www.VNMATH.com
SỞGD– ĐTBẮCNINH
TRƯỜNGTHPTNGÔGIATỰ
ĐỀTHITHỬĐAIHỌCLẦN1
MÔN: TOÁN,KHỐID
Thờigianlàmbài:180phút
o0o
CâuI.(2,0điểm)Chohàmsố
( )
3 2
3 2
m
y x mx C = - +
1. Khảosátsựbiếnthiênvàvẽđồthị(C)củahàmsốvớim=1.
2. Tìm mđểđồthị(C
m
)cóhaiđiểmcựctrịA,B vàđườngthẳng ABđiquađiểm I(1;0).
CâuII.(2,0điểm)
1. Giảiphươngtrình
( )
5
sin 4 4sin 2 4 sin cos
2
x x x x
p
æ ö
+ + = +
ç ÷
è ø
.
2. Giảiphươngtrình
2 2
4 2 3 4x x x x + - = + - .
CâuIII(2,0điểm)
ChohìnhchópS.ABCcóđáylàtamgiácABCvuôngtạiC,AB=5cm,BC=4cm.Cạnhbên
SAvuônggócvớiđáyvàgócgiữacạnhbênSCvớimặtđáy(ABC)bằng
60°
.GọiDlàtrung
điểmcủacạnhAB.
1. TínhthểtíchkhốichópS.ABC.
2. Tínhkhoảngcáchgiữahaiđườngthẳng SDvàBC.
Câu IV(1,0điểm)Chohaisốthựcx,ythỏamãn 1; 1x y ³ ³ và
( )
3 4x y xy + = .
Tìmgiátrịlớnnhấtvànhỏnhấtcủabiểuthức:
3 3
3 3
1 1
3P x y
x y
æ ö
= + + +
ç ÷
è ø
CâuV(2,0điểm)
1. Trong mặtphẳngvớihệtọađộ Oxy,chođiểm
( )
2; 5C - ,đườngthẳng :3 4 4 0x y D - + = .
Tìmtrênđườngthẳng DhaiđiểmAvàBđốixứngnhauqua
5
2;
2
I
æ ö
ç ÷
è ø
saochodiệntíchtamgiác
ABCbằng15.
2. Chohaiđườngthẳngavàbsongsongvớinhau.Trênđườngthẳngacó5điểmphânbiệtvà
trênđườngthẳngbcó10điểmphânbiệt.Hỏicóthểtạođượcbaonhiêutamgiáccócácđỉnhlà
cácđiểmtrênhaiđườngthẳng avàbđãcho.
CâuVI(1,0điểm)Giảiphươngtrình
( ) ( ) ( )
3 2 3
4 1 1
4 4
3
log 4 log 2 3 log 6
2
x x x - + + = + + .
www.VNMATH.com
CmnbnN guynHTrung(htrung85@yahoo.com.vn)gitiw ww.laisac.page.tl
PNTHANGIM
Cõu í Nidung im
1.
Vim=1,hmstrthnh:
3 2
3 2y x x = - + .TX:Ă
Cú
lim lim
x x
y y
đ+Ơ đ-Ơ
= +Ơ = -Ơ
2
' 3 6y x x = -
0 2
' 0
2 2
x y
y
x y
= ị =
ộ
=
ờ
= ị = -
ở
BBT:x -Ơ 02 +Ơ
y+0 0+
2 +Ơ
y
-Ơ 2
Hmsngbintrờn
( )
0 -Ơ v
( )
2+Ơ Hmsnghchbintrờn
( )
02
y
C
=2tix=0y
CT
= 2tix=2.
th:GiaoOy:(02)GiaoOx:(10)v
( )
1 30
1.0
0.25
0.25
0.25
0.25
I.
2.
Tacú
2
' 3 6y x mx = -
0
' 0
2
x
y
x m
=
ộ
=
ờ
=
ở
hmscúCvCTthỡy=0cúhainghimphõnbitvyiduquahai
nghimú
2 0 0m m ạ ạ
.
Khiú(C
m
)cúhaiimcctrlA(02)v
( )
3
2 2 4B m m -
ngthngABiquaA(02)vcúvtcp
( ) ( )
3 2
2 4 2 1AB m m vtpt m = - ị
uuur
Phngtrỡnh AB:
2
2 2 0m x y + - =
TheogithitngthngABi quaI(10)nờn
2
2 2 0 1m m - = =
1.0
0.25
0.25
0.25
0.25
II. 1.
( )
5
sin 4 4sin 2 4 sin cos
2
x x x x
p
ổ ử
+ + = +
ỗ ữ
ố ứ
1.0
www.VNMATH.com
( )
( ) ( ) ( )
2sin 2 .cos 2 4cos 2 4 sin cos
2 sin cos sin 2 cos sin 2 cos sin 2 0
x x x x x
x x x x x x x
+ = +
ộ ự
+ - - - - =
ở ỷ
( ) ( ) ( )
cos sin 0 ,
4
sin 2 cos sin 2 cos sin 2 0 1
x x x k k
x x x x x
p
p
ộ
+ = = - + ẻ
ờ
ờ
- - - - =
ờ
ở
Â
Gii(1):t
( )
cos sin , 2 2t x x t = - - Ê Ê
2
sin 2 1x t ị = -
Pt(1)trthnh:
( )
2 3
1 . 2 2 0 2 0 1t t t t t t - - - = + + = = -
Vi
1t = -
tacú
2
cos sin 1 2 cos 1 cos
4 4 2
x x x x
p p
ổ ử ổ ử
- = - + = - + = -
ỗ ữ ỗ ữ
ố ứ ố ứ
2
,
2
2
x k
k
x k
p
p
p p
ộ
= +
ờ
ẻ
ờ
= - +
ở
Â
0.25
0.5
0.25
2. Giiphngtrỡnh
iukin:
2 2x - Ê Ê
t
2
2 2 2 2
4
4 4 2 4 4
2
t
t x x t x x x x
-
= + - ị = + - ị - =
Pttrthnh:
2
2
2
4
2 3 3 2 8 0
4
2
3
t
t
t t t
t
=
ộ
-
ờ
= + - - =
ờ
= -
ở
Vi t=2tacú:
2 2
2 2
2 0
0
4 2 4 2
2
4 4 4
x
x
x x x x
x
x x x
-
= ỡ
ộ
+ - = - = -
ớ
ờ
=
- = - +
ở
ợ
(t/m)
Vi
4
3
t = - tacú
2 2
4 4
4 4
3 3
x x x x + - = - - = - -
2
4
4
2 143
3
3
2 14
9 12 10 0
3
x
x
x
x x
x
ỡ
Ê -
ỡ
ù
Ê -
- -
ù ù
ị =
ớ ớ
-
ù ù
+ - =
=
ợ
ù
ợ
(t/m)
Vyptóchocúbanghim x=0 x=2
2 14
3
x
- -
=
1.0
0.25
0.25
0.25
0.25
www.VNMATH.com
1. Vỡ tam giỏc ABC vuụng ti C nờn
2 2 2 2
5 4 3A C AB BC = - = - = (cm)
1 1
. .3.4 6
2 2
ABC
S AC BC ị = = = (cm
2
)
Vỡ
( )
SA ABC ^ nờnAClhỡnhchiucaSC
trờn(ABC)
ị
gúc gia SC vi (ABC) l SCA =
60
.
Trong tam giỏc vuụng SAC cú
.tan 60 3 3SA AC = =
Do
( )
SA ABC ^ nờn
.
1 1
. .3 3.6 6 3
3 3
S ABC ABC
V SA S = = = (cm
3
).
1.0
0.25
0.25
0.25
0.25
III.
2. GiEltrungimACmDltrungimABnờnDElngtrungbỡnhtrong
tamgiỏcABC
ị
DE// BC
ị
BC//(SDE)mSD è(SDE)nờn
( )
( )
( )
( )
( )
( )
( )
,
, , ,
BC SD
BC SDE B SDE A SDE
d d d d = = = (vỡ Dltrungim AB)
Vỡ BC ^ AC
ị
DE ^ AC,mSA ^ (ABC)
ị
SA ^ DE
ị
DE ^ (SAE)
ị
(SDE) ^ (SAE)m(SDE) ầ (SAE)= SE .Trong(SAE)kAH ^ SE
ị
AH ^ (SAE)
ị
AH=
( )
( )
,A SDE
d .
TrongtamgiỏcvuụngSAEcúAHlngcaonờn:
2 2 2
1 1 1 1 8 1
3
27 27 3
A H
AH SA AE
= + = + = ị = .Vy
( )
,
3
BC SD
d =
1.0
0.25
0.5
0.25
IV.
t .t x y = vỡ
1x
nờn
( )
2
2 2
3
3 4 . 3 3 4
4 3
x
x y x y x xy x y xy
x
+ = + = =
-
Cú
( )
3
3 4
4 3
y
x y xy x
y
+ = =
-
(vỡ 1y ).Xộthms
( )
3
4 3
y
f y
y
=
-
trờn
[
)
1+Ơ
cú
( )
( )
[
) ( ) ( )
2
9
' 0, 1 1 3 1 3
4 3
f y y f y f x
y
-
= < " ẻ +Ơ ị Ê = ị Ê Ê
-
Xộthms
( )
2
3
4 3
x
g x
x
=
-
trờn
[ ]
13
( )
9
3
4
g x ị Ê Ê .Vy
9
3
4
t
ộ ự
ẻ
ờ ỳ
ở ỷ
Khiú
( )
( ) ( )
( )
3
3 3
3
3 3
3 3
1 3 1P x y x y xy x y
x y
xy
ổ ử
ổ ử
ộ ự
ỗ ữ
= + + = + - + +
ỗ ữ
ở ỷ
ỗ ữ
ố ứ
ố ứ
( )
3
3
2
3
3
4 4 3 64 3
3 . 1 4 1
3 3 27
xy xy t
xy t
t
xy
ổ ử
ộ ự
ổ ử
ổ ử ổ ử
ỗ ữ
= - + = - +
ờ ỳ
ỗ ữ
ỗ ữ ỗ ữ
ỗ ữ
ố ứ ố ứ
ờ ỳ ố ứ
ở ỷ
ố ứ
=
3 2
64 12 64
4
27 9
t t
t
- - +
XộthmsP(t)=
3 2
64 12 64
4
27 9
t t
t
- - + vi
9
3
4
t
ộ ự
ẻ
ờ ỳ
ở ỷ
1.0
0.25
0.25
www.VNMATH.com
Tacú
( )
2
2 2
64 12 8 12 9
' 8 8 1 0, 3
9 9 4
P t t t t t t
t t
ổ ử ộ ự
= - + = - + > " ẻ
ỗ ữ
ờ ỳ
ố ứ ở ỷ
Vy
( )
280
3
9
MaxP P = = ti t=3
3 3 1
4 1 3
xy x x
x y y y
= = =
ỡ ỡ ỡ
ớ ớ ớ
+ = = =
ợ ợ ợ
9 307
4 36
MinP P
ổ ử
= =
ỗ ữ
ố ứ
ti
9
4
t =
9
3
4
2
3
xy
x y
x y
ỡ
=
ù
= =
ớ
ù
+ =
ợ
0.25
0.25
1.
ThaytaI vopt D tac
5
3.2 4. 4 0
2
- + = (luụnỳng)nờn I ẻ D
Vỡ AẻD nờngis
( )
4 3 1A a a + mBixngviAquaInờnIltrungim
AB
( )
4 4 4 3B a a ị - - .
TCdngCH ^ AB ti Hthỡ
( )
( )
,
2 2
3.2 4 5 4
6
3 4
C AB
CH d
- - +
= = =
+
Theogithit
( ) ( )
2 2
1 1
15 . 15 .6. 4 8 3 6 15
2 2
ABC
S CH AB a a = = - + - =
( )
( ) ( )
( ) ( )
2
1 44 , 01
25 1 2 5 2 1 1
0 01 , 44
a A B
a a
a A B
ộ = ị
- = - =
ờ
= ị
ờ
ở
Vyhaiimcntỡml(44)v(01).
1.0
0.25
0.25
0.5
V.
2. Mitamgiỏcctothnhtbaimkhụngthnghngnờnbaimúc
chnthaiimtrờnngthngnyvmtimtrờnngthngkia.Doúta
cúcỏctrnghpsau:
TH1: Tamgiỏcctothnht haiimtrờnngthnga vmt imtrờn
ngthngbcúttc:
2
10
5. 225C = (tamgiỏc).
TH2:Tamgiỏcctothnhtmtimtrờnavhaiimtrờnbcúttc:
2
5
10. 100C = (tamgiỏc)
Vycúttc:225+100=325tamgiỏc.
1.0
0.25
0.25
0.25
0.25
VI.
iukin:
6 4
2
x
x
- < <
ỡ
ớ
ạ -
ợ
(*)
Pt
( ) ( )
4 4 4
3log 4 3log 2 3 3log 6x x x - - + = - +
( ) ( ) ( )( )
4 4 4
log 4 log 6 1 log 2 4 6 4 2x x x x x x - + + = + + - + = +
( ) ( )( )
( ) ( )( )
4 2 4 6
4 2 4 6
x x x
x x x
ộ + = - +
ờ
+ = - - +
ờ
ở
(vỡ(*)nờn
( )( )
4 6 0x x - + > )
( )
( )
( )
2
2
2 /
6 16 0
8
1 33 ( )
2 32 0
1 33 /
x t m
x x
x loai
x loai
x x
x t m
ộ
ộ
=
+ - = ờ
ờ
= -
ờ
ờ
ở
ờ
ộ
= +
ờ
- - =
ờ
ờ
= -
ờ
ờ
ở
ở
1.0
0.25
0.25
www.VNMATH.com
Vậyphươngtrìnhcóhainghiệmx=2; 1 33x = -
0.5
Tổng 10.00
Lưuý:Cáccáchgiảikhácđúngchođiểmtươngđươngtừngphần .
. ĐTBẮCNINH
TRƯỜNGTHPTNGÔGIATỰ
ĐỀ THI THỬĐAIHỌCLẦN1
MÔN: TOÁN,KHỐID
Thờigianlàmbài:180phút
o0o
CâuI.(2,0điểm)Chohàmsố.
ở
1.0
0.25
0.25
www.VNMATH.com
Vậyphươngtrìnhcóhainghiệmx=2; 1 33x = -
0.5
Tổng 10.00
Lưuý: Các cáchgiảikhácđúngchođiểmtươngđươngtừngphần .