1. Trang chủ
  2. » Tất cả

KỲ THI KHẢO SÁT CHẤT LƯỢNG HỌC KỲ I

6 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 691 KB

Nội dung

KỲ THI KHẢO SÁT CHẤT LƯỢNG HỌC KỲ I SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI TRƯỜNG THPT TRẦN THÁNH TÔNG ĐỀ KIỂM TRA HỌC KÌ I NĂM HỌC 2014 2015 Môn Toán 10 Thời gian 120 phút (không kể thời gian phát đề) ĐỀ SỐ 1[.]

SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I NĂM HỌC 2014-2015 TRƯỜNG THPT TRẦN THÁNH TƠNG Mơn Tốn 10 Thời gian: 120 phút (khơng kể thời gian phát đề) -ĐỀ SỐ Câu 1(1,0 điểm) Tìm tập xác định hàm số sau: a) y  2x  ; x b) y  x   2 x; Câu (1,0 điểm) Xác định hệ số a, b đường thẳng d có phương trình y = ax + b, biết d qua M(3; - 2) d song song với đường thẳng d’: y = 3x + 10 Câu (1,0 điểm) Cho hàm số y  x  x  (1), vẽ đồ thị (P) hàm số (1) Tìm toạ độ giao điểm (P) đường thẳng d: y = x – Câu (1,0 điểm) Lập bảng biến thiên hàm số y = – x2 + 3x + Tìm giá trị nhỏ f(x) = – x2 + 3x + với x thuộc đoạn [0; 2] Câu (1,0 điểm) Giải phương trình sau : x  x  Câu (1,0 điểm) Giải hệ phương trình sau phương pháp Gau – xơ (Gauss):  x  y  z 6   x  y  z 3 2 x  y  z 1  Câu (1,0 điểm) Giải phương trình sau: x  x  x  x  7    Câu (1,0 điểm) Cho tamgiác ABC điểm M thoả mãn MB  MC 0 Hãy phân tích   véctơ AM theo hai véctơ AB AC Câu (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(4; -3) B(3; 4)  1) Tính tọa độ véctơ AB , khoảng cách A B 2) Chứng minh tam giác OAB vng O(0; 0) 3) Tính chu vi diện tích tam giác OAB -Hết Học sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên học sinh: ……………………………………… .Lớp: SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I NĂM HỌC 2014-2015 TRƯỜNG THPT TRẦN THÁNH TƠNG Mơn Tốn 10 Thời gian: 120 phút (khơng kể thời gian phát đề) -ĐỀ SỐ Câu 1(1,0 điểm) Tìm tập xác định hàm số sau: a) y  2x  ; x 3 b) y  x   x  ; Câu (1,0 điểm) Xác định hệ số a, b đường thẳng d có phương trình y = ax + b, biết d qua M(1; - 3) d song song với đường thẳng d’: y = 3x + 10 Câu (1,0 điểm) Cho hàm số y x  x  (1), vẽ đồ thị (P) hàm số (1) Tìm toạ độ giao điểm (P) đường thẳng d: y = – x – Câu (1,0 điểm) Lập bảng biến thiên hàm số y = – x – 3x + Tìm giá trị nhỏ f(x) = – x2 – 3x + với x thuộc đoạn [-2; 0] Câu (1,0 điểm) Giải phương trình sau : 3x   x  Câu (1,0 điểm) Giải hệ phương trình sau phương pháp Gau – xơ (Gauss):  x  y  z 1   x  y  z 4 2 x  y  z   Câu (1,0 điểm) Giải phương trình sau: x  x  x  x  3    Câu (1,0 điểm) Cho tamgiác ABC điểm M thoả mãn MB  MC 0 Hãy phân tích   véctơ AM theo hai véctơ AB AC Câu (2.0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-2; 1) B(1; 2)  1) Tính tọa độ véctơ AB , khoảng cách A B 2) Chứng minh tam giác OAB vuông O(0; 0) 3) Tính chu vi diện tích tam giác OAB Hết Học sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên học sinh: ……………………………………… .Lớp: ĐÁP ÁN – THANG ĐIỂM ĐỀ KIỂM TRA HỌC KÌ I – MƠN TỐN 10 ĐỀ SỐ (Đáp án thang điểm gồm trang)áp án thang điểm gồm trang)m gồm trang)m trang) Câu/ý Câu a) b) Câu Câu Câu Nội dung Tìm tập xác định hàm số   Đk 2x + ≥ x – ≠ suy D =   ;   /  1   Đk x + ≥ – x ≥ suy D =   3;2 Xác định a, b d song song với d’: y = 3x + 10 suy d: y = 3x + b d qua M(3; - 2) nên ta có 3.3 + b = - hay b = - 11 (TM) Vậy a = 3, b = - 11 Vẽ đồ thi (P): y = x2 + 2x – Đồ thị parabol có đỉnh I(- 1; - 4); trục đối xứng x = - Giao với Oy (0; - 3); Giao với Ox A(- 3; 0) B(1; 0) Điểm 1,0 Toạ độ giao điểm (P) d: y = x – A(1; 0) B(- 2; - 3) Lập bảng biến thiên hàm số y = - x2 + 3x + TXĐ : D = R b 3  13    ;  2a 2.(  1) 4a 0,25 Bảng biến thiênng biến thiênn thiên x -∞ 0,5 0,5 1,0 0,5 0,5 1,0 0,25 0,5 1,0 0,5 +∞ 13 y 0,5 Câu -∞-∞ GTNN f(x) = - x2 + 3x + đoạn [0; 2] 1, x = Giải phương trình sau Điều kiện 4x + ≥ x  0 x 5  x 2  L    x  x      4 x  ( x  5)  x  14 x  24 0  x 12 1,0 0,25 0,25 0,25 0,25 Vậy phương trình có nghiệm x = 12 Câu Giải hệ phương trình 1,0  x  y  z 6  hpt   x  y  z 3  2 x  y  z 1  Câu Câu Câu 9.1 9.2 9.3 Tổng Giải phương trình Đăt t = x  x  , t ≥ 2 x  y  z 6   y  3z 0    y  z   x2  x  2 x  y  z 6   y  3z 0   z    x 1   y 3  z   x  x  7  t 3 Phương trình trở thành t2 – t – =   t = thoả mãn  t  , 2 t = 3, ta có x  x  3  x  x  10 0  x  x = 2    Hãy phân tích véctơ AM theo hai véctơ AB AC         2MB  MC 0  2( MA  AC )  MA  AC 0        3MA  AB  AC 0  AM  AB  AC 3 Trong mặt phẳng tọa độ Oxy,cho hai điểm A(4; -3) B(3; 4)  Tọa độ véctơ AB   4;4  ( 3)  ( 1;7)  2 Khoảng cách A B AB = AB  ( 1)   50 5       Ta có OA (4;  3), OB (3;4)  OA.OB 4.3  ( 3).4 0  OA  OB Suy góc AOB = 90 Vậy tam giác OAB vuông O Chu vi tam giác OAB: P = OA + OB + AB =   5(2  2) 25 Diện tích tam giác OAB: S = OA.OB  0,25 0,25 0,250,25 1,0 0,25 0,25 0,25 0,25 1,0 0,5 0,5 2,0 0,5 0,5 0,25 0,25 0,25 0,25 10,00 ĐÁP ÁN - THANG ĐIỂM ĐỀ KIỂM TRA HỌC KÌ I – MƠN TỐN 10 ĐỀ SỐ (Đáp án thang điểm gồm trang)áp án thang điểm gồm trang)m gồm trang)m trang) Câu/ Nội dung ý Câu Tìm tập xác định hàm số a) Đk x + ≥ x + ≠ suy D =   3;   3  Đk x + ≥ 2x – ≥ suy D =  ;   2  Câu Xác định a, b d song song với d’: y = 3x + 10 suy d: y = 3x + b d qua M(1; - 3) nên ta có 3.1 + b = - hay b = - Vậy a = 3, b = - Câu Vẽ đồ thi (P) hàm số y = x2–2x – TXĐ : D = R b 2    1 ;   f (1)  2a 2.1 4a Đồ thị parabol có đỉnh I( 1; - 4); trục đối xứng x = Giao với Oy (0; - 3); Giao với Ox A(- 1; 0) B(3; 0) b) PT hoành độ giao điểm x – 2x – = –x –  x2 – x – =  x = - x = Tọa độ giao điểm ( - 1; 0) (2; -3) Câu Lập bảng biến thiên hàm số y = - x2 – 3x + Điểm 1,0 0,5 0,5 1,0 0,5 0,5 1,0 0,25 0,5 0,25 1,0 TXĐáp án thang điểm gồm trang) : D = R b 3  13   ;   2a 2.(  1) 4a Bảng biến thiên x -∞ - +∞ 13 y -∞-∞ GTNN f(x) = - x2 – 3x + đoạn [- 2; 0] 1, x = Giải phương trình sau  Câu Điều kiện 3x – ≥ x  0 x 4  x 2  L    x  x      3x  ( x  4)  x  11x  18 0  x 9 Vậy phương trình có nghiệm x = 0,5 0,5 1,0 0,25 0,25 0,25 0,25 Câu 1,0 Giải hệ  x  y  z 1  hpt   x  y  z 4  2 x  y  z   Câu Câu Câu 9.1 9.2 9.3 Tổng Giải phương trình Đăt t = x  x  , t ≥ 2 x  y  z 1   y  z 7    y  z   2 x  y  z 1   y  z 7   z 10   x 1   y 1  z 2  x  x  x  x  3  t 1 Phương trình trở thành t2 + t – =   t = thoả mãn  t  , t = 1, ta có x  x  1  x  x  0  x = - x =    Hãy phân tích véctơ AM theo hai véctơ AB AC         2MB  MC 0  2( MA  AC )  ( MA  AC ) 0        MA  AB  AC 0  AM 2 AB  AC Trong mặt phẳng tọa độ Oxy,cho hai điểm A(-2; 1) B(1; 2)  Tọa độ véctơ AB   ( 2);2  1 (3;1)  2 Khoảng cách A B AB = AB    10       Ta có OA ( 2;1), OB (1;2)  OA.OB  2.1  1.2 0  OA  OB Suy góc AOB = 90 Vậy tam giác OAB vuông O Chu vi tam giác OAB: P = OA + OB + AB =   10 2  10 5  Diện tích tam giác OAB: S = OA.OB  2 0,25 0,25 0,25 0,25 1,0 0,25 0,25 0,25 0,25 1,0 0,5 0,5 3,0 0,5 0,5 0,25 0,25 0,25 0,25 10,00 ... dụng t? ?i liệu Cán coi thi khơng gi? ?i thích thêm Họ tên học sinh: ……………………………………… .Lớp: ĐÁP ÁN – THANG ? ?I? ??M ĐỀ KIỂM TRA HỌC KÌ I – MƠN TỐN 10 ĐỀ SỐ (Đáp án thang ? ?i? ??m gồm trang)áp án thang ? ?i? ??m... Câu (1,0 ? ?i? ??m) Lập bảng biến thi? ?n hàm số y = – x – 3x + Tìm giá trị nhỏ f(x) = – x2 – 3x + v? ?i x thuộc đoạn [-2; 0] Câu (1,0 ? ?i? ??m) Gi? ?i phương trình sau : 3x   x  Câu (1,0 ? ?i? ??m) Gi? ?i hệ phương... = 3, b = - 11 Vẽ đồ thi (P): y = x2 + 2x – Đồ thị parabol có đỉnh I( - 1; - 4); trục đ? ?i xứng x = - Giao v? ?i Oy (0; - 3); Giao v? ?i Ox A(- 3; 0) B(1; 0) ? ?i? ??m 1,0 Toạ độ giao ? ?i? ??m (P) d: y = x –

Ngày đăng: 11/11/2022, 16:18

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w