ễN THI TH I HC LN 3
Mụn thi: Toỏn. Thi gian lm bi: 180 phỳt.
A. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu I. (2 im)
Cho hm s y = x
3
+ 3x
2
+ mx + 1 cú th l (C
m
); ( m l tham s)
1. Kho sỏt s bin thiờn v v th hm s khi m = 3.
2. Xỏc nh m (C
m
) ct ng thng y = 1 ti ba im phõn bit C(0;1), D, E sao cho cỏc tip tuyn
ca (C
m
) ti D v E vuụng gúc vi nhau.
Cõu II (2 im)
1.Gii phng trỡnh:
x
xx
xx
2
32
2
cos
1coscos
tan2cos
+
=
.
2. Gii h phng trỡnh:
2 2
2 2
1 4
( ) 2 7 2
x y xy y
y x y x y
+ + + =
+ = + +
,
( , )x y R
.
Cõu III (1 im)
Tớnh tớch phõn:
3
2
2
1
log
1 3ln
e
x
I dx
x x
=
+
.
Cõu IV. (1 im) Cho hình hộp đứng ABCD.A'B'C'D' có các cạnh AB = AD = a, AA' =
3
2
a
và góc BAD
bằng 60
0
. Gọi M và N lần lợt là trung điểm của các cạnh A'D' và A'B'. Chứng minh AC' vuông góc với mặt
phẳng (BDMN). Tính thể tích khối chóp A.BDMN.
Cõu V. (1 im)
Cho a, b, c l cỏc s thc khụng õm tha món
1a b c+ + =
. Chng minh rng:
7
2
27
ab bc ca abc+ +
.
B. PHN RIấNG (3 im). Thớ sinh ch c lm mt trong hai phn (phn 1 hoc 2)
1.Theo chng trỡnh Chun
Cõu VIa. ( 2 im)
1. Trong mt phng vi h ta Oxy , cho tam giỏc ABC bit A(5; 2). Phng trỡnh ng trung trc
cnh BC, ng trung tuyn CC ln lt l x + y 6 = 0 v 2x y + 3 = 0. Tỡm ta cỏc nh ca
tam giỏc ABC.
2. Trong khụng gian vi h ta Oxyz, hóy xỏc nh to tõm v bỏn kớnh ng trũn ngoi tip
tam giỏc ABC, bit A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).
Cõu VIIa. (1 im)
Cho
1
z
,
2
z
l cỏc nghim phc ca phng trỡnh
2
2 4 11 0z z + =
.
Tớnh giỏ tr ca biu thc
2 2
1 2
2
1 2
( )
z z
z z
+
+
.
2. Theo chng trỡnh Nõng cao
Cõu VIb. ( 2 im)
1. Trong mt phng vi h ta Oxy cho hai ng thng
:
3 8 0x y+ + =
,
':3 4 10 0x y + =
v
im A(-2 ; 1). Vit phng trỡnh ng trũn cú tõm thuc ng thng
, i qua im A v tip
xỳc vi ng thng
.
2. Trong khụng gian vi h ta Oxyz, Cho ba im A(0;1;2), B(2;-2;1), C(-2;0;1). Vit phng trỡnh
mt phng (ABC) v tỡm im M thuc mt phng 2x + 2y + z 3 = 0 sao cho MA = MB = MC.
Cõu VIIb. (1 im)
Gii h phng trỡnh :
2
1 2
1 2
2log ( 2 2) log ( 2 1) 6
log ( 5) log ( 4) = 1
x y
x y
xy x y x x
y x
+
+
+ + + + =
+ +
,
( , )x y R
.
HT
ĐÁP ÁN
Câu Ý Nội dung Điểm
I 1 1
2 PT hoành độ giao điểm x
3
+ 3x
2
+ mx + 1 = 1
⇔
x(x
2
+ 3x + m) = 0
⇔
m = 0, f(x) = 0 0.25
Đê thỏa mãn yc ta phải có pt f(x) = 0 có 2 nghiệm phân biệt x
1
, x
2
khác 0 và
y’(x
1
).y’(x
2
) = -1.
0.25
Hay
2 2
1 1 2 2
9 4 0, (0) 0
(3 6 )(3 6 ) 1.
m f m
x x m x x m
− > = ≠
+ + + + = −
2 2 2 2
2
1 2 1 2 1 2 1 2 1 2 1 2
9
9
, 0
, 0
4
4
9( ) 18 ( ) 3 ( ) 36 6 ( ) 1
4 9 1 0
m m
m m
x x x x x x m x x x x m x x m
m m
< ≠
< ≠
⇔ ⇔
+ + + + + + + + = −
− + =
0.25
Giải ra ta có ĐS: m =
9 65
8
±
0.25
II 1
ĐK cosx ≠ 0, pt được đưa về
2 2 2
cos2 tan 1 cos (1 tan ) 2cos cos -1 0x x x x x x− = + − + ⇔ − =
0.5
Giải tiếp được cosx = 1 và cosx = 0,5 rồi đối chiếu đk để đưa ra ĐS:
2 2
2 , 2 ; hay
3 3
x k x k x k
π π
π π
= = ± + =
.
0.5
2
0y ≠
, ta có:
2
2 2
2 2
2
2
1
4
1 4
.
( ) 2 7 2
1
( ) 2 7
x
x y
y
x y xy y
y x y x y
x
x y
y
+
+ + =
+ + + =
⇔
+ = + +
+
+ − =
0.25
Đặt
2
1
,
x
u v x y
y
+
= = +
ta có hệ:
2 2
4 4 3, 1
2 7 2 15 0 5, 9
u v u v v u
v u v v v u
+ = = − = =
⇔ ⇔
− = + − = = − =
0.25
+) Với
3, 1v u= =
ta có hệ:
2 2 2
1, 2
1 1 2 0
2, 5
3 3 3
x y
x y x y x x
x y
x y y x y x
= =
+ = + = + − =
⇔ ⇔ ⇔
= − =
+ = = − = −
.
0.25
+) Với
5, 9v u= − =
ta có hệ:
2 2 2
1 9 1 9 9 46 0
5 5 5
x y x y x x
x y y x y x
+ = + = + + =
⇔ ⇔
+ = − = − − = − −
, hệ này
vô nghiệm.
KL: Vậy hệ đã cho có hai nghiệm:
( ; ) {(1; 2), ( 2; 5)}.x y = −
0.25
III
3
3
2
2
3
2 2 2
1 1 1
ln
log 1 ln . ln
ln 2
.
ln 2
1 3ln 1 3ln 1 3ln
e e e
x
x x xdx
I dx dx
x
x x x x x
÷
= = =
+ + +
∫ ∫ ∫
0.25
Đặt
2 2 2
1 1
1 3ln ln ( 1) ln .
3 3
dx
x t x t x tdt
x
+ = ⇒ = − ⇒ =
. Đổi cận … 0.25
Suy ra
( )
( )
2
2 2
3
2
2
3 3
2
1 1 1
1
1
log 1 1 1
3
. 1
ln 2 3 9ln 2
1 3ln
e
t
x
I dx tdt t dt
t
x x
−
= = = −
+
∫ ∫ ∫
0.25
2
3
3 3
1
1 1 4
9ln 2 3 27ln 2
t t
= − =
÷
0.25
IV Chứng tỏ AC’
⊥
BD 0.25
C/m AC’
⊥
PQ, với P,Q là trung điểm của BD, MN. Suy ra AC’
⊥
(BDMN) 0.25
Tính đúng chiều cao AH , với H là giao của PQ và AC’. Nếu dùng cách hiệu các thể
tích thì phải chỉ ra cách tính.
0.25
Tính đúng diện tích hình thang BDMN . Suy ra thể tích cần tìm là:
3
3
16
a
.
0.25
V
Ta có
2 ( ) (1 2 ) (1 ) (1 2 )ab bc ca abc a b c a bc a a a bc+ + − = + + − = − + −
. Đặt t= bc thì ta
có
2 2
( ) (1 )
0
4 4
b c a
t bc
+ −
≤ = ≤ =
.Xét hs f(t) = a(1- a) + (1 – 2a)t trên đoạn
2
(1 )
0;
4
a
−
0.5
Có f(0) = a(1 – a)
2
( 1 ) 1 7
4 4 27
a a+ −
≤ = <
và
2
2
(1 ) 7 1 1 1 7
(2 )
4 27 4 3 3 27
a
f a a
−
= − + − ≤
÷
÷
÷
với mọi a
[ ]
0;1∈
0,25
Vậy
7
2
27
ab bc ca abc+ + − ≤
. Đẳng thức xảy ra khi a = b = c = 1/3 0.25
VIa. 1.
Gäi C = (c; 2c+3) vµ I = (m; 6-m) lµ trung ®iÓm cña BC
Suy ra: B= (2m-c; 9-2m-2c). V× C’ lµ trung ®iÓm cña AB nªn:
2 5 11 2 2
' ; '
2 2
m c m c
C CC
− + − −
= ∈
÷
nªn
2 5 11 2 2 5
2( ) 3 0
2 2 6
m c m c
m
− + − −
− + = ⇒ = −
5 41
( ; )
6 6
I⇒ = −
. Ph¬ng tr×nh BC: 3x – 3y + 23=0
Täa ®é cña C lµ nghiÖm cña hÖ:
2 3 0
14 37
;
3 3 23 0
3 3
x y
C
x y
− + =
⇒ =
÷
− + =
0.5
Täa ®é cña B =
19 4
;
3 3
−
÷
0.5
2.
Ta có:
(2; 2; 2), (0; 2;2).AB AC= − =
uuur uuur
Suy ra phương trình mặt phẳng trung trực của
AB, AC là:
1 0, 3 0.x y z y z+ − − = + − =
0.25
Vectơ pháp tuyến của mp(ABC) là
, (8; 4;4).n AB AC
= = −
r uuur uuur
Suy ra (ABC):
2 1 0x y z− + + =
.
0.25
Giải hệ:
1 0 0
3 0 2
2 1 0 1
x y z x
y z y
x y z z
+ − − = =
+ − = ⇒ =
− + + = =
. Suy ra tâm đường tròn là
(0; 2;1).I
0.25
Bán kính là
2 2 2
( 1 0) (0 2) (1 1) 5.R IA= = − − + − + − =
0.25
VII
a
Giải pt đã cho ta được các nghiệm:
1 2
3 2 3 2
1 , 1
2 2
z i z i= − = +
0.5
Suy ra
2
2
1 2 1 2
3 2 22
| | | | 1 ; 2
2 2
z z z z
= = + = + =
÷
÷
0.25
Đo đó
2 2
1 2
2
1 2
11
4
( )
z z
z z
+
= =
+
0.25
VIb 1. Tâm I của đường tròn thuộc
∆
nên I(-3t – 8; t) 0.25
Theo yc thì k/c từ I đến
∆
’ bằng k/c IA nên ta có
2 2
2 2
3( 3 8) 4 10
( 3 8 2) ( 1)
3 4
t t
t t
− − − +
= − − + + −
+
0.25
Giải tiếp được t = -3 0.25
Khi đó I(1; -3), R = 5 và pt cần tìm: (x – 1)
2
+ (y + 3)
2
= 25. 0.25
2.
Ta có
(2; 3; 1), ( 2; 1; 1) (2;4; 8)AB AC n= − − = − − − ⇒ = −
uuur uuur r
là 1 vtpt của (ABC) 0.25
Suy ra pt (ABC) là (x – 0) + 2(y – 1) – 4(z – 2) = 0 hay x + 2y – 4z + 6 = 0 0.25
M(x; y; z) MA = MB = MC
⇔
…. 0.25
M thuộc mp: 2x + 2y + z – 3 = 0 nên ta có hệ, giải hệ được x = 2, y = 3, z = -7 0.25
VII
b
+ Điều kiện:
2
2 2 0, 2 1 0, 5 0, 4 0
( )
0 1 1, 0 2 1
xy x y x x y x
I
x y
− − + + > − + > + > + >
< − ≠ < + ≠
. 0.25
1 2 1 2
1 2 1 2
2log [(1 )( 2)] 2log (1 ) 6 log ( 2) log (1 ) 2 0 (1)
( )
log ( 5) log ( 4) = 1 log ( 5) log ( 4) = 1(2).
x y x y
x y x y
x y x y x
I
y x y x
− + − +
− + − +
− + + − = + + − − =
⇔ ⇔
+ − + + − +
0.25
Đặt
2
log (1 )
y
x t
+
− =
thì (1) trở thành:
2
1
2 0 ( 1) 0 1.t t t
t
+ − = ⇔ − = ⇔ =
Với
1t =
ta có:
1 2 1(3).x y y x− = + ⇔ = − −
Thế vào (2) ta có:
2
1 1 1
4 4
log ( 4) log ( 4) = 1 log 1 1 2 0
4 4
x x x
x x
x x x x x
x x
− − −
− + − +
− + − + ⇔ = ⇔ = − ⇔ + =
+ +
0
2
x
x
=
⇔
= −
. Suy ra:
1
1
y
y
= −
=
.
0.25
+ Kiểm tra thấy chỉ có
2, 1x y= − =
thoả mãn điều kiện trên.
Vậy hệ có nghiệm duy nhất
2, 1x y= − =
.
0.25
A
B
D
P
M
N
Q
. ễN THI TH I HC LN 3
Mụn thi: Toỏn. Thi gian lm bi: 180 phỳt.
A. PHN CHUNG CHO TT C TH SINH (7 im)
Cõu. y = x
3
+ 3x
2
+ mx + 1 cú th l (C
m
); ( m l tham s)
1. Kho sỏt s bin thi n v v th hm s khi m = 3.
2. Xỏc nh m (C
m
) ct ng thng y = 1 ti ba im