1. Trang chủ
  2. » Tất cả

De on tap tuyen sinh 10 mon Toan

3 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 118 KB

Nội dung

Nhờ Thầy Nguyễn Minh Sang giải bài Hình 9 14 Bài toán Từ điểm M nằm ngoài đường tròn (O;R) (OM>2R) vẽ hai tiếp tuyến MA,MB (A,B là 2 tiếp điểm) Gọi H là giao điểm của OM và AB Lấy điểm C thuộc đoạn HB[.]

Bài tốn: Từ điểm M nằm ngồi đường trịn (O;R) (OM>2R) vẽ hai tiếp tuyến MA,MB (A,B tiếp điểm) Gọi H giao điểm OM AB Lấy điểm C thuộc đoạn HB Đường thẳng MC cắt (O) D E (D nằm M E) a/.Chứng minh: AD.BE=AE.BD b/ Chứng minh tứ giác OHDE nội tiếp CD.ME=CE.MD c/.Gọi K tâm đường tròn ngoại tiếp tam giác MHD Chứng minh: KD tiếp tuyến (O) d/.Vẽ đường kính BF (O) Đường thẳng MO cắt FD, EF I N Chứng minh: O trung điểm IN K A H I M D F O N C E B BD MB  EB ME AD MA  + Tương tự: tam giác MAD tam giác MEA đồng dạng Suy ra: EA ME BD AD   BD.EA EB AD + Kết hợp với MA = MB (t/c hai t/t cắt nhau) ta được: EB EA a) + Chứng minh tam giác MDB tam giác MEB đồng dạng Suy ra: b) Chứng minh: Tứ giác OHDE nội tiếp CD.ME=CE.MD *Chứng minh: Tứ giác OHDE nội tiếp + Chứng minh MA2 = MD ME MA2 = MH MO (bài toán quen thuộc) MH MD  ME MO MH MD  + Hai tam giác MHD MEO có: góc M chung nên chúng đồng dạng ME MO   Suy ra: MHD Vậy OHDE tứ giác nội tiếp OED Suy MH.MO = MD ME => * Chứng minh :CD.ME = CE.MD     + Chú ý MHD (cùng bù góc DHO) ; ODE (do t giác ODE cân O), DEO DEO   ODE OHE   (cùng chắn cung OE) nên MHD OHE       Mà MHD => HC phân giac tam giác  HDB OHE  BHE 900 nên HDB BHE DHE Lại có HM  HC nên HM phân giác tam giác DHE Theo t/c đường p/g p/g ta có: CD HD MD    CD.ME CE.MD CE HE ME c).Gọi K tâm đường tròn ngoại tiếp tam giác MHD Chứng minh: KD tiếp tuyến (O)     + Tam giác MHD tam giác EHO có MHD (chứng minh trên) MDH (do OHE HOE        bù HDO ) nên HMD OEH Mà OEH HDO (cùng chắn cung OH) nên HDO HMD => DO tiếp tuyến đường tròn ngoại tiếp tam giác MHD => OK  OD D thuộc (O) => KD tiếp tuyến đường tròn (O) K A H I M D F O N C E B d)Vẽ đường kính BF (O) Đường thẳng MO cắt FD, EF I N CM: O trung điểm IN   * Cần chứng minh OFN OBI  c.g c  có OF = OB FON (đối đỉnh) , BOI   OFN OBI Vậy cần cm BI // FN   + FDB 900 (góc nội tiếp chắn nửa đ trịn) IHB 900 (do AB vng góc MO)     => FDB (cùng chắn cung BD)  IHB 180  DIHB tứ giác nội tiếp => DIB DHB 1 1     DHE  DOE Mà DHB (chứng minh trên) nên DIB BHE 2    DOE Lại có: DFE (quan hệ góc tâm …… )     Do DIB => IB // FN => IBO (so le trong) DFN OFN     + OFN OBI (vì OF = OB FON BOI (đối đỉnh) , OFN ) => OI = ON OBI ... góc tâm …… )     Do DIB => IB // FN => IBO (so le trong) DFN OFN     + OFN OBI (vì OF = OB FON BOI (đối đỉnh) , OFN ) => OI = ON OBI ... thẳng MO cắt FD, EF I N CM: O trung điểm IN   * Cần chứng minh OFN OBI  c.g c  có OF = OB FON (đối đỉnh) , BOI   OFN OBI Vậy cần cm BI // FN   + FDB 900 (góc nội tiếp chắn nửa đ trịn)

Ngày đăng: 27/11/2022, 23:01

w