nghị Hiệu sáng kiến kinh nghiệm đối UAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỞ ĐẦU 1.1 LÍ DO CHỌN ĐỀ TÀI Để giúp cho học sinh hình thành, phát triển lực phẩm chất trí tuệ người giáo viên cần phải sử dụng phương pháp kĩ thuật dạy học tích cực, kĩ thuật động não kĩ thuật giúp học sinh tìm kiếm, chứng minh định lý, tìm lời giải hay cho tốn, có tác dụng rèn luyện cho học sinh phương pháp khoa học suy nghĩ, suy luận… qua có tác dụng rèn luyện cho học sinh trí thơng minh, sáng tạo, linh hoạt, nhạy bén, Trong tốn học phần hình học mơn học khó với lứa tuổi học sinh trung học sở, tính trừu tượng mơn học cao Có thể nói rằng, hầu hết học sinh gặp nhiều khó khăn việc học tập mơn hình học, từ phần nắm bắt lý thuyết, định nghĩa, định lý, tiên đề,… đến việc hồn thiện chứng minh dạng tốn, lập luận, suy luận để dẫn đến điều phải chứng minh Hầu hết học sinh chưa cảm nhận hay, đẹp hình học, ngại học mơn nhiều ngun nhân khác dẫn tới kết học tập chưa cao Một điều kiện phát triển tư tích cực - độc lập sáng tạo học sinh giáo viên phải sử dụng kĩ thuật động não cách phù hợp với đơn vị kiến thức với đối tượng học sinh nhằm kích thích học sinh tìm tòi, phát giải vấn đề Trước yêu cầu đó, tơi xin trình bày đề tài: “ Phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học” 1.2 MỤC ĐÍCH NGHIÊN CỨU - Đề tài “ Phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học” giúp cho học sinh hình thành nên phương pháp để chứng minh đặc tính hình học Qua rèn luyện cho học sinh khả nhìn nhận tư xác, hợp lôgic Việc xây dựng nên “Phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học” có tác dụng rõ rệt việc rèn luyện cho học sinh phương pháp khoa học suy luận, biến kiến thức thu nhận thành công cụ để nhận thức học tập - Học sinh hiểu phương pháp kẻ đường phụ làm xuất hình vng, từ hệ thống hóa bổ sung kiến thức liên quan chương trình hình học lớp 7, 8, - Trong đề tài đưa hệ thống tốn có phân tích để tìm đươc cách kẻ đường phụ làm xuất hình vng trực tiếp hay gián tiếp từ tìm cách giải cho toán 1.3 ĐỐI TƯỢNG NGHIÊN CỨU + Đề tài tập trung vào việc giải tập hình học địi hỏi phải vẽ thêm đường phụ, hình phụ + Đề tài phải để học sinh thấy cần thiết phải vẽ thêm đường phụ, hình phụ UAN VAN CHAT LUONG download : add luanvanchat@agmail.com + Học sinh phải vẽ đường phụ, hình phụ, tìm tịi lời giải toán phải hiểu xem lại kẻ thêm đường phụ, hình phụ 1.4 PHƯƠNG PHÁP NGHIÊN CỨU - Nghiên cứu kĩ lí luận dạy học làm tiền đề xây dưng sở lí thuyết cho sáng kiến kinh nghiệm - Quan sát việc giải tốn có sử dụng việc vẽ đường phụ, hình phụ học sinh để thấy ưu nhược điểm học sinh - Điều tra khảo sát thực tế việc giải tốn hình học cách vẽ đường phụ học sinh đồng thời tìm tịi tốn có sử dụng vẽ đường phụ hình vng để giải - Từ xếp tốn cách hợp lí để trình bày vào sáng kiến kinh nghiệm NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 CƠ SỞ LÍ LUẬN CỦA SÁNG KIẾN KINH NGHIỆM: - Khi thực hành giải Tốn phải có thao tác, phương pháp định để đưa toán từ phức tạp đến đơn giản không rườm rà, cầu kì làm cho tốn thêm phức tạp Do giáo viên cần hướng dẫn, có phương pháp phù hợp, dễ hiểu đề đến kết nhanh xác - Học sinh học tập cách thụ động, máy móc, hay dựa vào mẫu sách giáo khoa, sách tham khảo chưa hình thành cho phương pháp riêng để giải toán - Giáo viên tránh đơn điệu nhàm chán học toán, giải toán mà phải tạo hứng thú học toán, giải toán - Một số tốn giải nhiều cách khác song việc tìm lời giải hợp lí, ngắn gọn, độc đáo việc khơng dễ dàng Càng không dễ định hướng cách giải, phương pháp giải gần gũi với em Do “ Phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học” góp phần làm cho em có hứng thú sáng tạo học toán, giải toán 2.2 THỰC TRẠNG VẤN ĐỀ TRƯỚC KHI ÁP DỤNG SÁNG KIẾN KINH NGHIỆM - Phần lớn học sinh chưa cảm nhận vẻ đẹp, tính Logic, tư hình học, ngại học hình, tính trừu tượng cao, nhiều áp lực giải hàng loạt định lý, định nghĩa, tiên đề, hệ quả,… Song bên cạnh đó, hệ thống tập thực hành cịn ít, khó, khơng cụ thể, khơng đa dạng - Số lượng học sinh lớp đông, dẫn đến việc chuẩn bị điều kiện học tập cho học sinh giáo viên nhiều, việc quản lí học sinh học tạo điều kiện cho học sinh phát biểu ý kiến cịn - Một số học sinh chưa có thái độ đắn, chưa tự giác học tập, chưa tập trung ý, khám phá kiến thức, thực yêu cầu giáo viên sách giáo khoa đề ra, mà ỷ lại bạn bè, phụ thuộc vào bạn bè hoạt động học tập điều dẫn đến hiệu quả, chất lượng học tập không cao - Một số học sinh xem nhẹ việc học lý thuyết, việc vận dụng lý thuyết vào thực tế giải toán UAN VAN CHAT LUONG download : add luanvanchat@agmail.com - Phần lớn học sinh hiểu vấn đề, song không diễn đạt được, khơng thể trình bày hồn chỉnh, khơng định hướng phương pháp giải tốn hướng phân tích tổng hợp 2.3 CÁC GIẢI PHÁP ĐÃ SỬ DỤNG ĐỂ GIẢI QUYẾT VẤN ĐỀ: 2.3.1 Kiến thức hình vng a) Định nghĩa: Hình vng tứ giác có bốn góc vng có bốn cạnh b)Tính chất: - Tính chất cạnh: có cạnh - Tính chất góc: có góc 900 - Tính chất đường chéo: + Hai đường chéo + Hai đường chéo cắt trung điểm đường + Hai đường chéo vng góc với + Hai đường chéo tia phân giác góc hình vng c) Dấu hiệu nhận biết hình vng: Dấu hiệu 1: Hình chữ nhật có hai cạnh kề Dấu hiệu 2: Hình chữ nhật có hai đường chéo vng góc với hình vng Dấu hiệu 3: Hình chữ nhật có đường chéo đường phân giác góc hình vng Dấu hiệu 4: Hình thoi có góc vng hình vng Dấu hiệu 5: Hình thoi có hai đường chéo hình vng 2.3.2 Phương pháp dựng trực tiếp: Ngoài cách vẽ đường phụ như: đường vng góc, đường song song, tia phân giác, đường kính đường trịn,… cách vẽ hình phụ như: tam giác đều, hình bình hành, đường trịn,… Khi vẽ hình phụ hình vng làm xuất trung điểm đoạn thẳng, đoạn thẳng nhau, góc nhau, tam giác nhau, đường thẳng song song, ba điểm thẳng hàng, góc có số đo 450,…giúp dễ dàng đến với lời giải tốn Dưới số ví dụ cụ thể Bài tốn 1: Cho DABC vng A (AC > AB) có đường cao AH Trên tia HC lấy điểm D cho HD = HA Vẽ tia Dx vng góc với BC cắt AC E Chứng minh rằng: AB = AE UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Hướng dẫn: Ta thấy = 900 AH = HD nên ta dựng hình vng nhận ba điểm A, H, D làm ba đỉnh Từ xuất hai tam giác nhận AB, AE tương ứng hai cạnh tốn giải C D E F x H Chứng minh: Gọi F hình chiếu A Dx Xét tứ giác AHDF có: = B A = = 900 Þ Tứ giác AHDF hình chữ nhật mà AH = HD ( GT ) Þ Tứ giác AHDF hình vng Xét DHAB DFAE có: = = 900 AH = AF ( AHDF hình vng ) = Þ (cùng phụ với ) DHAB = DFAE ( g.c.g ) Þ AB = AE (đpcm) Từ tốn 1khi tam giác ABC vng cân có đường trung tuyến CM ta có tốn sau Bài tốn 2: Cho DABC vng cân A, có đường trung tuyến CM Đường thẳng qua A vng góc với CM cắt BC H Tính tỉ số ? Hướng dẫn : Do DABC vuông cân A nửa hình vng nên ta nghĩ tới việc dựng hình vng nhận ba điểm A, B, C làm ba đỉnh Trong trường hợp làm xuất trung điểm đoạn thẳng để từ tính tỉ số N B K H M UAN VAN CHAT LUONG download : add luanvanchat@agmail.com A C Chứng minh: Dựng hình vng ABKC Gọi giao điểm AH BK N Xét DACM DBAN có: = = 900 AC = AB ( ABKC hình vng ) = (cùng phụ với ) Þ DACM = DBAN ( g.c.g ) Þ AM=BN Ta có: AM = AB AB = AC Þ BN = AC Þ = Ta có: BN // AC ( BK // AC )Þ DHBN ~ DHCA Þ == Vì tam giác vng nửa hình chữ nhật nên thay tam giác vng thành hình chữ nhật ta có tốn sau Bài tốn 3: Cho hình chữ nhật ABCD Kẻ BH ^ AC ( H Ỵ AC ) Trên tia đối tia BH lấy điểm E cho BE = AC Tính số đo ? Hướng dẫn: Dựng hình vng có cạnh AB Lúc ta có ba điểm thẳng hàng Dẫn tới góc tam giác vng cân nên tính số đo F K E A H D C Chứng minh: UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Dựng hình vng ABKF Xét DABC DBKE có: AB = BK ( ABKF hình vng ); = (cùng phụ với ) AC=BE(GT) Þ DABC = DBKE ( c.g.c ) = Þ = 900 mà = 900 ( ABKF hình vng ) Ba điểm E, K, F thẳng hàng Ta có: BC = KE ( DABC = DBKE ) Mà BC = AD ( ABCD hình chữ nhật ) Þ KE = AD Mặt khác: KF = AF ( ABKF hình vng ) Þ KE+KF=AD+AF Þ EF=DF Xét DFDE có: Þ = 900 EF = DF Þ DFDE vng cân F = 450 hay = 450 Nếu từ tam giác vng mà có điều kiện đặc biệt hai cạnh góc vng ta có tốn sau Bài tốn 4: Cho DABC vng A có AB = AC Trên cạnh AC lấy điểm D, E cho AD = DE = EC Chứng minh rằng: + = 450 Hướng dẫn: Trên nửa mặt phẳng bờ AC khơng chứa điểm B ta dựng hình vng, lúc xuất góc có số đo : + toán giải B A M C D E N UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Chứng minh: Trên nửa mặt phẳng bờ AC khơng chứa điểm B dựng hình vng ADNM Xét DMBN DDCN có: MB = DC, Þ = = 900, MN = DN DMBN = DDCN ( c.g.c ) = mà Þ = (so le trong) = Ta có: + = 900 Þ + Þ = 900 Þ =900 DBNC vuông cân N Þ = 450 Þ DAEB = DDCN ( c.g.c ) Þ Ta có: = + = + = = 450 ( đpcm ) Cũng từ tam giác vuông cân ta lấy trung điểm hai cạnh góc vng ta có tốn sau Bài tốn 5: Cho DABC vuông cân A Gọi M, N trung điểm AB, AC Kẻ NH ^ CM ( H Ỵ CM ) Chứng minh rằng: DABH cân Hướng dẫn: Ta dự đốn DABH cân B Vì ta chứng minh AB = BH đoạn thẳng thứ ba Do ta dựng hình vng để có cácI đoạn thẳng cóB lời giải tốn K M H UAN VAN CHAT LUONG downloadA : add Nluanvanchat@agmailC.com Chứng minh: Dựng hình vng ABKC Xét DAMC DCKN có: AM = CN ( AM = AB, CN = AC AB = AC ) = (=900) AC = CK ( ABKC hình vng ) Þ DAMC = DCKN ( c.g.c ) Þ = Ta có: Þ = ( bù với ) = Þ Ba điểm N, H, K thẳng hàng Gọi giao điểm CM KB I Xét DMBI DMAC có: MB = MA ( M trung điểm AB ) = ( đối đỉnh ) Þ DMBI = DMAC ( g.c.g ) Þ BI=AC Mà AC = BK ( ABKC hình vng ) Þ BI=BK Xét DHIK vng H có HB đường trung tuyến ứng với cạnh huyền IK Þ HB= IK=BK Mà BK = AB ( ABKC hình vng ) Þ HB=AB Þ DABH cân B ( đpcm ) UAN VAN CHAT LUONG download : add luanvanchat@agmail.com UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Þ AE phân giác (đpcm) Từ tam giác vng tốn lấy trung điểm cạnh huyền ta vẽ tia phân giác góc vng ta có tốn 10 sau Bài tốn 10: Cho DABC vng A Tia phân giác AD Đường thẳng qua D vng góc với BC cắt AC I Chứng minh rằng: DB = DI Hướng dẫn: Ta thấy = 900 có AD tia phân giác nên ta dựng hình vng AMDN với M Ỵ AB, N Ỵ AC Lúc xuất hai tam giác nhận DB, DI làm cạnh tương ứng Bài toán giải A I N M B C D Chứng minh: Kẻ DM ^ AB ( M Ỵ AB ) KẻDN^AC(NỴAC) Xét tứ giác AMDN có Þ = = = 900 Tứ giác AMDN hình chữ nhật Hình chữ nhật AMDN có AD đường phân giác Þ Tứ giác AMDN hình vng Xét DMBD DNID có: = =900 MD = ND ( tứ giác AMDN hình vng ) = ( phụ với ) Þ DMBD = DNID ( g.c.g ) Þ DB = DI ( đpcm ) Khi thay tam giác vuông thành dạng đặc biệt tam giác vng cân ta có tốn 11 sau Bài tốn 11: Cho DABC vng cân tai A Trên nủa mặt phẳng có bờ BC không chứa điểm A vẽ tia Bx cho = 1350 Gọi D điểm 14 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com cạnh AB Đường thẳng qua D vng góc với CD cắt tia Bx E Chứng minh rằng: DCDE vuông cân Hướng dẫn: Gọi giao điểm BE CD K Dựng hình vng nhận BD làm đường chéo Vận dụng kết toán giải ta có DK = DI Từ ta có lời giải cho tốn x E B I N K D A C Chứng minh: Gọi giao điểm BE CD K Gọi giao điểm BC DE I Xét DDEK DDCI có: = =900 DK = DI ( theo toán ) = ( phụ với ) Þ DDEK = DDCI ( g.c.g ) Þ DE=DC Þ DDCE vuông cân D (đpcm ) Không xét tam giác vuông mà xét tam giác ta có tốn 12 sau 15 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Bài toán 12: Cho DABC có AH đường cao Trên tia HC lấy điềm D cho HD = HA Trên nửa mặt phẳng bờ BC không chứa điểm A vẽ tia Dx cho = 150 Tia Dx cắt AB E Chứng minh rằng: DEHD cân Hướng dẫn: Ta thấy DFDE vng cân F Dựng hình vng có FH đường chéo tốn đươc giải F N M B C D xE Chứng minh: KẻDF^AB(FỴAB),HM^AB(MỴAB),HN^DF(NỴDF) Xét tứ giác HMFN có = = = 900 Þ Tứ giác HMFN hình chữ nhật (1) Xét DMAH DNDH có: = =900; HA=HD(GT); = Þ DMAH = DNDH (ch.gn) Þ MH = NH (2) =300 Từ (1) (2) Þ Tứ giác HMFN hình vng Þ Xét DFDE có: = = 900 = 450 Þ DFDE vng cân F Xét DFHD FHE có: 16 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com FD = FE ( DFDE vuông cân F ) = (do = ) FH chung Þ DFHD = DFHE ( c.g.c ) Þ HD=HE Þ DHDE cân H Bài tốn sau khơng xét trường hợp đặc biệt tam giác mà tam giác nhọn ta có tốn 13 sau Bài tốn 13: Cho DABC nhọn có đường cao BD, CE cắt H thỏa mãn AH = BC Gọi G trọng tâm DABC Chứng minh rằng: GH qua trung điểm DE Hướng dẫn: Để chứng minh GH qua trung điểm DE ta dựng hình vng có DE đường chéo Gọi giao điểm hai đường chéo hình vng I Ta chứng minh cho ba điểm H, I, G thẳng hàng Lúc toán chứng minh N K D I G E H B M C Chứng minh: Gọi M, K, N trung điểm BC, AH, AG Xét DDBC vng D có DM đường trung tuyến ứng với cạnh huyền BC Þ BC = 2.DM Tương tự BC = EM, AH = 2.DK, AH = 2.EK MàBC=AH Þ DM=EM=DK=EK 17 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Þ Tứ giác MDKE hình thoi (1) Ta có: = Mà , = Þ = ( phụ với ) = Mặt khác + = 900 Þ + Þ = 900 (2) =900 Từ (1) (2) Þ Tứ giác MDKE hình vng Gọi I giao điểm MK DE Ta có: IG đường trung bình DMKN Þ IG // KN KN đường trung bình DAHG Þ HG // KN Þ Ba điểm H, I, G thẳng hàng Þ HG qua trung điểm DE (đpcm) 2.4 HIỆU QUẢ CỦA SÁNG KIẾN KINH NGHIỆM ĐỐI VỚI HOẠT ĐỘNG GIÁO DỤC, VỚI BẢN THÂN, ĐỒNG NGHIỆP VÀ NHÀ TRƯỜNG Để kiểm tra đánh giá khả tiếp thu học sinh, hiệu đề tài tiến hành kiểm tra hai đối tượng học sinh khối 8(học sinh không áp dụng đề tài học sinh sau thời gian áp dụng đề tài) Đề bài: Cho DABC vuông cân A Gọi M trung điểm AC H hình chiếu A BM Tính số đo B K N P H A M C Chứng minh: Dựng hình vng ABKC Gọi giao điểm AH CK N Kẻ CP ^ AN (P ẻ AN) ị HM // CP ( vỡ vng góc với AN ) Xét DACP có MA = MC, HM // CP Þ HA = HP Ta có DPAC = DHBA ( ch.gn ) Þ CP = HA 18 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Þ HP=CP Þ DPHC vuông cân P Þ = 450 Þ = 1350 Kết đạt Đối với học sinh không áp dụng đề tài: Số học sinh tham gia : 30 Mức điểm(đ) Số HS Tỉ lệ % Đối với học sinh áp dụng đề tài: Số học sinh tham gia : 30 Mức điểm(đ) Số HS Tỉ lệ % Với ý tưởng sáng tạo thực năm học vừa qua mang lại kết tiến năm sau năm trước, góp phần vào việc nâng cao chất lượng học tập học sinh giúp học sinh yêu thích hình học Tuy nhiên phương pháp địi hỏi người giáo viên phải rèn luyện, trau dồi kiến thức, nhằm làm chủ tình khai thác tốn Khi sử dụng phương pháp khơng phát huy tư sáng tạo học sinh mà cịn giúp giáo viên hồn thiện Bên cạnh giáo viên học hỏi, tích lũy thêm kinh nghiệm từ học trị Vì với cách dạy học theo hướng nhiều em sáng tạo cách giải hay, độc đáo Với kết trên, tơi thấy có tiến vượt bậc công tác giảng dạy, số lượng học sinh khá, giỏi ngày tăng lên KẾT LUẬN 3.1 KẾT LUẬN Trên nội dung biện pháp thực hiện, kết học kinh nghiệm thân rút trình giảng dạy Nội dung đề tài giúp học sinh có thêm phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học Đây việc làm khó khăn, lâu dài địi hỏi giáo viên phải có tình thương, biết hy sinh tinh thần trách nhiệm cao cơng tác Mỗi người thầy có cách làm riêng, song với cách làm nêu trên, với thành công ban đầu tơi thiết nghĩ kết đáng phấn khởi người thầy dạy toán Việc làm không dễ thành công hai mà phải cố gắng bền bỉ tận tuỵ mong mang lại kết tốt cho học sinh Khơng ngồi tâm huyết với em học sinh, niềm đam mê dành cho mơn tốn học mong muốn nâng cao chất lượng dạy học, tiến hành học 19 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com tập, nghiên cứu, tích luỹ, soạn đề tài Dù kinh nghiệm nhỏ góp phần nâng cao chất lượng dạy học tốn trường tơi cơng tác Qua kết khảo sát cho thấy với phương pháp em hứng thú với học tập hơn, khơng cịn ngại học hình học, đồng thời kích thích động não em đứng trước tốn hình Các em biết phân tích tốn để tìm cách vẽ đường phụ cho hợp lí nhằm giải toán với tinh thần thoải mái, nhẹ nhàng Những kinh nghiệm đưa kính mong đồng nghiệp tham khảo, hỗ trợ chắn thu kết cao Nhằm mục đích rèn luyện để nâng cao chuyên mơn xây dựng đội ngũ có kiến thức, giàu kinh nghiệm, ham học hỏi yêu nghề Đề tài chắn khơng tránh khỏi thiếu sót mong nhận góp ý giúp đỡ q thầy bạn đồng nghiệp để đề tài hoàn thiện ứng dụng rộng rãi nhà trường phạm vi nhà trường 3.2 KIẾN NGHỊ: Đề nghị nhà trường giúp đỡ kể vật chất lẫn tinh thần để đề tài tiếp tục ứng dụng rộng rãi phạm vi nhà trường nhà trường./ Cẩm Thủy, ngày 19 tháng 05 năm 2021 XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Hiệu Trưởng Hoàn Văn Quyết Tơi xin cam đoan SKKN viết, không chép nội dung người khác Người viết Đào Thị Cúc TÀI LIỆU THAM KHẢO Phương pháp dạy học mơn tốn Tác giả: Phạm Gia Đức, Vũ Dương Thụy, Bùi Huy Ngọc Nhà xuất giáo dục 20 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com 2.Cẩm nang vẽ hình phụ giải tốn hình học phẳng dùng cho lớp 6, 7, Tác giả: Nguyễn Đức Tấn Nhà xuất tổng hợp TP Hồ Chí Minh 3.Tạp chí Tốn tuổi thơ Nhà xuất giáo dục 4.23 chuyên đề giải 1001 toán sơ cấp bồi dưỡng HSG luyện thi vào lớp 10 Tác giả: Nguyễn Đức Hồng, Nguyễn Văn Vĩnh Nhà xuất trẻ 5.Nâng cao phát triển Toán 7, 8, Tác giả: Vũ Hữu Bình Nhà xuất giáo dục 6.Một số chuyên đề nâng cao phát triển Tác giả: Bùi Văn Tuyên Nhà xuất giáo dục 7.Tuyển tập đề thi mơn tốn trung học sở Tác giả: Vũ Dương Thụy, Lê Thống Nhất, Nguyễn Anh Quân Nhà xuất giáo dục 8.Ôn thi vào lớp 10 mơn tốn Năm học 2010- 2011 Tác giả: Nguyễn Thanh Sơn, Nguyễn Tài Công, Mai Xuân Vinh Nhà xuất giáo dục DANH MỤC SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN 21 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Họ tên tác giả: Đào Thị Cúc Chức vụ đơn vị công tác: Giáo viên trường THCS dân tộc nội trú TT Tên đề tài SKKN Đề tài: “Kinh nghiệm áp dụng định lí Ta-Let tam giác đồng dạng chứng minh hệ thức” Đề tài: “Khai thác ứng dụng từ tập 87, Sách tập Toán - Tập 2–trang 26” Đề tài: "Khai thác xâu chuỗi toán để tạo hứng thú học tập hình học giúp học sinh rèn luyện hoạt động toán học" ĐÁNH GIÁ, XẾP LOẠI SKKN CỦA HỘI ĐỒNG KHOA HỌC, SÁNG KIẾN NHÀ TRƯỜNG 22 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com Xếp loại: TM HỘI ĐỒNG KHOA HỌC NHÀ TRƯỜNG Chủ tịch Hoàng Văn Quyết 23 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com ĐÁNH GIÁ, XẾP LOẠI SKKN CỦA HỘI ĐỒNG KHOA HỌC, SÁNG KIẾN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN CẨM THỦY Sáng kiến kinh nghiệm tiêu biểu Xếp loại: B TM HỘI ĐỒNG KHOA HỌC PHÒNG GD&ĐT Chủ tịch Nguyễn Thanh Sơn 24 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com ĐÁNH GIÁ, XẾP LOẠI SKKN CỦA HỘI ĐỒNG KHOA HỌC, SÁNG KIẾN SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH THANH HÓA Xếp loại: TM HỘI ĐỒNG KHOA HỌC SỞ GD&ĐT Chủ tịch 25 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HỐ PHỊNG GD&ĐT CẨM THỦY SÁNG KIẾN KINH NGHIỆM "PHƯƠNG PHÁP KẺ ĐƯỜNG PHỤ LÀM XUẤT HIỆN HÌNH VNG TRONG GIẢI TỐN HÌNH HỌC" Người thực hiện: Đào Thị Cúc Chức vụ: Giáo viên Đơn vị công tác: Trường THCS dân tộc nội trú SKKN thuộc lĩnh vực (mơn): Tốn THANH HỐ NĂM 2021 UAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... NGHIÊN CỨU - Đề tài “ Phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học? ?? giúp cho học sinh hình thành nên phương pháp để chứng minh đặc tính hình học Qua rèn luyện cho học sinh khả nhìn... hướng cách giải, phương pháp giải gần gũi với em Do “ Phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học? ?? góp phần làm cho em có hứng thú sáng tạo học toán, giải toán 2.2 THỰC TRẠNG VẤN... xác, hợp lơgic Việc xây dựng nên ? ?Phương pháp kẻ đường phụ làm xuất hình vng giải tốn hình học? ?? có tác dụng rõ rệt việc rèn luyện cho học sinh phương pháp khoa học suy luận, biến kiến thức thu

Ngày đăng: 28/11/2022, 15:45

HÌNH ẢNH LIÊN QUAN

Gọi F là hình chiếu của A trên Dx A - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
i F là hình chiếu của A trên Dx A (Trang 6)
Hướng dẫn: Ta thấy =900 và AH =HD nên ta dựng một hình vuông nhận ba điểm A, H, D làm ba đỉnh - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
ng dẫn: Ta thấy =900 và AH =HD nên ta dựng một hình vuông nhận ba điểm A, H, D làm ba đỉnh (Trang 6)
Chứng minh: Dựng hình vuông ABKC. - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
h ứng minh: Dựng hình vuông ABKC (Trang 7)
Dựng hình vng ABKF. Xét DABC và DBKE có: - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
ng hình vng ABKF. Xét DABC và DBKE có: (Trang 8)
Trên nửa mặt phẳng bờ AC khơng chứa điểm B dựng hình vng ADNM Xét DMBN và DDCN có: MB = DC,   =   = 900, MN = DN - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
r ên nửa mặt phẳng bờ AC khơng chứa điểm B dựng hình vng ADNM Xét DMBN và DDCN có: MB = DC, = = 900, MN = DN (Trang 9)
BH và bằng một đoạn thẳng thứ ba nào đó. Do đó ta sẽ dựng một hình vng để có cácI đoạn thẳng bằng nhau và sẽ cóB được lời giải của bài toán - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
v à bằng một đoạn thẳng thứ ba nào đó. Do đó ta sẽ dựng một hình vng để có cácI đoạn thẳng bằng nhau và sẽ cóB được lời giải của bài toán (Trang 9)
Vì tam giác vng cân là một nửa của hình vng nên khi thay tam giác vng cân thành hình vng ta có bài tốn 6 sau đây. - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
tam giác vng cân là một nửa của hình vng nên khi thay tam giác vng cân thành hình vng ta có bài tốn 6 sau đây (Trang 11)
Lại từ một tam giác vuông cân ta có thể dựng sẵn một hình vng khi đó ta có bài tốn 7 sau đây. - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
i từ một tam giác vuông cân ta có thể dựng sẵn một hình vng khi đó ta có bài tốn 7 sau đây (Trang 12)
B, C là bốn đỉnh của một hình vng. Do đó ta dựng hình vng ABEC thì bài tốn sẽ được giải. - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
l à bốn đỉnh của một hình vng. Do đó ta dựng hình vng ABEC thì bài tốn sẽ được giải (Trang 12)
Þ Tứ giác MEFD là hình bình hành ÞME // DF (2) - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
gi ác MEFD là hình bình hành ÞME // DF (2) (Trang 13)
Hướng dẫn: Gọi giao điểm của BE và CD là K. Dựng một hình vng - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
ng dẫn: Gọi giao điểm của BE và CD là K. Dựng một hình vng (Trang 18)
DFDE vng cân tại F. Dựng một hình vng có FH là đường chéo thì bài tốn sẽ đươc giải. - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
vng cân tại F. Dựng một hình vng có FH là đường chéo thì bài tốn sẽ đươc giải (Trang 19)
hình vng có DE là đường chéo. Gọi giao điểm hai đường chéo của hình vuông là I. Ta chứng minh cho ba điểm H, I, G thẳng hàng - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
hình vng có DE là đường chéo. Gọi giao điểm hai đường chéo của hình vuông là I. Ta chứng minh cho ba điểm H, I, G thẳng hàng (Trang 20)
Þ Tứ giác MDKE là hình thoi (1) Ta có:  =  ,  =  - (SKKN HAY NHẤT) phương pháp kẻ hình lăng trụ là hình vuông trong giải toán hình học
gi ác MDKE là hình thoi (1) Ta có: = , = (Trang 21)
w