Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 224 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
224
Dung lượng
1,14 MB
Nội dung
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
1
CAO ĐẲNG SƯ PHẠM TP.HỒ CHÍ MINH -1996
Câu I:
Cho hàm số :
()
2x + 1
y = C
x + 2
1. Khảo sát và vẽ đồ thò (C)
2. CMR:
y = -x + m
cắt (C) tại 2 điểm phân biệt
Câu II:
Cho x,y thõa mãn
0 x 3
0 y 4
≤≤
⎧
⎨
≤≤
⎩
Tìm Max
(
)
(
)
(
)
A = 3 - x 4 - y 2x + 3y
Câu III:
Tính diện tích hình hữu hạn chắn bởi đường cong:
22
ax = y , ay = x (a: cho trước)
Câu IV a:
Cho 2 đường tròn
()
22
C : x + y - 1 = 0
;
(
)
(
)
22
m
C : x + y - 2 m + 1 x + 4my - 5 = 0
1. Tìm q tích tâm
()
m
C
khi m thay đổi
2. CMR : Có 2 đường tròn
()
m
C
tiếp xúc (C) ứng với 2 giá trò của m
Câu IV b:
Cho tứ diện ABCD:
1. CMR: Các đường thẳng nối mỗi đỉnh với trọng tâm của mặt đối diện đồng qui tại G
2. CMR: Hình chóp đỉnh G với đáy là các mặt củatứ diện có thể tích bằng nhau.
Edited by http://quyndc.blogspot.com
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
2
CAO ĐẲNG HẢI QUAN -1996
Câu I:
1. Khảo sát và vẽ đồ thò hàm số :
()
2
x
f = x - 3x + 1
2. Tìm a để đồ thò của
()
x
f
cắt đồ thò hàm số:
()
(
)
2
x
g = a 3a - 3ax + a
tại ba điểm phân biệt với
hoành độ dương
Câu II:
1. Giải và biện luận theo tham số m phương trình sau:
11 - m1 + m
x + = +
x
1 + m 1 - m
2. Giải phương trình:
33
3
2x - 1 + x - 1 = 3x - 2
Câu III:
1. GPT:
3
3
1 - cos2x 1 - cos x
=
1 + cos2x 1 - sin x
2. Cho
ABCΔ
thỏa
ABC
222
111
1 + 1 + 1 + = 27
sin sin sin
⎛⎞⎛⎞⎛⎞
⎜⎟⎜⎟⎜⎟
⎝⎠⎝⎠⎝⎠
. Chứng minh tam giác ABC đều .
Câu IV:
Cho mặt cầu có PT:
()( )
(
)
222
x - 3 + y + 2 + z - 1 = 9
và mặt phẳng (P): x + 2y + 2z + 11 = 0. Tìm
điểm M trên mặt cầu sao cho khoảng cách từ M đến mặt phẳng (P) là ngắn nhất
Câu Va:
Cho
1
2
n
2n
0
x
I = dx
1 - x
∫
với n = 2, 3, 4 ……
1. Tính
2
l
2. Chứng minh
n
I < với n =3, 4,
12
π
Câu Vb:
1. CMR với mọi x dương thì
2
x
1 - < cosx
2
Tìm m để
2
cos 2x - 8sinxcosx - 4m + 3 0 , x 0;
4
π
⎡
⎤
≥∀∈
⎢
⎥
⎣
⎦
Edited by http://quyndc.blogspot.com
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
3
CAO ĐẲNG SƯ PHẠM TP.HỒ CHÍ MINH - 1997
Câu I:
Cho
()
m
C
:
()
23
x - m m + 1 x + m + 1
y =
x - m
1. Khảo sát và vẽ đồ thò khi m = 1
2. CMR:
m
∀
, hàm số luôn có CĐ, CT. Tìm q tích các điểm CĐ, CT.
Câu II:
Cho hệ BPT
2
y - x - x - 1 0
y - 2 + x + 1 - 1 0
⎧
≥
⎪
⎨
≤
⎪
⎩
1. Giải hệ khi y = 2
2. Tìm tất cả nghiệm nguyên của hệ.
Câu III:
Tính
6
2
0
cosx.dx
I =
6 - 5sinx + sin x
π
∫
Câu IV a:
Trong không gian Oxyz cho
()
(
)
A 1;2;3 a 6;2;3
−=−−
G
và đường thẳng (d):
2x - 3y - 5 = 0
5x + 2z -14 = 0
⎧
⎨
⎩
1. Lập PT mặt phẳng
()
α
chứa A và (d)
2. Lập PT đường thẳng
()
Δ
qua A , biết
(
)
(
)
(
)
d, và aΔ ∩Δ⊥
G
Câu IV b:
Cho các chữ số 0, 1, 2, 3, 4, 5 . Từcác chữ số đã cho lập được bao nhiêu số chẵn gồm 4 chữ số
khác nhau.
Edited by http://quyndc.blogspot.com
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
4
CAO ĐẲNG KINH TẾ ĐỐI NGOẠI TP.HỒ CHÍ MINH -1998
Câu I:
1. Khảo sát và vẽ đồ thò (C) :
2
x + x - 1
y =
x - 1
y
2. Viết phương trình các tiếp tuyếncủa (C) // với
4y - 3x + 1 = 0
3. Sử dụng (C) biện luận theo m số nghiệm của PT:
(
)
2
sin x + 1 - m sinx + m - 1 = 0
với
x,
22
ππ
⎛⎞
∈−
⎜⎟
⎝⎠
Câu II:
Cho
() ()
444
xx
1
f = cos x ; g = sin x + cos x
4
. Chứng minh và giải thích kết quả
() ()
xx
f' ,g'
Câu III:
Cho họ
()
22
m
C : x + y + 4mx - 2my + 2m + 3 = 0
1. Xác đònh m để
m
(C )
là đường tròn
2. Tìm tập hợp tâm các đường tròn
m
(C )
Câu IV:
Trong không gian Oxyz cho
( ): x = 1 + 2t , y = 2 - t , z = 3t
( ): 2x - y + 5z - 4 = 0
Δ
⎧
⎨
α
⎩
1. Tìm giao điểm của
()Δ
với
()α
2. Viết phương trình tổng quát của
()
Δ
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
5
CAO ĐẲNG SƯ PHẠM TP.HỒ CHÍ MINH -1998
Câu I:
Cho hàm số :
()
x
x + 1
y = f =
x - 1
1. Khảo sát và vẽ đồ thò (H) của hàm số
2. Gọi (d) :
()
2x - y + m = 0 m R
∈
. CMR:
(
)
(
)
dH = A B
∩≠
trên 2 nhánh (H)
3. Tìm m để AB Min
Câu II:
Cho hệ PT
x + y = a
x + y - xy = a
⎧
⎪
⎨
⎪
⎩
1. Giải hệ PT khi a = 4
2. Tìm a để HPT có nghiệm
Câu III:
1. GPT:
3cosx + cos2x - cos3x + 1 = 2sinx . sin2x
2. GBPT:
2
x
1 + x + 1 - x 2 -
4
≤
Câu IV a:
1. Tính các tích phân : a)
0
I = 1 - sin2x . dx ;
π
∫
b)
2
0
dx
J =
x - x - 2
π
∫
2. Cho đường thẳng
()
4x - 3y - 13 = 0
d
y - 2z + 5 = 0
⎧
⎨
⎩
. Tìm tọa độ P’ đối xứng P (-3;1;1) qua (d)
Câu IV b:
1. Tìm
()
x
a,b R để f
∈
luôn đồng biến
()
x
f = 2x + asinx + bcosx
2. Một hộp đựng 12 bóng đèn, trong đó có 4 bóng bò hỏng . Lấy ngẫu nhiên 3 bóng (không kể
thứ tự ra khỏi hộp) . Tính xác suất để:
a) Trong 3 bóng có 1 bóng bò hỏng
b) Trong 3 bóng có ít nhất 1 bóng hỏng .
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
6
CAO ĐẲNG HẢI QUAN TP.HỒ CHÍ MINH - 1998
Câu I:
Cho hàm số
()
2
x + 3x + 6
y = C
x + 2
1. Khảo sát và vẽ đồ thò
()
C
2. Trên (C) tìm tất cả những điểm có tọa độ là số nguyên
3. Biện luận theo m số nghiệm PT
(
)
(
)
2t t
e + 3 3 - m e + 2 3 - m = 0
Câu II:
1. GPT:
3
4sin x - 1 = 3sinx - 3 . cos3x
2. GPT:
(
)
(
)
xx
2 + 3 + 2 - 3 = 4
Câu III:
1. Tìm A , B sao cho:
2
1AB
= +
x - 7x + 10 x - 2 x - 5
2. Tính
2
2
0
cosx
I = dx
11 - 7sinx - cos x
π
∫
Câu IV a:
Cho mặt phẳng
()
α
và đường thẳng (d) có phương trình
(
)
: 2x + y + z - 8 = 0
α
()
x - 2 y + 1 z - 1
d : = =
23-5
1. Tìm giao điểm A của (d) và (
α
)
2. Viết PT (
Δ
) là hình chiếu của (d) lên (
α
)
Câu IV b:
Từ các số 0, 1, 2, 3, 4, 5, 6 có thể lập :
1. Bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
2. Bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
7
CAO ĐẲNG HẢI QUAN - 1998
Câu I:
Cho:
2
x + 3x + 6
y =
x + 2
1. Khảo sát và vẽ (C) của hàm số
2. Tìm trên (C) tất cả những điểm có các tọa độ là số nguyên
3. Biện luận theo tham số nghiệm của PT:
(
)
(
)
21 t
e + 3 - m e + 2 3 - m = 0
Câu II:
Giải các PT sau: 1.
3
4sin x - 1 = 3sinx - 3 cos3x
2.
(
)
(
)
xx
2 + 3 + 2 - 3 = 4
Câu III:
1. Tìm hai số A, B sao cho
2
1AB
= + với mọi số : x 2 , x 5
x - 7x + 10 x - 2 x - 5
≠ ≠
2. Tính:
2
2
0
cosx
I = dx
11 - 7sinx - cos x
π
∫
Câu IVa:
Cho mặt phẳng
()
: 2x + y + z - 8 = 0
α
và đường thẳng
x - 2 y + 1 z - 1
(d): = =
23- 5
1. Tìm giao điểm A của (d) và (
α
)
2. Viết PT đường thẳng (
Δ
) và hình chiếu
⊥
của (d) trên (
α
)
Câu IVb:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được :
1. Bao nhiêu số tự nhiên gồm 5 chữ số khác nhau ?
2. Bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau ?
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
8
CAO ĐẲNG KỸ NGHỆ TP.HỒ CHÍ MINH - 1998
Câu I:
1. Khảo sát và vẽ đồ thò (C):
1
y = x +
x
2. Tìm những điểm trên trục hoành mà từ đó có thể kẻ đến (C) hai tiếp tuyến vuông góc
nhau
Câu II:
1. Tìm m để:
()
2
1 + m x - 3mx + 4m = 0
có 2 nghiệm phân biệt > 1
2. GBPT:
xx+1
11
<
3 + 5 3 - 1
Câu III:
1. GPT:
2 + cos2x + 5sinx = 0
2. Tính đạo hàm của hàm số
y = 1 + 2tgx
tại
x =
4
π
Câu IV:
Tính
ln3 e
x
01
dx
I = , J = x ln xdx
e + 2
∫∫
Câu Va:
Cho 2 đường thẳng
12
( ): 4x - 3y -12 = 0 ; ( ): 4x + 3y - 12 = 0
ΔΔ
1. Xác đònh đỉnh của tam giác có 3 cạnh
12
() , ()
∈ ΔΔ
và Oy
2. Tìm tọa độ tâm và bán kính đường tròn nội tiếp của tam giác trên
Câu Vb:
Cho tứ diện ABCD có AB = BC = CA = AD = DB =
a2
, CD = 2a
1. CMR:
AB CD⊥
. Xác đònh đường
⊥
chung của AB và CD
2. Tính thể tích củatứ diện ABCD.
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
9
CAO ĐẲNG SƯ PHẠM HÀ NỘI - KA - 1999
Câu I:
Cho hàm số :
()
()
2
x + m - 1 x - m
y = 1
x + 1
1. Khảo sát , vẽ đồ thò khi m = -1
2. Tìm m để (1) có CĐ , CT
3. Tìm m để (1) cắt Ox tại hai điểm phân biệt
12 12
M , M . CMR : M , M
không đối xứng qua gốc
O
Câu II:
1. Giải phương trình :
()
(
)
(
)
sin 3 x + - sin 2 x + 2 - sin x + 3 = 0
πππ
2. Chứng minh rằng :
ABC
Δ
với R, r là bán kính đường tròn ngoại tiếp , nội tiếp
ABC
Δ
, ta
có:
ABC
r = 4R . sin . sin . sin
222
3. Giải bất phương trình :
1 - x x
x
2 - 2 + 1
> 0
2 - 1
Câu III:
Trong mặt phẳng xOy , cho
ABCΔ
, cạnh BC, các đường BI, CK có phương trình :
7x + 5y - 8 = 0 , 9x - 3y - 4 = 0 , x + y - 2 = 0
. Viết phương trình cạnh AB , AC , đường cao AH
Câu IV a:
Cho (C) :
- 2x + 1
y =
x + 1
. Tính diện tích hình giới hạn bởi (C) và
- x
y = + 1
2
Câu IV b:
Có 5 miếng bìa , trên mỗi miếng ghi một trong 5 chữ số 0, 1, 2, 3, 4 . Lấy 3 miếng từ 5 miếng
bìa đặt lần lượt cạnh nhau từ trái sang phải được số gần 3 chữ số . Có thể lập bao nhiêu số có
nghóa gồm 3 chữ số và trong đó có bao nhiêu số chẵn ?
Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net
10
CAO ĐẲNG SƯ PHẠM HÀ NỘI - K D -1999
Câu I:
Cho
()
2
m
mx - m - 2m - 4
y = C
x - m - 2
1. Khảo sát, vẽ đồ thò khi m = -1
2. Tìm điều kiện để y = ax + b tiếp xúc
(
)
m
C
Tìm a, b để y = ax + b tiếp xúc
()
m
C m
∀
3. Tìm các điểm
Ox∈
mà
()
m
C
không đi qua
Câu II:
1. Cho phương trình :
()
(
)
2
x - 2kx - k - 1 k - 3 = 0
.Chứng minh rằng :
k∀
, PT có 2 nghiệm
1 2
x x
≠
, thỏa mãn :
()
()
2
12
12 1 2
x + x
- x x - 2 x + x + 3 = 0
4
2. Giải phương trình :
() () ()
322
111
222
2
log x + 2 - 2 = log x - 4 + log x + 6
3
Câu III a:
1. Tính
2
2
x
S = y = x ;y = ;y = 2x + 3
2
⎧⎫
⎨⎬
⎩⎭
2. Tính thể tích khối tròn xoay khi hình giới hạn bởi
2
y = x , y = 0 , y = 2
quay quanh Oy
Câu III b:
1. Một đội văn nghệ gồm 10 học sinh nam và 10 học sinh nữ . Chọn ra 1 tốp ca gồm 5 em,
trong đó ít nhất 2 nam và ít nhất 2 nữ . Hỏi có bao nhiêu cách chọn .
2. Trong khai triển Niutơn
10
1
x +
x
⎛⎞
⎜⎟
⎝⎠
, tìm số hạng không chứa x và trong khai triển Niutơn
của
5
3
2
2
3x -
x
⎛⎞
⎜⎟
⎝⎠
, tìm số hạng chứa
10
x
[...]... điểm cón lại trên (d) Viết tọa độ của điểm M 21 Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net CAOĐẲNG SƯ PHẠM KỸ THUẬT - 2000 Câu I: x 2 - 2x + 2 x-1 Cho (C) : y = 1 Khảo sát và vẽ đồ thò (C) 2 Từ (C) vẽ ( C1 ) x2 - 2 x + 2 : y= x -1 Câu II: 1 GPT : ( 1 - tgx ) sin2x = 2tgx 2 GPT : ⎡ 2 3x - 8 2 -3 x ⎤ - 6 ⎡ 2 x - 2 2 -x ⎤ = 1 ⎣ ⎦ ⎣ ⎦ Câu III: 1 CMR: Δ ABC đều nếu thỏõa mãn ĐK : sin A a B b =... Δ ABC có đường cao BH: x + y – 1 = 0 đường cao CH: −3x + y + 1 = 0 và cạnh BC: 5x - y - 5 = 0 Viết PT của AB, AC và ường cao AH 2 Cho (P): 3x + 6y - z - 2 = 0 ; a) Tìm A = ( d ) ∩ ( P ) ⎧ x + y - 7z - 14 = 0 ⎩ x-y-z-2=0 (d) ⎨ b) VPT mp ( β ) đi qua B (1;2; -1 ) và ⊥ ( d ) Câu V: Cho ( d 1 ) đi qua P1 ( 1; 2;1 ) và VTCP a1 = ( 1;0;1 ) ; ( d 2 ) đi qua P2 ( 0;1; 2 ) và VTCP a2 = ( -1 ;-1 ;0 ) VPT đường... (d) {x + 2y - 3 = 0 ; 3x - 2z - 7 = 0} a) Tìm A = ( d ) ∩ ( P ) b) Viết PT đường thẳng ( Δ ) đi qua A , ⊥ ( d ) và ∈ ( P ) 29 Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net CAOĐẲNG KINH TẾ ĐỐI NGOẠI TP.HỒ CHÍ MINH - 2000 Câu I: 1 Khảo sát và vẽ (C): y = 4x 2 - 3 2 Tìm m để y = m ( x - 1 ) + 1 tiếp xúc (C) Câu II: 1 GPT: 3 4 x - 4 = 81x - 1 2 GBPT: 1 - x - x 2 + 1 > 0 3 GBPT: 1 - x - x 2 + 1 4 Câu IV: a 1 Tính: I = ∫ x 2 a2 - x 2 dx , với a > 0 0... cho điểm M (1; -2 ;1) và đường thẳng (d) : ⎧ x - 2y + z - 3 = 0 ⎨ ⎩x+y-z+2=0 1 Lập phương trình mặt phẳng ( α ) đi qua M và vuông góc với (d) 2 Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng (d) 19 Nguyễn Phú Khánh – Đà Lạt http://www.toanthpt.net CAOĐẲNG SƯ PHẠM HƯNG YÊN K A - 2000 Câu I: Cho hàm số : y = x 2 - 2mx + m , m là tham số x+m 1 Tìm tất cả các giá trò của tham số m . http://www.toanthpt.net
10
CAO ĐẲNG SƯ PHẠM HÀ NỘI - K D -1 999
Câu I:
Cho
()
2
m
mx - m - 2m - 4
y = C
x - m - 2
1. Khảo sát, vẽ đồ thò khi m = -1
2. Tìm điều. nghiệm của PT:
(
)
(
)
21 t
e + 3 - m e + 2 3 - m = 0
Câu II:
Giải các PT sau: 1.
3
4sin x - 1 = 3sinx - 3 cos3x
2.
(
)
(
)
xx
2 + 3 + 2 - 3 =