(SKKN HAY NHẤT) chuyên đề đường đẳng giác – đường đối trung

25 1 0
(SKKN HAY NHẤT) chuyên đề đường đẳng giác – đường đối trung

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai ĐƯỜNG ĐẲNG GIÁC – ĐƯỜNG ĐỐI TRUNG I Đường đối trung tam giác Đường đẳng giác  , hai tia Az At gọi đẳng giác chúng đối xứng qua 1.1 Định nghĩa: Cho góc xAy  tia phân giác góc xAy x z t A y 1.2 Định lý 1: Cho tam giác ABC với hai đường đẳng giác AA1 AA2 Chứng minh AB BA1.BA2  AC CA1.CA2 A B A1 A2 Chứng minh: S ABA1 AB AA1 sin BAA1 BA1 AB BA1 AA2     S ACA2 AC AA2 sin CAA2 CA2 AC CA2 AA1 S ABA2 S ACA1  AB AA2 sin BAA2 BA2 AB BA2 AA1    AC AA1 sin CAA1 CA1 AC CA1 AA2 C (1) (2) Nhân vế (1) (2) ta điều phải chứng minh 1.3 Định nghĩa: Cho tam giác ABC điểm M Ta nói điểm M’ gọi điểm đẳng giác (hay điểm liên hợp đẳng giác) điểm M đường thẳng AM’, BM’, CM’ đối xứng với đường thẳng AM, BM, CM qua đường thẳng phân giác góc A, B, C 1.4 Một số kết đường đẳng giác  Khi Tính chất 1: Cho tam giác ABC hai đường thẳng Ax, Ay đẳng giác góc BAC  xAB yAC  hai đường thẳng OA, OB đẳng giác góc xOy  Kẻ Tính chất 2: Cho góc xOy BH  Ox  H  Ox  , BK  Oy  K  Oy  Khi HK  OA LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai  hai đường thẳng OA, OB đẳng giác góc xOy  Kẻ Tính chất 3: Cho góc xOy BH  Ox  H  Ox  , BK  Oy  K  Oy  Qua A kẻ AE , AF vuông góc với Ox, Oy điểm E , F Khi E , H , F , K đồng viên (ngược lại đúng)  hai điểm A, B nằm miền góc xOy  Qua A kẻ Tính chất 4: Cho góc xOy AX  Oy  X  Ox  , AY  Oy Y  Oy  , BZ  Oy  Z  Ox  , BT  Ox T  Oy  Khi X , Y , Z , T đồng viên  OA, OB đẳng giác góc xOy Chứng minh: Gọi ZB  AY  K Khi ta có ZKAX , OZKY , YTBK    ZBT  XAY  KYT   OZB ,   nên OAX   OBT  Mặt khác xOB yOA  OAY OX AX Do OAX  OBT    OZ OX  OY OT OT BT hình bình hành nên Điều ngược lại hiển nhiên Tính chất 5: Cho tam giác ABC có hai đường đẳng giác AE , AF  E , F  BC  Khi  AEF  tiếp xúc với  ABC  Chứng minh: Qua A kẻ tiếp tuyến Ax với (ABC)   BAE  C   FAC  Ta có xAB AFE Do Ax tiếp xúc với (AEF) Do  AEF  tiếp xúc với  ABC  Tính chất 6: Cho P, Q liên hợp đẳng giác tam giác ABC Khi chân đường vng góc hạ từ P, Q nằm đường tròn (đường tròn Pedal) Chứng minh: Áp dụng tính chất ba lần Tính chất 7: Cho tam giác ABC có hai điểm P, Q liên hợp đẳng giác tam giác ABC Gọi M giao điểm khác A AP với đường tròn  ABC  E giao điểm MQ BC Khi PE  AQ Chứng minh: LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Gọi AQ cắt đường tròn  ABC  điểm N cắt BC điểm F   PCB   BCM   QCA   QAC   CQN  Vì P, Q liên hợp đẳng giác tam giác ABC nên PCM   QNC  nên PMC  CNQ  PM  CM Mà PMC CN Tương tự NQ MA CM  CN NF Kết hợp với MN // EF ta có: PM CM MC NF ME  :   MA NQ NF NQ MQ Do PE  AQ Đường đối trung 2.1 Định nghĩa: Trong tam giác ABC, đường thẳng AX đối xứng với đường trung tuyến AM qua đường phân giác AD gọi đường đối trung tam giác ABC xuất phát từ đỉnh A A B C X D M 2.3 Định lí Cho tam giác ABC nội tiếp đường tròn (O) X điểm thuộc cạnh BC Khi AX XB  AB  đường đối trung kẻ từ đỉnh A tam giác ABC   XC  AC  Chứng minh LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A B C X D M Gọi AD , AM phân giác trong, trung tuyến kẻ từ đỉnh A Giả sử AX đường đối trung tam giác ABC   CAM    , MAX    Sử dụng định lí Sin tam giác ta có: Đặt BAX XB sin  XC sin     XB sin C sin   ,    AX sin B AX sin C XC sin B sin     MB sin     MC sin  sin  sin C  ,    AM sin B AM sin C sin     sin B Từ hai đẳng thức ta được: XB  sin C  AB    XC  sin B  AC XB AB Gọi X ' cạnh BC cho AX ' đường đối trung tam giác  XC AC X ' B AB X ' B XB ABC Khi theo chứng minh ta     X  X ' hay AX đường X ' C AC X ' C XC đối trung tam giác ABC Ngược lại Cách 2: AB BX BM Gọi AM đường đẳng giác với AX Khi theo định lý ta có  AC CX CM BX AB Do AX đường đối trung  AM trung tuyến  BM = CM   CX AC Nhận xét: Đường đối trung chia cạnh đối diện tam giác theo tỉ lệ bình phương tỉ lệ hai cạnh bên 2.3 Định lí Cho tam giác ABC nội tiếp đường tròn (O) X điểm thuộc cạnh BC Khi AX đường đối trung kẻ từ đỉnh A tam giác ABC  BCMX   1 , M giao điểm tiếp tuyến A với đường thẳng BC Chứng minh LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A M B Theo kết định lí ta X C D XB AB  XC AC Do để chứng minh  BCMX   1 ta chứng minh MB AB  MC AC Ta có tam giác MAB đồng dạng tam giác MCA (g.g) nên MB MA AB MB MB MA AB Từ suy điều phải chứng minh      MA MC AC MC MA MC AC Đường AM gọi đường đối trung tam giác ABC 2.4 Định lý 4: Cho tam giác ABC nội tiếp đường tròn (O) X điểm thuộc cạnh BC Khi AX đường đối trung kẻ từ đỉnh A tam giác ABC d  X ; AB  AB  d  X ; AC  AC Chứng minh A B C X D M Nếu AX đường đối trung tam giác ABC Khi theo kết định lí ta có XB AB , kết  XC AC hợp với d  X , AB   XB.sin B, d  X , AC   XC.sin C định lí sin tam giác ABC ta được: d  X ; AB  XB.sin B AB AC AB    d  X ; AC  XC.sin C AC AB AC Ngược lại d  X , AB  AB XB.sin B AB XB AB.sin C AB       d  X , AC  AC XC.sin C AC XC AC.sin B AC LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A X B E C Từ theo định lí ta AX đường đối trung tam giác ABC Cách 2: S AEB d ( X ; AB ) d ( E ; AB ) EB AC AB AC AB   AB    d ( X ; AC ) d ( E ; AC ) S AEC EC AB AC AB AC AC Từ định lý suy tính chất sau: 2.5 Định lý 5: Cho tam giác ABC nội tiếp đường tròn (O) Tiếp tuyến B C đường tròn (O) cắt S Khi AS đường đối trung tam giác ABC Chứng minh Cách A O Q P B C X N M S Sử dụng định lí Ta Let ta  sin C AB XP AX XQ XP SM SB.sin SBM         sin B AC SM AS SN XQ SN SC.sin SCN Từ theo kết định lí ta định lí Nhận xét Gọi K giao điểm khác A đường đối trung AX với đường tròn ngoại tiếp tam giác ABC Khi theo định lí tứ giác ABKC điều hồ Cách Xét tam giác ABC hình vẽ Ta có B IB S ABI S MBI S MAB AB MB sin MBA     IC S ACI S MCI S MAC AC MC sin MCA M D I A C LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai  AB sin BCA AB  AC sin CBA AC Do I chân đường đối trung kẻ từ A tam giác ABC Cách 3: A B C M D Xét tam giác ABC với (O) đường tròn ngoại tiếp tam giác Giả sử tiếp tuyến B C cắt D Ta cần chứng minh AD đường đối trung tam giác ABC Thật vậy: Gọi AM đường thẳng đối xứng với AD qua đường phân giác góc A, M thuộc BC Khi Suy M trung điểm BC, AM đường trung tuyến tam giác ABC Vậy AD đường đối trung tam giác ABC 2.6 Định lý 6: Các đường đối trung tam giác đồng quy điểm, điểm gọi điểm Lemoine Chứng minh LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai N A P Y Z B O C X M Cách Theo kết định lí ta có AM, BN, CP đường đối trung tam giác ABC Theo tính chất hai tiếp tuyến cắt ta có MB  MC , NC  NA, PA  PB Từ ta được: AN BP CM  AN  BP  CM       AP BM CN  AP  BM  CN   CN  AP  BM           1   AP  BM  CN  Sử dụng định lí Ceva cho tam giác MNP suy AM , BN , CP đồng quy điểm Cách XB AB YC BC ZA CA2 XB YC ZA AB BC CA  ,  ,    1 XC AC YA BA2 ZB CB XC YA ZB AC BA2 CB XB YC ZA  AB   BC   CA2        .    1 XC YA ZB  AC   BA2   CB  Theo định lí ta được: Từ áp dụng định lí Ceva cho tam giác ABC ta AX , BY , CZ đồng quy điểm Chú ý Điểm đồng quy ba đường đối trung gọi điểm Lemoine Sau ta nghiên cứu số tính chất quan trọng điểm Lemoine, tính chất sử dụng nhiều toán thi Olimpiad số nước khu vực Một số tính chất điểm Lemoine d ( L; BC ) d ( L; CA) d ( L; AB )   BC CA AB 3.2 Tính chất 2: Cho điểm X nằm tam giác ABC Khi d ( X ; BC )  d ( X ; CA)  d ( X ; AB) 3.1 Tính chất 1: Cho L điểm Lemoine tam giác ABC, đó: nhỏ X điểm Lemoine tam giác ABC Chứng minh: Gọi D, E, F chân đường cao kẻ từ X xuống BC, CA, AB Ta có a XD  b XE  c XF  2S ABC  const nên S  ( XD  XE  XF )(a  b  c ) XD  XE  XF  4S a  b2  c2 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai XD XE XF   hay X điểm Lemoine tam giác ABC a b c 3.3 Tính chất 3: Cho tam giác ABC và điểm L điểm Lemoine tam giác Khi ta có    2 đẳng thức xác định điểm L sau: BC LA  CA LB  AB LC  Dấu “=” xảy Chứng minh A Y Z O L B C X Giả sử ba đường đối trung AX , BY , CZ cắt điểm L Khi theo định lí ta có:       XB AB YC BC  ,   AC XB  AB XC  0, AB YC  BC YA  2 XC  AC YA  BA2    Đặt u  BC LA  CA LB  AB LC Khi chiếu u lên đường thẳng BC theo phương AX ta      ChAX u  AC XB  AB XC  chiếu u lên đường thẳng CA theo phương BY ta     ChAX u  AB YC  BC YA        Do hai đường thẳng AX BY cắt nên u  Do BC LA  CA2 LB  AB LC  3.4 Tính chất 4: Cho tam giác ABC điểm L điểm Lemoine tam giác này.Gọi D , E , F lần   lượt hình chiếu L lên đường thẳng BC, CA, AB Khi L trọng tâm tam giác DEF Chứng minh A E Z F B Y L O C D X LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Giả sử ba đường đối trung AX , BY , CZ cắt điểm L Khi theo tính chất ta có     BC LA  CA2 LB  AB LC  (1) Mặt khác L điểm nằm tam giác ABC nên theo kết quen thuộc ta có:     S LBC LA  S LCA LB  S LAB LC  (2) So sánh (1) (2) ta có: 1 LD.BC LE AC LF AB LD LE LF S LBC S LCA S LAB 2    k      2 2 2 BC CA AB BC CA AB BC CA AB          LD LE LF LD LE LF Từ ta có: LD  LE  LF  LD  LE  LF  k BC  k CA  k AB LD LE LF LD LE LF       LD LE LF   k  BC  CA  AB   k  (định lí Con Nhím) LD LE LF       Từ suy LD  LE  LF  hay L trọng tâm tam giác DEF Cách khác: Gọi L giao điểm ba đường đối trung tam giác ABC Từ L hạ ba đường vng góc LP, LQ, LR xuống ba cạnh tam giác ABC Chứng minh L trọng tâm tam giác PQR A Q R L Q" B C P Kéo dài RL đoạn cho LQ’’ = RL Theo tính chất 2.4 LR/AB = LQ/AC hay LQ’’/AB = LQ/AC (góc có cạnh tương ’’ ứng vng góc) Suy LQ Q ABC Khi LP // QQ’’, LP trung điểm RQ nên LP trung tuyến xuất phát từ đỉnh P tam giác PQR.Tương tự LQ trung tuyến tam giác PQR Vậy L trọng tâm tam giác PQR Đường đối song kết liên quan 4.1 Khái niệm đường đối song: Đường đối trung kẻ từ đỉnh A tam giác ABC qua trung điểm đoạn thẳng DE (trong D thuộc cạnh AB E thuộc cạnh AC) DE đường đối song tương ứng với cạnh BC Chú ý: Đoạn thẳng DE (trong D thuộc cạnh AB E thuộc cạnh AC ) gọi đường đối song tương ứng với cạnh BC  ADE   ACB Chứng minh 10 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A E N D B X C M Gọi M trung điểm đoạn BC N giao điểm AX DE   MAC  , kết hợp với  Nếu AX đường đối trung tam giác ABC suy DAN ADE   ACB suy tam giác ADN đồng dạng ACM Cùng với tam giác ADE đồng dạng tam giác ACB ta được: ND AD DE    ND  DE hay N trung điểm đoạn thẳng DE MC AC BC Ngược lại trung điểm đoạn thẳng AX qua trung điểm N đoạn DE Qua N vẽ đường đối song D ' E ' tương ứng với cạnh BC Theo kết chứng minh AX qua trung điểm đoạn D ' E ' Nếu hai đoạn DE , D ' E ' khơng trùng điểm D , D ', E , E ' tạo thành bốn đỉnh hình bình hành hay DD ' || EE ' điều vô lý hay DE , D ' E ' trùng Từ suy DE đường đối song tam giác ABC Nhận xét: điểm B, C, E, D nằm đường tròn 4.2 Tính chất (đường trịn Lemoine) Cho tam giác ABC , L giao điểm đường đối trung, O tâm đường tròn ngoại tiếp tam giác ABC Các đường thẳng qua L song song với cạnh tam giác cắt cạnh tạo thành sáu điểm Khi sáu điểm nằm đường trịn có tâm trung điểm đoạn thẳng OL Chứng minh A R S B Q T P L K M O X N C Giả sử đường thẳng qua điểm L song song với cạnh tam giác ABC cắt cạnh điểm M , N , P , Q , R , S (như hình vẽ) Gọi T trung điểm RQ K trung điểm OL 11 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Ta có AL đường đối trung tam giác ABC qua trung điểm đoạn RQ nên RQ đường đối song tam giác ABC , kết hợp với SP || BC nên RQ đường đối song tam giác ASP Do tứ giác SRQP nội tiếp Lập luận tương tự ta RSMN , MNPQ nội tiếp Mặt khác tứ giác PQRN , QRSM , MNPS hình thang cân nên chúng nội tiếp Từ sáu điểm M , N , P , Q , R,S nằm đường trịn Theo tính chất đường đối song ta có RS  OA , kết hợp KT đường trung bình tam giác KLO nên KT || OA  KT  RS  KS  KR Tương tự ta KS  KM , KN  KP Do K cách sáu điểm M , N , P , Q , R,S hay đường tròn qua sáu điểm M , N , P , Q , R,S trung điểm OL 4.3 Tính chất Đường đối song qua điểm Lemoine tam giác cắt cạnh bên tam giác tạo thành sáu điểm thuộc đường tròn Chứng minh A R Q P L O S B X M N C Do SP đường đối song tương ứng với cạnh BC tam giác ABC nên theo định lí 2.8 ta đường đối trung kẻ từ đỉnh A phải qua trung điểm SP hay L trung điểm SP Tương tự L trung điểm NR , MQ Mặt khác ta có NR , MQ , SP đường đối song tam giác ABC nên     RSL   LR  LS (1) LRS ACB, RSL ACB  LRS   BAC  , LNM   BAC   LMN   LNM   LM  LN (2) LMN Từ (1), (2) kết hợp với L trung điểm SP , NR , MQ suy L cách sáu điểm M , N , P , Q , R , S hay sáu điểm nằm đường trịn 4.4 Tính chất Cho tam giác ABC Đường tròn nội tiếp tam giác ABC tiếp xúc với cạnh BC, CA, AB D, E, F Khi điểm Gergonne điểm Lemoine tam giác DEF Chú ý: Điểm Gergonne điểm đồng quy đường thẳng AD, BE, CF Chứng minh 12 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A E F I G B C D Gọi G điểm đồng quy đường thẳng AD , BE , CF Ta có tiếp tuyến E , F đường tròn ngoại tiếp tam giác ABC cắt điểm A Khi theo định lí ta DA đường đối trung tam giác DEF Tương tự EB , FC đường đối trung tam giác DEF Mặt khác ba đường thẳng AD , BE , CF đồng quy G nên G điểm Lemoine tam giác DEF 4.5 Tính chất Cho tam giác ABC nội tiếp đường tròn (O) Gọi M điểm nằm cung BC không chứa điểm A đường tròn (O) D, E, F hình chiếu vng góc M lên đường thẳng BC, CA, AB Khi điêm M thuộc đường đối trung kẻ từ đỉnh A tam giác ABC D trung điểm EF Chứng minh A O B X D E C F M Theo định lí ta tứ giác ABMC tứ giác điều hoà suy đường đối trung tam giác ABC nên AB MB  , kết hợp với AX AC MC XB AB XB MB suy    MX đường đối trung XC AC XC MC tam giác MBC   , kết hợp với MX đường đối Do tứ giác ABMC , DMCE nội tiếp nên BMX ACB  DME trung tam giác MBC suy MD trung tuyến tam giác MBC hay D trung điểm EF 13 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Một số bổ đề Bổ đề Cho tam giác ABC Một đường tròn qua B, C, cắt cạnh AB, AC E, F Gọi AH, AI theo thứ tự đường cao tam giác ABC AEF kẻ từ A Khi AH, AI hai đường đẳng giác góc A tam giác ABC Chứng minh Ta có ABC  AFE  EAI  CAH Suy AH AI hai đường đẳng giác góc A A F I E B C H Bổ đề (Hệ bổ đề 1) Cho tam giác ABC nội tiếp đường tròn (O) Gọi H trực tâm tam giác ABC Khi AO, AH hai đường đẳng giác góc BAC Chứng minh Hiển nhiên theo bổ đề 1, với ý AO  EF A E F O H B C D  Một đường trịn khơng qua O, cắt tia Ox A, C, cắt tia Oy B, D Bổ đề Cho góc xOy  Gọi M, N theo thứ tự trung điểm tam giác AB CD Khi OM, ON đẳng giác góc xOy Chứng minh: O D A M N B I C y x 14 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Ta có OAB  ODC  MOB  NOC Suy OM ON hai đường đẳng giác góc xOy Bổ đề (Hệ bổ đề 3) Cho tam giác ABC Một đường tròn qua B, C, cắt cạnh AB, AC E, F Gọi AM, AN theo thứ tự trung tuyến tam giác ABC AEF Khi AN đường đối trung tam giác ABC Chứng minh: Hiển nhiên A F E B N C M Bổ đề Cho tam giác ABC nội tiếp đường tròn (O) Tiếp tuyến A (O) cắt BC E Đường tròn (AOE) cắt (O) điểm thứ hai F Khi AF đường đối trung tam giác ABC Chứng minh A O E B C F S Ta có CB đường đối trung tam giác CAF nên tứ giác CABF điều hòa Suy AF đường đối trung tam giác ABC Bổ đề Cho tam giác ABC ( AB  AC ) nội tiếp đường tròn tâm O ngoại tiếp đường tròn tâm I Đường tròn (I) tiếp xúc với BC D Khi OI vng góc với AD AD đường đối trung tam giác ABC Chứng minh 15 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A D' F' P B E' I O D C A' Thật vậy, đường tròn (I) tiếp xúc với cạnh BC, CA, AB D, E', F' Gọi P giao điểm đường thẳng EF đường thẳng BC Dễ thấy IP vng góc với AD, mặt khác theo giả thiết ta có OI vng góc với AD nên ba điểm O, I, P thẳng hàng hay OP vuông góc với AD Gọi D' giao điểm thứ hai AD với (I) A' giao điểm thứ AD (O) Áp dụng định lí Menelaus cho tam giác ABC với cát tuyến EFP ta được: PB E ' C F ' A PB F ' B DB DB 1      BCPD   1 PC E ' A F ' B PC E ' C DC DC Do OP vng góc với AD nên AD đường thẳng đối cực điểm P đường tròn (O) Do đó, PA, PA' tiếp tuyến đường trịn (O) Mặt khác theo chứng minh ta có  BCPD   1 , kết hợp với định lí suy AD đường đối trung tam giác ABC Bổ đề Cho tam giác ABC Đường tròn (I) qua A, B tiếp xúc với đường thẳng AB A, đường tròn (J) qua A, C tiếp xúc với đường thẳng AC A Đường tròn (I) cắt lại đường tròn (J) điểm D Khi AD đường đối trung tam giác ABC Chứng minh A K H D B C Thật vậy, gọi H, K hình chiếu vng góc điểm D lên đường thẳng AB, AC Dễ thấy tam giác DAB đồng dạng với tam giác DCA suy DH AB  , kết hợp với định lí ta DK AC AD đường đối trung tam giác ABC Bổ đề Cho tam giác ABC, đường cao AD, CE Gọi M, N trung điểm BC, CA DE giao MN T Khi AT đường đối trung tam giác ABC Chứng minh 16 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Ta thấy tứ giác AEDC nội tiếp AB // TN nên NTD  BED  NCD suy TDNC nội tiếp Mà NA = ND = NC nên NA2 = ND2 = NM.NT suy hai tam giác ANM TNA đồng dạng Từ MAN  NTA  BAT Suy AT đường đối trung tam giác ABC Bổ đề Cho tam giác ABC nội tiếp đường trịn (O) Phân giác ngồi góc A cắt đường thẳng BC D, E Đường tròn đường kính DE cắt lại đường trịn (O) F Chứng minh AF đường đối trung tam giác ABC Chứng minh Thật vậy, Thật vậy, gọi M trung điểm DE , N giao điểm AF BC Dễ thấy MA, MF tiếp tuyến đường tròn (O) nên theo kết quen thuộc ta  BCMN   1 , kết hợp với định lí ta AN đường đối trung tam giác ABC hay AF đường đối trung tam giác ABC A O E M B N D C F Bài tập áp dụng Bài (HSG Chuyên Bến Tre 2021): Cho hai đường tròn O1 ,O2  cắt A B Các tiếp tuyến (O1 ) A, B cắt O Gọi I điểm đường tròn (O1 ) đường 17 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai tròn (O2 ) Các đường thẳng IA, IB cắt đường tròn (O2 ) tại C , D Gọi M trung điểm đoạn thẳng CD Chứng minh I , M , O thẳng hàng Giải: Gọi N trung điểm đoạn thẳng AB Vì A, B , C , D thuộc đường trịn nên ta có IAB IDC Vì M trung điểm đoạn thẳng CD N trung điểm đoạn thẳng AB nên theo bổ đề IM , IN liên hợp đẳng giác với CID Mặt khác, O giao điểm tiếp tuyến A, B (O1 ) nên NO đường trung trực tam giác IAB Điều có nghĩa IO, IN liên hợp đẳng giác AIB Do I , M , O thẳng hàng Bài (VMO 2015) Cho đường tròn (O) hai điểm B, C cố định (O), BC khơng đường kính Điểm A thay đổi (O) cho tam giác ABC nhọn Gọi E, F chân đường cao kẻ từ B, C tam giác ABC Cho (I) đường tròn thay đổi qua E, F có tâm I Giả sử (I) tiếp xúc với BC điểm D Chứng minh DB cot B  DC cot C Lời giải A P K E L N F B I D O M C Gọi K, L theo thứ tự giao điểm thứ hai (I) với AB, AC + Nếu tam giác ABC cân A tốn hiển nhiên + Giả sử AB  AC Gọi M, N, P trung điểm BC, EF, KL Theo bổ đề 3, AP AN đẳng giác góc A, AM AN đẳng giác góc A nên A, P, M thẳng hàng Do KL // BC 18 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Suy DB BF BK BF AB BF BE cot B DB cot B       DC CE.CL CE AC CE CF cot C DC cot C Bài (Russian 2010) Đường tròn nội tiếp (I) tam giác nhọn ABC tiếp xúc với cạnh BC, CA, AB A1, B1, C1 Các điểm A2, B2 trung điểm đoạn thẳng B1C1, C1A1 Gọi O tâm đường tròn ngoại tiếp tam giác ABC P giao điểm CO đường tròn (I) N, M theo thứ tự giao điểm thứ hai PA2, PB2 với đường tròn (I) Chứng minh giao điểm AN BM thuộc đường cao hạ từ C tam giác ABC Lời giải A N H C1 M B B1 A2 K B2 I O P C A1 Gọi H hình chiếu C AB Ta có CO, CH hai đường đẳng giác góc  ACB (1) A2C1 A2 B1  A2 A A2 I    A2 A A2 I  A2 N A2 P A2C1 A2 B1  A2 N A2 P  Suy tứ giác ANIP nội tiếp Mặt khác IP = IN nên NAI  PAI Suy AN, AP hai đường đẳng giác góc  BAC (2) Tương tự, BM, BP hai đường đẳng giác góc  ABC (3) Vì tứ giác AC1IB1 NC1PB1 nội tiếp, ta có : Do AP, BP, CP đồng qui nên từ (1), (2), (3) suy AN, BM, CH đồng qui Bài Cho tam giác ABC ( AB  AC ) nội tiếp đường tròn tâm O ngoại tiếp đường tròn tâm I Đường tròn (I) tiếp xúc với BC D Đường tròn ngoại tiếp tam giác ABD cắt lại đường thẳng AC E đường tròn ngoại tiếp tam giác ACD cắt lại đường thẳng AB F Gọi M, N trung điểm DE, DF Chứng minh OI  AD AD, BN, CM đồng quy điểm Lời giải 19 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A D' F I F' M N P B D E' E K O C A' Trước hết ta chứng minh BN, CM đường đối trung tam giác ABC Thật vậy, gọi K trung điểm AC suy BK đường trung tuyến kẻ từ đỉnh B tam giác ABC Do tứ giác AFDC nội tiếp nên tam giác BDF đồng dạng tam giác BAC suy DB CB DB CB DB CB   BCK  ta tam giác DBN đồng dạng      , kết hợp với BDN DM CA 2DN 2CK DN CK   với tam giác CBK suy BDN  CBK Do theo định nghĩa đường đối trung ta BN đường đối trung tam giác ABC Tương tự ta CM đường đối trung kẻ từ đỉnh C tam giác ABC Ta có BN, CM đường đối trung tam giác ABC nên AD, BN, CM đồng quy AD đường đối trung tam giác ABC hay OI vng góc với AD (theo bổ đề 6) Từ suy đpcm Bài Cho tam giác ABC nội tiếp đường tròn (O) Phân giác ngồi góc A cắt đường thẳng BC D, E Đường trịn đường kính DE cắt lại đường tròn (O) F Đường thẳng AF cắt đường thẳng BC điểm M Đường tròn ngoại tiếp tam giác ABM cắt lại đường thẳng AC điểm N đường tròn ngoại tiếp tam giác ACM cắt lại đường thẳng AB điểm P Gọi I, J trung điểm đoạn thẳng MN, MP Chứng minh đường thẳng AM, BJ, CI đồng quy điểm Lời giải Theo bổ đề AM đường đối trung tam giác ABC Ta chứng minh BJ, CI đường đối trung tam giác ABC Thật vậy, gọi K trung điểm AC suy BK đường trung tuyến kẻ từ đỉnh B tam giác ABC Do tứ giác APMC nội tiếp nên tam giác BMP đồng dạng tam giác BAC suy PB CB PB CB PB CB   BCK  ta tam giác PBJ đồng dạng với      , kết hợp với BPJ PM CA PJ 2CK PJ CK   CBK  Do theo định nghĩa đường đối trung ta BJ đường đối tam giác CBK suy BPJ trung tam giác ABC Do AM, BJ, CI đường đối trung tam giác ABC nên theo định lí ta AM, BJ, CI đồng quy điểm 20 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai A N P K J I E B M D C F Bài (PTNK TPHCM TST 2021) Cho tam giác ABC nhọn, nội tiếp đường trịn (O ) có trực tâm H AH , BH , CH cắt cạnh đối diện D , E , F Gọi I , M , N trung điểm BC , HB , HC BH , CH cắt lại (O ) theo thứ tự L, K Giả sử KL cắt MN G a) Trên EF , lấy điểm T cho AT vng góc với HI Chứng minh GT vng góc với OH b) Gọi P , Q giao điểm DE , DF MN Gọi S giao điểm BQ , CP Chứng minh HS qua trung điểm EF Lời giải a) Giả sử tia IH cắt (O ) R theo kết quen thuộc, ta có ARH  90 Vì nên T  AR Bằng cách xét trục đẳng phương đường trịn đường kính AH , BC đường trịn (O ), ta có AR, EF , BC đồng quy Từ suy T  BC A K R L E F M G T H O' O S Q B N P D I C Gọi (O) đường tròn Euler tam giác ABC D, E , F , M , N  (O ) Dễ thấy 21 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai 1 HB  HK  HC  HL  HN  HL 2 nên M , N , K , L thuộc đường tròn Suy GL  GK  GM  GN nên G /( O )  G /( O) Ngồi ra, ta có T /( O )  T /( O) nên GT trục đẳng phương (O ),(O) Điều cho thấy GT  OO  hay GT  OH (do O  trung điểm OH ) b) Ta có DH phân giác góc PDQ , PQ  HD nên dễ thấy tứ giác HPDQ hình thoi Ta biến đổi góc sau HPQ  DQP  QDB  FHB Suy HPN  MHN nên HN tiếp xúc với ( HMP) hay NP  NM  NH  NC Do đó, hai tam giác NPC NCM đồng dạng với Suy NCP  NMC  MCB , nên CP đối trung tam giác HBC Chứng minh tương tự BQ đối trung tam giác HBC nên điểm S điểm Lemoine tam giác này, kéo theo HS đối trung tam giác HBC Lại có EF đối song ứng với đỉnh H tam giác HBC nên suy HS chia đôi đoạn thẳng EF Nhận xét Điểm mấu chốt câu b chứng minh BQ , CP đường đối trung tam giác HBC Đây kết có đề thi Sharygin Ngồi cách túy cho câu b trên, ta dùng biến đổi tỷ số diện tích đem lại lời giải tự nhiên Bài (Lê Bá Khánh Trình) Cho tam giác ABC nhọn, nội tiếp đường tròn O Gọi D, E, F  , CBA ,  trung điểm cung BAC ACB DE, DF cắt AC, AB M, N Gọi H, K hình chiếu A lên BE, CF Chứng minh CH, BK, MN đồng quy Giải: HM  HK  Gọi BE giao CF X , CF giao AD Y, AD giao BE Z Ta thấy X, Y, Z tâm đường tròn bàng tiếp tam giác ABC; A, B, C D, E, F chân đường cao, đường trung tuyến tam giác XYZ , XHK  XAK  XYZ  XBC , suy BC // HK 22 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Mặt khác, áp dụng bổ đề ta có X, M, N thẳng hàng nằm đường đối trung tam giác XYZ , đồng thời đường thẳng MN qua trung điểm BC hai tam giác XBC XYZ đồng dạng ngược Từ áp dụng bổ đề hình thang, ta có BH, CK, MN đồng quy Bài (Sharygin 2017 G10 – Pr6) Cho tam giác ABC đường cao AA1, BB1, CC1 Gọi M trung điểm BC P giao điểm khác A (AB1C1) (ABC) T giao điểm thứ hai tiếp B, C (ABC) AT cắt (ABC) S Chứng minh P, A1, S trung điểm MT thẳng hàng Lời giải A B1 L O P C1 Q B H C M A1 S T a) Chứng minh P, A1, S thẳng hàng Ta có B1C1 đường đối song ứng với cạnh BC tam giác ABC nên AS đường đối trung tam giác ABC Theo định lí 2.8 AS qua trung điểm L B1C1 Mặt khácM, H, P thẳng hàng Gọi Q tà tâm đẳng phương (ABC), (AB1C1) (BCB1C1) Suy Q điểm đồng quy BC, B1C1, AP Xét phép nghịch đảo  cực A, phương tích k = AB1 AC Khi  : B1  C; C1  B Do  : (ABC)  B1C1; S  L, P  Q, H  A1 Do P, A1, S thẳng hàng A, L, H, Q đồng viên Điều H trực tâm tam giác ABC nên AHQ = 1800 - AMB = AMC Mà ∆AB1C1  {L} đồng dạng với ∆ACB  {M} ALQ = AMC Do AHQ = AMCA, L, H, Q đồng viên Vậy ta P, A1, S thẳng hàng Gọi Z giao điểm A1S với MT Khi ta có A1(ASTM) = - A1(AZMT) = - Z trung điểm MT Từ có điều phải chứng minh BÀI TẬP TƯƠNG TỰ 23 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Bài Cho tam giác ABC khơng cân A , nội tiếp đường trịn  O  Các tiếp tuyến B C  O  cắt T , đường thẳng AT cắt lại đường tròn X Gọi Y điểm đối xứng X qua O Các đường thẳng YB , XC cắt P , đường thẳng XB , YC cắt Q a) Chứng minh P , Q , T thẳng hàng b) Chứng minh đường thẳng PQ , BC , AY đồng quy Bài 10 (Balkan MO 2017) Cho tam giác ABC nhọn, AB  AC  đường tròn ngoại tiếp Gọi t B , tC tiếp tuyến  B , C hai tiếp tuyến cắt điểm L Đường thẳng qua B , song song với AC cắt tC D Đường thẳng qua C , song song với AB cắt t B E Đường tròn ngoại tiếp tam giác BDC cắt AC T , T nằm A C Đường tròn ngoại tiếp tam giác BEC cắt AB S , B nằm S A Chứng minh ST , AL , BC đồng quy Bài 11 (ELMO 2014) Cho tam giác ABC có tâm đường trịn ngoại tiếp O trực tâm H Gọi 1 , 2 đường tròn ngoại tiếp tam giác BOC , BHC Đường trịn đường kính AO cắt 1 điểm M đường thẳng AM cắt 1 điểm X Đường trịn đường kính AH cắt 2 điểm N đường thẳng AN cắt 2 điểm Y Chứng minh MN || XY Bài 12 (VMO 2019) Cho tam giác nhọn, không cân ABC nội tiếp đường trịn  O  có trực tâm H Gọi M , N , P trung điểm cạnh BC , CA, AB D, E , F chân đường cao ứng với đỉnh A, B, C tam giác ABC Gọi K điểm đối xứng H qua BC Hai đường thẳng DE , MP cắt X ; Hai đường thẳng DF , MN cắt Y   O  Z Chứng minh K , Z , E , F đồng viên a) Đường thẳng XY cắt cung BC b) Hai đường thẳng KE , KF cắt lại  O  S , T Chứng minh BS , CT , XY đồng quy Bài 13 (USA TST 2017).Cho tam giác ABC nhọn, không cân nội tiếp đường tròn  O  Gọi T   900 Đường trịn đường kính AT cắt đường tròn ngoại điểm đường thẳng BC cho TAO tiếp tam giác BOC A1 A2 , OA1  OA2 Các điểm B1 , B2 , C1 , C2 xác định tương tự a) Chứng minh AA1 , BB1 , CC1 đồng quy điểm b) Chứng minh AA2 , BB2 , CC2 đồng quy điểm đường thẳng Euler tam giác ABC Bài 14 (VMO 2014) Cho tam giác nhọn ABC nội tiếp đường tròn  O  , B , C cố định A thay đổi  O  Trên tia AB AC lấy điểm M N cho MA  MC NA  NB Các đường tròn ngoại tiếp tam giác AMN ABC cắt P  P  A Đường thẳng MN cắt đường thẳng BC Q a) Chứng minh ba điểm A, P , Q thẳng hàng b) Gọi D trung điểm cạnh BC Các đường trịn có tâm M , N qua điểm A cắt K  K  A Đường thẳng qua A vng góc với AK cắt BC E Đường tròn ngoại tiếp tam giác ADE cắt  O  F  F  A  Chứng minh đường thẳng AF qua điểm cố định 24 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com GV Nguyễn Bá Hoàng – THPT Chuyên Lào Cai Bài 15 (Romania TST 2014) Cho tam giác ABCcó đường tròn ngoại tiếp (O) Các tiếp tuyến với đường tròn ngoại tiếp tam giác ABC điểm B C gặp điểm P Đường tròn tâm P bán kính PB cắt phân giác góc BAC tam giác ABC điểm S, D  OS  BC Chân đường vuông góc S AC AB E F Chứng minh AD, BE CF đồng qui Bài 16 (USA TST 2008) Cho tam giác ABC với trọng tâm G Gọi P điểm đoạn BC Điểm Q R nằm cạnh AC AB cho PQ || AB PR || AC Chứng minh P thay đổi, đường tròn ngoại tiếp tam giác AQR qua điểm cố định X cho   CAX  BAG Bài 17 (USAMO 2008) Cho tam giác ABC nhọn, không cân Trung trực cạnh AB , AC cắt trung tuyến AM D , E Các đường thẳng BD , CE cắt F Chứng minh A, P , N , F nằm đường tròn (ở N , P theo thứ tự trung điểm cạnh CA, AB ) Bài 18 (Lâm Đồng TST 2019) Cho tam giác ABC nhọn có AB  AC , nội tiếp đường tròn (O ) Gọi D, E trung điểm AB, AC Các đường tròn ngoại tiếp tam giác ABE ACD cắt điểm K khác A Đường thẳng AK cắt (O ) L khác A Đường thẳng LB cắt đường tròn ngoại tiếp tam giác ABE điểm thứ hai M đường thẳng LC cắt đường tròn ngoại tiếp tam giác ACD điểm thứ hai N a) Chứng minh ba điểm M , K , N thẳng hàng MN  OL b) Chứng minh K trung điểm đoạn MN 25 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... nghĩa đường đối trung ta BN đường đối trung tam giác ABC Tương tự ta CM đường đối trung kẻ từ đỉnh C tam giác ABC Ta có BN, CM đường đối trung tam giác ABC nên AD, BN, CM đồng quy AD đường đối trung. .. AD đường đối trung tam giác ABC Thật vậy: Gọi AM đường thẳng đối xứng với AD qua đường phân giác góc A, M thuộc BC Khi Suy M trung điểm BC, AM đường trung tuyến tam giác ABC Vậy AD đường đối trung. .. Hoàng – THPT Chuyên Lào Cai Ta có AL đường đối trung tam giác ABC qua trung điểm đoạn RQ nên RQ đường đối song tam giác ABC , kết hợp với SP || BC nên RQ đường đối song tam giác ASP Do tứ giác

Ngày đăng: 01/11/2022, 10:24

Tài liệu cùng người dùng

Tài liệu liên quan