1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài 1 bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian

21 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 2,4 MB

Nội dung

BÀI TẬP TỰ LUYỆN Câu 1: Câu 2: Câu 3: Câu 4: Câu 5: Câu 6: Câu 7: [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, cho A  1;  1;3 , B  1; 2;1 , C  3;5;   Khi tọa độ trọng tâm G tam giác ABC     A G   ;3;0  B G  3;6;0  C G  1; 2;0  D G   ; ;0     3  [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho A  2;1;  1 , B  2;0;1 , C  1;  3;  uuur uuur Giá trị tích vơ hướng AB AC A 22 B 14 C 10 D 22 r r [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho hai véctơ a   1; m;   , b   4;  2;3 r r Để a  b giá trị tham số thực m bao nhiêu? A m  B m  C m  1 D m  2 r r [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho a   2;  3;1 b véctơ r r rr phương với a thỏa mãn a.b  28 Khi b bao nhiêu? r r r r A b  14 B b  C b  14 D b  14 [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho A  0;  1;1 , B  2;1;  1 , C  1;3;  Biết ABCD hình bình hành, tạo độ điểm D 2  A D  1;  3;   B D  1;1;  C D  1;3;  D D  1;1;  3  [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A  1; 2;  3 , B  1;0;  , C  x; y;   thẳng hàng Khi tổng x  y bao nhiêu? 11 11 A x  y  B x  y  17 C x  y  D x  y   5 [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M  1;  2;5  Khi tọa độ hình chiếu vng góc M ' M mặt phẳng  Oxy  A M '  0;0;5 B M '  1;  2;0  C M '  1;0;5  D M '  0;  2;5  [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M  2;  1;3 Khi tọa độ hình chiếu vng góc M ' M mặt phẳng Ox A M '  0;0;3 B M '  0;  1;0  C M '  4;0;0  D M '  2;0;0  r r r r Câu 9: [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho a , b  120 a  3, b  Khi r r a  b có giá trị bao nhiêu? r r r r r r r r A a  b  13 B a  b  37 C a  b  D a  b  uuu r r r r Câu 10: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho OA  3i  j  2k B  m; m  1;   Tìm tất giá trị m để độ dài đoạn AB  ? A m  B m  C m  1 D m  m  Câu 11: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho A  2;9; 1 , B  0; 4;1 , C  m; 2m  5;1 Biết m  m0 giá trị để tam giác ABC vng C Khi giá trị m0 gần giá trị giá trị sau? A B 3 C D Oxyz ABCD A ' B ' C ' D ' biết Câu 12: [2H3-2] Trong khơng gian với hệ tọa độ , cho hình hộp A  1; 1;0  , B '  2;1;3 , C '  1; 2;  , D '  2;3;  Khi tọa độ điểm B là? Câu 8:  A B  1; 2;3 B B  2; 2;0   C B  2; 2;0  D B  4; 2;6  Câu 13: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hình hộp ABCD A ' B ' C ' D ' biết A  2; 1;  , B '  1; 2;1 , C  2;3;  , D '  3;0;1 Khi tọa độ điểm B là? A B  1; 2;  B B  1; 2; 2  C B  2; 2;1 D B  2; 1;  r r Câu 14: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho ba vectơ a   1; 1;0  , b   2;1; 1 , r r r r c   m;0; 2m  1 Khi để ba vectơ a, b, c đồng phẳng giá trị tham số thực m bao nhiêu? A m  B m  C m  D m  r r Câu 15: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho vectơ a   1; 2;  , b   x0 ; y0 ; z0  r r r phương với vectơ a Biết vectơ b tạo với tia Oy góc nhọn b  21 Khi tổng x0  y0  z0 bao nhiêu? A x0  y0  z0  B x0  y0  z0  3 C x0  y0  z0  D x0  y0  z0  6 Câu 16: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho A  1; 1;0  , B  2;1;1 , C  1;0; 1 , D  m; m  3;1 Tìm tất giá trị thực m để ABCD tứ diện A m  B m  C m  ¡ D m  Câu 17: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cặp mặt phẳng sau cắt ? A  1  : x  y  z    1  : x  y  z   B    : x  y  z      : x  y  z   C    : 3x  y  z    3  : x  y  z   D    : x  y  z      : x  y  z   Câu 18: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng  P  : mx  y  z   mặt phẳng  Q  : x  ny  z   Nếu  P  / /  Q  giá trị m, n 1 n   D m  n  4 2 x y  z 1  Câu 19: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 :  1 x  1 t  d :  y   2t Vị trí tương đối d1 d z  t  A m  2 n  B m  n  2 C m  A Song song B Trùng C Cắt D Chéo x 1 y  z   Câu 20: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 : 1  x  at  d :  y   3t Khi giá trị a b để d1 d song song ?  z   bt  A a  b  9 B Không tồn a b C a  b  D a  6 b  x 1 y  z   Câu 21: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d1 : a b x y 1 z  d2 :   Khi giá trị a b để d1 , d song song? 2 Câu 22: Câu 23: Câu 24: Câu 25: A a  2 b  8 B Không tồn a, b C a  b  D a  2 b  [2H3-2] Trong không gian với hệ tọa độ Oxyz , vị trí tương đối đường thẳng x 1 y z  :   với mặt phẳng sau song song? 1 A (1 ) : x  y  z   B ( ) : x  y  z   C ( ) : x  y  z   D ( ) : x  y  z   x y 3 z 2  [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :  cắt mặt 1 phẳng ( P ) : x  y  z   điểm M Khi tọa độ điểm M là? A M (0;3; 2) B M (2; 2;1) C M (1; 2; 6) D M (4;1; 4) x y  z 1   [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  : mặt 2 phẳng ( P ) :11x  my  nz  16  Biết   ( P ) Khi m, n có giá trị bao nhiêu? A m  6; n  4 B m  4; n  C m  10; n  D m  4; n  10 x  1 t  [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :  y  m  2t mặt phẳng  z  nt  ( P) : x  y  z   Biết   ( P ) , m  n có giá trị bao nhiêu? A m  n  B m  n  C m  n  1 D m  n  3 Câu 26: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) : x  y  z  x  y  z   Hỏi mặt phẳng sau, đâu mặt phẳng không cắt mặt cầu? A (1 ) : x  y  z   B ( ) : x  y  z  12  C ( ) : x  y  z   D ( ) : x  y  z   Câu 27: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho mặt cầu ( S ) có tâm I (2; 3;0) tiếp xúc với mặt phẳng ( P) : x  y  z   Khi phương trình mặt cầu ( S ) là? A ( x  2)  ( y  3)2  z  B ( x  2)  ( y  3)  z  C ( x  2)  ( y  3)2  z  D ( x  2)  ( y  3)  z  Câu 28: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho mặt cầu ( S ) : x  ( y  2)2  ( z  1)  169 cắt mặt phẳng ( P) : x  y  z  10  theo giao tuyến đường trịn bán kính r Khi giá trị r bao nhiêu? A r  12 B r  C D r  Oxyz Câu 29: [2H3-3] Trong không gian với hệ tọa độ , cho mặt cầu ( S ) : ( x  2)  ( y  1)  z  mặt phẳng ( ) : x  y  z  m  Xét mệnh đề sau: I) ( ) cắt (S) theo đường tròn 10  m  II) ( ) tiếp xúc với (S) m  10 m  III) ( ) không cắt (S) m  10 m  Trong mệnh đề trên, có mệnh đề đúng? A B C D Câu 30: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) : x  y  z  x  y  z  14  Đường thẳng  qua tâm I mặt cầu (S) vng góc với mặt phẳng ( P) : x  y  z   Biết  cắt (S) điểm phân biệt A, B Đặt x0  x A  xB (với x A, xB hoành độ A B ) Khi x0 bao nhiêu? A x0  B x0  C x0  D x0  Câu 31: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 : Câu 32: Câu 33: Câu 34: Câu 35: Câu 36: x y 1 z   2 4  x   at  d :  y  t Khi giá trị a, b c để d1 , d trùng nhau?  z  b  ct  A a  ; b  2 c  B a  1 ; b  c  C a  ; b  c  D a  1 ; b  2 c  2 x y  a z 1  [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 :  1  x   bt  d :  y  ct Khi để d1 , d song song điều kiện a, b c là?  z   2t  A a  ; b  c  6 B a  ; b  c  6 C a  ; b  c  D a  ; b  c  x y 1 z   [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 : 2  x   3t  d :  y   t Khi giá trị a để d1 , d cắt nhau?  z   at  A a  1 B a  C a  2 D a  x  y z 1   [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 : 1  x  a  3t  d :  y  t Khi giá để d1 , d chéo điều kiện a z  1 t  A a  13 B a  C a  13 D a  x y 1 z   [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 :  m 3 x  1 t  d :  y   3t Khi giá trị m để d1 , d chéo nhau?  z  1  2t  A m  B m  C m  17 D m  17 x   t  [2H3-2] Trong không gian với hệ tọa độ Oxyz , góc tạo đường thẳng d1 :  y  3  t z   trục hoành A 30 B 45 C 60 D 90 Câu 37: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng    : x  y  z      : 3x  y  z  Khi góc tạo hai mặt phẳng       A 30 B 45 C 60 D 90  Oxyz Câu 38: [2H3-2] Trong không gian với hệ tọa độ , gọi góc tạo đường thẳng x 1 y z  d:   mặt phẳng    : x  y  z   Khi khẳng định sau 1 đúng? Câu 39: Câu 40: Câu 41: Câu 42: 5 A cos   B cos   C sin   D sin   6 6 [2H3-1] Trong không gian với hệ tọa độ Oxyz , cho hai điểm A  2; 2;0  , B  1; 2;3 Khi độ dài đoạn thẳng AB bao nhiêu? A AB  10 B AB  2 C AB  26 D AB  34 [2H3-1] ( Đề minh họa – 2017) Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng  P  : 3x  y  z   điểm A  1; 2;3 Tính khoảng cách d từ A đến  P  5 5 A d  B d  C d  D d  29 29 x y 1 z 1  [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  :  mặt phẳng  P  : x  y  z   Khoảng cách   P  bao nhiêu? A B C D 3 [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng song song  P  : x  y  z  13  mặt phẳng  Q  : x  y  z   Khoảng cách h hai mặt phẳng  P   Q  bao nhiêu? 14 C h  D h  3 Câu 43: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho điểm M  1;5;  1 đường thẳng x  y 1 z :   Khi khoảng cách h từ điểm M đến đường thẳng  bao nhiêu? 3 A h  B h  C h  17 D h  26  x   4t  Câu 44: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng 1 :  y   t  z  3  t  A h  B h  x  y 1 z   Khoảng cách hai đường thẳng 1  bao nhiêu? 1 A B C D Câu 45: [2H3-3] Trong không gian với hệ tọa độ Oxyz , khoảng cách h hai đường thẳng x y  z 1 x 1 y  z  1 :      : bao nhiêu? 1 1 1 2 2 A h  B h  C h  D h  3 Câu 46: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A  1;  2;3 , B  2; 1;1 , 2 : C  1;1;0  , D  1; 2; 1 Khoảng cách hai đường thẳng AB CD bao nhiêu? 10 A B C D 11 11 11 11 Câu 47: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A  0;1;1 , B  1; 2;0  , C  2;1; 1 Diện tích tam giác ABC bao nhiêu? A 22 B 22 C 22 D 11 Câu 48: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho tứ diện ABCD có A  0; 1;1 , B  2;1;1 , C  1;0;0  , D  1;1;1 Thể tích V tứ diện ABCD bao nhiêu? 1 A V  B V  C V  D V  Câu 49: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hình hộp ABCD ABC D có A  1;0;  , B  1;1; 1 , D  0;1;1 , A  2; 1;0  Thể tích V khối hình hộp ABCD ABC D A V  B V  C V  D V  Câu 50: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hình chóp S ABCD có S  1;3; 1 , A  1;0;0  , B  0; 2;0  , C  0;0;  Độ dài đường cao hình chóp S ABCD 21 21 A B C D 21 13 HƯỚNG DẪN GIẢI BẢNG ĐÁP ÁN Câu 1: Câu 2: 1C 2D 3C 4B 5D 6A 7B 8D 9B 10D 11A 12C 13A 14C 15B 16A 17C 18B 19D 20D 21B 22C 23B 24C 25A 26C 27A 28A 29D 30D 31C 32A 33B 34C 35D 36B 37A 38C 39D 40C 41B 42D 43A 44C 45B 46C 47A 48B 49C 50D [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, cho A  1;  1;3 , B  1; 2;1 , C  3;5;   Khi tọa độ trọng tâm G tam giác ABC     A G   ;3;0  B G  3;6;0  C G  1; 2;0  D G   ; ;0     3  Lời giải Chọn C    1   3  1  xG     1     G 1; 2;0   Ta có  yG       4  0  zG   [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho A  2;1;  1 , B  2;0;1 , C  1;  3;  uuur uuur Giá trị tích vơ hướng AB AC A 22 B 14 C 10 D 22 Lời giải Chọn D uuur  AB   4; 1;  uuur uuur  AB AC  22  uuur  AC   3; 4;3 Câu 3: Câu 4: r r [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho hai véctơ a   1; m;   , b   4;  2;3 r r Để a  b giá trị tham số thực m bao nhiêu? A m  B m  C m  1 D m  2 Lời giải Chọn C r r rr a  b  a.b    2m    m  1 r r [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho a   2;  3;1 b véctơ r r rr phương với a thỏa mãn a.b  28 Khi b bao nhiêu? r r r r A b  14 B b  C b  14 D b  14 Lời giải Chọn A r r r r Ta có b véctơ phương với a  b  ka   2k ; 3k ; k  suy rr a.b  4k  9k  k  28  k  2 r r 2 Suy b   4;6;    b     14 Câu 5: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho A  0;  1;1 , B  2;1;  1 , C  1;3;  Biết ABCD hình bình hành, tạo độ điểm D 2  A D  1;  3;   B D  1;1;  C D  1;3;  D D  1;1;  3  Lời giải Chọn D uuur uuur Gọi tọa độ điểm D  x; y; z   AD   x; y  1; z  1 Ta có BC   1; 2;3 x  x  uuur uuur   ABCD hình bình hành  AD  BC   y     y   D  1;1;  z 1  z    Câu 6: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A  1; 2;  3 , B  1;0;  , C  x; y;   thẳng hàng Khi tổng x  y bao nhiêu? A x  y  B x  y  17 C x  y  11 D x  y   11 Lời giải Chọn A uuur  AB   2; 2;5  Ta có  uuur  AC   x  1; y  2;1 x 1 y     x   ; y   x  y  2 5 [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M  1;  2;5  Khi tọa độ hình Khi A, B, C thẳng hàng  Câu 7: chiếu vng góc M ' M mặt phẳng  Oxy  A M '  0;0;5 B M '  1;  2;0  C M '  1;0;5  Lời giải D M '  0;  2;5  Chọn B Ta có M  1;  2;5  , suy hình chiếu vng góc M mặt phẳng  Oxy  M '  1;  2;0  Chú ý : Hình chiếu vng góc M  x0 ; y0 ; z0  mặt phẳng  Oxy  ,  Oyz  ,  Oxz  điểm M  x0 ; y0 ;0  , M  0; y0 ; z0  , M  x0 ;0; z0  Câu 8: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M  2;  1;3 Khi tọa độ hình chiếu vng góc M ' M mặt phẳng Ox A M '  0;0;3 B M '  0;  1;0  C M '  4;0;0  D M '  2;0;0  Lời giải Chọn D Ta có M  2;  1;3 , suy hình chiếu vng góc M mặt phẳng Ox M '  2;0;0  Chú ý : Hình chiếu vng góc M  x0 ; y0 ; z0  trục Ox, Oy, Oz điểm M  x0 ;0;0  , M  0; y0 ;0  , M  0; 0; z0  Câu 9: r r r r [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho a , b  120 a  3, b  Khi r r a  b có giá trị bao nhiêu? r r r r r r r r A a  b  13 B a  b  37 C a  b  D a  b    Lời giải Chọn B r r2 r r Ta có a  b  a  b r r  a  b  37   r rr r r2 r2 r r r r  a  2ab  b  a  b  a b cos a , b  37   uuu r r r r Câu 10: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho OA  3i  j  2k B  m; m  1;   Tìm tất giá trị m để độ dài đoạn AB  ? A m  B m  C m  1 D m  m  Lời giải Chọn D uuu r r r r Ta có OA  3i  j  2k  A  3;1; 2  m  2 2 Khi AB    m  3   m      2m  10m     m  Câu 11: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho A  2;9; 1 , B  0; 4;1 , C  m; 2m  5;1 Biết m  m0 giá trị để tam giác ABC vuông C Khi giá trị m0 gần giá trị giá trị sau? A B 3 C D Lời giải Chọn A uuur  AC  m  2; 2m  5;  Ta có  uuur Do tam giác ABC vuông C  BC  m; 2m  1;0  uuur uuur  AC.BC    m   m   2m    2m  1  2.0   m  2m    m  1  m0 Trong phương án m0  1 gần Câu 12: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hình hộp ABCD A ' B ' C ' D ' biết A  1; 1;0  , B '  2;1;3 , C '  1; 2;  , D '  2;3;  Khi tọa độ điểm B là? A B  1; 2;3 B B  2; 2;0  C B  2; 2;0  Lời giải Chọn C uuuuu r uuuuur Gọi A '  x; y; z   B ' A '  x  2; y  1; z  3 Ta có C ' D '  1;1;0  D B  4; 2;6  A ' B ' C ' D ' hình bình hành  x   1  x  uuuuu r uuuuur uuuur    B ' A '  C ' D '   y     y   A '  1; 2;3   A ' A  0; 3; 3  z   z    uuuur Gọi B  a; b; c   B ' B  a  2; b  1; c  3 a   a  uuuur uuuur   ABB ' A ' hình bình hành  B ' B  A ' A  b   3  b  2  B  2; 2;0  c   3 c    Câu 13: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hình hộp ABCD A ' B ' C ' D ' biết A  2; 1;  , B '  1; 2;1 , C  2;3;  , D '  3;0;1 Khi tọa độ điểm B là? A B  1; 2;  B B  1; 2; 2  C B  2; 2;1 Lời giải Chọn A Gọi I ; I  tâm hình bình hành ABCD , ABC D A Khi I trung điểm AC  I  0;1;  uur I  trung điểm BD  I   2;1;1  II   2;0; 1 uuur Gọi B  x; y; z   BB    x;  y;1  z  A D B  2; 1;  B C I D C B I D 1  x   x  1 uuur ur   B'BII hình bình hành  BB '  II'  2  y    y   B  1; 2;  1  z  1  z    Chú ý : Tất mặt hình hộp hình bình hành r r Câu 14: [2H3-3] Trong khơng gian với hệ tọa độ Oxyz , cho ba vectơ a   1; 1;0  , b   2;1; 1 , r r r r c   m;0; 2m  1 Khi để ba vectơ a, b, c đồng phẳng giá trị tham số thực m bao nhiêu? A m  B m  C m  D m  7 Lời giải Chọn C r r r r r Ta có  a, b    1;1;3   a, b  c  m  r r r r r r Khi ba vectơ a, b, c đồng phẳng   a, b  c   7m    m  7r r Câu 15: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho vectơ a   1; 2;  , b   x0 ; y0 ; z0  r r r phương với vectơ a Biết vectơ b tạo với tia Oy góc nhọn b  21 Khi tổng x0  y0  z0 bao nhiêu? A x0  y0  z0  B x0  y0  z0  3 C x0  y0  z0  D x0  y0  z0  6 Lời giải Chọn B r r Do a, b phương r r r  b  ka   k ; 2k ; 4k   b  21  k  4k  16k  21  k   k  1   r Mặt khác b tạo với tia Oy góc nhọn  r r rr   cos b, j   b j   2k   k    k  1    x0  1 r   b   1; 2; 4    y0   x0  y0  z0  3  z  4  Câu 16: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho A  1; 1;0  , B  2;1;1 , C  1;0; 1 , D  m; m  3;1 Tìm tất giá trị thực m để ABCD tứ diện A m  B m  C m  ¡ D m  Lời giải Chọn A uuur  AC   1; 2;1  uuur uuu r uuur   AC   2;1;   AB     , AC    3; 1;5  Ta có  uuur  AD   m  1; m  2;1 uuu r uuur uuur   AB, AC  AD  4m  10 uuu r uuur uuur Để ABCD tứ diện  AB, AC  AD   m  Câu 17: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cặp mặt phẳng sau cắt ? A  1  : x  y  z    1  : x  y  z   B    : x  y  z      : x  y  z   C    : 3x  y  z    3  : x  y  z   D    : x  y  z      : x  y  z   Lời giải Chọn C 2     1  / /  1  Thử A : ta có  4 6 1 2         2  Thử B : ta có  3 6 3     ,  3  cắt Thử C : ta có   6 Câu 18: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng  P  : mx  y  z   mặt phẳng  Q  : x  ny  z   Nếu  P  / /  Q  giá trị m, n A m  2 n  B m  n  2 C m  Lời giải Chọn B Ta có  P  / /  Q   m  m 8   2 n 4  m  2 1 n   D m  n  4 2 Câu 19: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 : x  1 t  d :  y   2t Vị trí tương đối d1 d z  t  A Song song B Trùng C Cắt Lời giải x y  z 1   1 D Chéo Chọn D ur uu r ur uu r  u1   1;3;  u2   1; 2;1  u1 , u2    1; 1;1   uuuuuur Ta có    M  0; 2;1  d1  M  1; 2;0   d  M 1M   1; 4; 1 ur uu r uuuuuur  u1 , u2  M 1M  6   d1 , d chéo Câu 20: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 : x 1 y  z   1  x  at  d :  y   3t Khi giá trị a b để d1 d song song  z   bt  A a  b  9 B Không tồn a b C a  b  D a  6 b  Lời giải Chọn D ur uu r Ta có u1   2; 1;3 u2   a;3; b  Để d1 //d : ur uu r  a  6 a b   +) Điều kiện cần : u1 , u2 phương   1 b  +) Điều kiện đủ : Cách 1: uuuuuur ur uuuuuur r  M   1; 2;1  d1  M 1M   1;3;1  u1 , M 1M    10; 5;5    d1 //d (thỏa Có   M  0;1;   d mãn) Suy a  6 b  d1 //d  x  6t 1  6t a  6   thay M  1; 2;0  d1  d :  y   3t   2   3t (Vô nghiệm) Cách :  b   z   9t 0   9t    M  d  d1 / / d Suy a  6 b  d1 / / d Câu 21: [2H3-2] Trong không gian với hệ tọa độ Oxy , cho đường thẳng d1 : x 1 y  z   a b x y 1 z    Khi giá trị b để d1 , d song song? 2 A a  2 b  8 B Không tồn a, b C a  b  D a  2 b  Lời Giải: Chọn B ur uur Ta có u1  (a; b; 4) u2  (1; 4; 2) Để d1 //d thì: a ur uu r a  2 a b  2   +, Điều kiện cần: u1 , u2 phương    2 b  8 d2 : +, Điều kiện đủ: uuuuuur uu r uuuuuur r  M (1;3;0)  d1  M 1M  (1; 4; 2)  u2 , M 1M   (0;0; 0)   d1  d Cách 1: Ta có   M (0; 1; 2)  d Suy không tồn a, b  a  2 x 1 y  z  1   d1 :   Thay M (0; 1; 2)  d    (luôn Cách 2: Với  2 8 2 8 b  8 đúng)  M  d1  d1  d Suy tồn a, b Câu 22: [2H3-2] Trong khơng gian với hệ tọa độ Oxy , vị trí tương đối đường thẳng x 1 y z  :   với mặt phẳng sau song song? 1 A (1 ) : x  y  z   B ( ) : x  y  z   C ( ) : x  y  z   D ( ) : x  y  z   Lời Giải: Chọn C uu r Ta có M (1;0; 2)   u  (2; 1;1) ur uurur +) Với (1 ) : x  y  z    n1  (1; 2;1)  u n1     cắt (1 )  Loại A uuruu r uu r u n2     ( )  Loại B +) Với ( ) : x  y  z    n2  (3;5; 1)    M (1;0; 2)  ( ) uu r uu r uu r u n3    / /( )  Đáp án C +) Với ( ) : x  y  z    n3  (2;3; 1)    M (1;0; 2)  ( ) x y 3 z 2  Câu 23: [2H3-2] Trong không gian với hệ tọa độ Oxy , cho đường thẳng  :  cắt mặt 1 phẳng ( P ) : x  y  z   điểm M Khi tọa độ điểm M là? A M (0;3; 2) B M (2; 2;1) C M (1; 2; 6) D M (4;1; 4) Lời Giải: Chọn B M (P)  2t  2(3  t)   t    t   M(2; 2;1) Do M    M (2 t;3  t; 2  t)  x y  z 1   Câu 24: [2H3-2] Trong không gian với hệ tọa độ Oxy , cho đường thẳng  : mặt 2 phẳng ( P ) :11x  my  nz  16  Biết   ( P ) Khi m, n có giá trị bao nhiêu? A m  6; n  4 B m  4; n  C m  10; n  D m  4; n  10 Lời Giải: Chọn C Cách 1: Lấy M (0; 2; 1)   N (2;3; 2)    M  (P) 2m  n  16  m  10   Vì   (P)    N  (P) 22  3m  2n  16  n  Cách 2: Lấy M (0; 2; 1)   (P) 2m  n  16 m  10  Mr  uuu r   Khi   (P)   uu 22  m  3n  n  u n(P)  x  1 t  Câu 25: [2H3-2] Trong không gian với hệ tọa độ Oxy , cho đường thẳng  :  y  m  2t mặt phẳng  z  nt  ( P) : x  y  z   Biết   ( P ) , m  n có giá trị bao nhiêu? A m  n  B m  n  C m  n  1 D m  n  3 Lời Giải: Chọn A Cách 1: Lấy M (1; m;0)   N (0; m  2;  n)    M  (P) 1  m   m     m  n   Đáp án A Vì   (P)    N  (P) m   ( n)   n  1 Cách 2: Lấy M (1; m;0)    M  (P) 1  m   m  r uuu r    m  n   Đáp án A Khi   (P)   uu 1.1  (2).1  n (1)   n  1 u n(P)  Câu 26: [2H3-2] Trong không gian với hệ tọa độ Oxy , cho mặt cầu (S) : x  y  z  x  y  z   Hỏi mặt phẳng sau, đâu mặt phẳng không cắt mặt cầu? A (1 ) : x  y  z   B ( ) : x  y  z  12  C ( ) : x  y  z   D ( ) : x  y  z   Lời Giải: Chọn C Mặt cầu ( S ) có tâm I (1; 2;1) bán kính R   2.(2)  2.1     R  (1 ) cắt (S) Thử A Ta có d ( I , (1 ))  12  (2)2  22 Thử B Ta có d (I, ( ))  Thử C Ta có d ( I , ( ))  2.1  2.( 2)   12 12  (2)  22 2.1  (2)  2.1    R  ( ) tiếp xúc với (S)  10   R  ( ) không cắt (S) 12  (2)  2 Câu 27: [2H3-2] Trong không gian với hệ tọa độ Oxy , cho mặt cầu ( S ) có tâm I (2; 3;0) tiếp xúc với mặt phẳng ( P) : x  y  z   Khi phương trình mặt cầu ( S ) là? A ( x  2)  ( y  3)2  z  B ( x  2)  ( y  3)  z  C ( x  2)  ( y  3)2  z  D ( x  2)  ( y  3)  z  Lời Giải: Chọn A 2.2  (3)  2.0   Ta có ( P ) tiếp xúc với ( S )  R  d ( I , ( P ))  22  ( 1)  22 Suy ( S ) : ( x  2)  ( y  3)  z  Câu 28: [2H3-3] Trong không gian với hệ tọa độ Oxy , cho mặt cầu ( S ) : x  ( y  2)  ( z  1)2  169 cắt mặt phẳng ( P) : x  y  z  10  theo giao tuyến đường trịn bán kính r Khi giá trị r bao nhiêu? A r  12 B r  C D r  Lời Giải: Chọn A Mặt cầu (S) có tâm I (0; 2; 1) bán kính R  13 Gọi I ' tâm đường tròn đường kính r ( I ' hình chiếu vng góc I (P) ) 2.0  2.2  (1)  10  Khi r  R  II '2  132  52  12  Suy ra: II '  d (I, (P))  2 2  1 Câu 29: [2H3-3] Trong không gian với hệ tọa độ Oxy , cho mặt cầu ( S ) : ( x  2)  ( y  1)  z  mặt phẳng ( ) : x  y  z  m  Xét mệnh đề sau: I) ( ) cắt (S) theo đường tronfkhi cbgir 10  m  II) ( ) tiếp xúc với (S) m  10 m  III) ( ) không cắt (S) m  10 m  Trong mệnh đề trên, có mệnh đề đúng? A B C D Lời Giải: Chọn D Mặt cầu (S) có tâm I (2; 1;0) bán kính R  Ta có d (I, ( ))  +) ( ) cắt (S) theo đường tròn  d (I, ( ))  R  22m 12  22  22  m4 m4   10  m   I m4   m  10 m   II m4 +) ( ) không cắt (S)  d(I, ( ))  R    m  10 m   III Suy có mệnh đề  đáp án D Câu 30: [2H3-3] Trong không gian với hệ tọa độ Oxy , cho mặt cầu (S) : x  y  z  x  y  z  14  Đường thẳng  qua tâm I mặt cầu (S) +) ( ) tiếp xúc với (S)  d (I, ( ))  R  vng ghóc với mặt phẳng ( P ) : x  y  3z   Biết  cắt (S) điểm phân biệt A, B Đặt x0  x A  xB (với x A, xB hoành độ A B ) Khi x0 bao nhiêu? A B C D Lời Giải: Chọn D x  1 t uu r uuu r  Mặt cầu ( S ) có tâm I (1; 2;0) Do   (P)  u  n(P)  (1; 3; 3)   :  y   3t (*)  z  3t  Thay (*) vào phương trình mặt cầu ta được: (1  t)  (2  3t)  (3 t)  2(1  t)  4(2  3t)  14  x  11   xA   19t  19  t  1   A  x0  x A  xB    xB     xB  Câu 31: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đương thẳng d1 : x y 1 z   2 4  x   at  d :  y  t Khi giá trị a, b c để d1 , d trùng nhau?  z  b  ct  A a  ; b  2 c  B a  1 ; b  c  C a  ; b  c  D a  1 ; b  2 c  2 Lời giải Chọn C ur uu r u1   2; 2; 4  u2   a; 1; c  uuuuuur  M 1M   1; 1; b  Cách 1: Ta có  ;  M   0;1;0   d1  M   1;0; b   d ur uu r  u1 , u2    2c  4; 2c  4a;  2a      ur uuuuuur  u1 , M 1M    2b  4; 2b  4;0  ur uu r  u1 , u2   2c   2c  a   a    Ta có d1 , d trùng  ur uuuuuur r  2b    u1 , M 1M   a    b  c    M  d (1) Cách 2: Lấy M  0;1;0   d1 N  2; 1;   d1 Khi d1 , d trùng   N  d (2) 0   at t  1 a    (1)  1  t  a    * b  c   0  b  ct b  c    2   at t  a    (2)  1  t  a    2* 4  b  ct b  c  b  c    Từ (*) (2*) suy a  ; b  c  Câu 32: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đương thẳng d1 : x y  a z 1   1  x   bt  d :  y  ct Khi để d1 , d song song điều kiện a, b c là?  z   2t  A a  ; b  c  6 B a  ; b  c  6 C a  ; b  c  D a  ; b  c  Lời giải Chọn uA r uu r Ta có u1   1;3;1 u2   b; c; 2  Để d1 / / d thì: ur uu r b  b c 2    2   +) Điều kiện cần : u1 , u2 phương  1  c  6 +) Điều kiện đủ : ur uuuuuur uuuuuur  M  1; a;1  d1  M 1M   0; a;0   u1 , M 1M    a;0; a  Cách 1: Ta có   M  1;0;1  d ur uuuuuur r Để d1 / / d u1 , M 1M    a  Vậy a  ; b  c  6 11  a 1   Cách 2: Chọn M  1;0;1  d Để d1 / / d M  d1  vơ nghiệm a  1 Vậy a  ; b  c  6 Câu 33: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đương thẳng d1 : x y 1 z   2  x   3t  d :  y   t Khi giá trị a để d1 , d cắt nhau?  z   at  A a  1 B a  C a  2 D a  Lời giải Chọn B ur uu r ur uu r  u1 , u2    3a  1; 2a  3; 7  u1   2;3;1 u2   3; 1; a     uuuuuur Cách 1: Ta có    M  0;1;0   d1  M  1;3;   d  M 1M   1; 2;  ur uu r uuuuuur  u1 , u2  M M  3a   2(2a  3)  7.2  7a  ur uu r uuuuuur Ta có d1 , d cắt  u1 , u2  M 1M   a    a  ur uuuuuur uu r Chú ý: Ở toán ta cho điều kiện u1 , M 1M  u2   x  2t '  Cách 2: Viết lại d1 :  y   3t ' Ta có d1 , d cắt hệ sau có nghiệm t t ' : z  t '   2t '   3t (1) t '   (1),(2) thay (3)    a  1  3t '   t (2)  t    t '   at (3)  Câu 34: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đương thẳng d1 : x  y z 1   1  x  a  3t  d :  y  t Khi giá để d1 , d chéo điều kiện a z  1 t  A a  13 B a  C a  13 D a  Lời giải Chọn C ur uu r ur uu r  u1 , u2    2; 5; 11 u1   2;3; 1 u2   3; 1;1    uuuuuur Ta có    M  2;0; 1  d1  M  a;0;1  d  M 1M   a  2;0;  ur uuuuuur uu r Để d1 , d chéo u1 , M M  u2  2(a  2)   11.2  2a  26   a  13 x y 1 z   Câu 35: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hai đương thẳng d1 :  m 3 x  1 t  d :  y   3t Khi giá trị m để d1 , d chéo nhau?  z  1  2t  A m  B m  C m  17 D m  17 Lời giải Chọn D ur uu r u1   1; m; 3 u2   1;3; 2  uuuuuur uu r uuuuuur M 1M   1;1;1  u2 , M 1M    5; 1; 4  Ta có    M  0;1; 2   d1  M  1; 2; 1  d uu r uuuuuur ur Để d1 , d chéo u2 , M 1M  u1  5.1  (1).m  (4).(3)   m  17 x   t  Câu 36: [2H3-2] Trong không gian với hệ tọa độ Oxyz , góc tạo đường thẳng d1 :  y  3  t z   trục hoành A 30 B 45 C 60 Lời giải D 90 Chọn B uu r r Ta có ud   1;1;0  i   1;0;0  vecto đơn vị trục hồnh Gọi  góc tạo đường uu rr ud , i uu rr 1.1  1.0  0.0  r r  2 thẳng d1 trục hồnh Khi đó: cos   cos ud , i  uu 2 ud , i        45 Câu 37: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng    : x  y  z      : 3x  y  z  A 30 Khi góc tạo hai mặt phẳng       B 45 C 60 D 90 Lời giải Chọn A uur uur uur  n   2; 1;1 n n uur uur 2.3  (1).(4)  1.5  cos  ( ), (  )   cos n , n  uur uur  Ta có  uur n n 22  12  12 32  42  52  n   3; 4;5     ( ), (  )  30   Câu 38: [2H3-2] Trong không gian với hệ tọa độ Oxyz , gọi  góc tạo đường thẳng x 1 y z  d:   mặt phẳng    : x  y  z   Khi khẳng định sau 1 đúng? 5 A cos   B cos   C sin   D sin   6 6 Lời giải Chọn A uur uu r uu r ud   2; 1;1 n ud 2.1  (1).(1)  1.2  sin   uur uu r   Ta có  uur 2 2 n ud 1 1 1 1  n   1; 1;   Câu 39: [2H3-1] Trong không gian với hệ tọa độ Oxyz , cho hai điểm A  2; 2;0  , B  1; 2;3 Khi độ dài đoạn thẳng AB bao nhiêu? A AB  10 B AB  2 C AB  26 D AB  34 Lời giải Chọn D Ta có AB  (1  (2))  (2  2)  (3  0)  34 Câu 40: [2H3-1] ( Đề minh họa – 2017) Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng  P  : 3x  y  z   điểm A  1; 2;3 Tính khoảng cách d từ A đến  P  A d  B d  29 C d  Lời giải 29 D d  Chọn C Ta có d  A,( P)   3.1  4.(2)  2.3  4 2 2 29  x y 1 z 1   mặt phẳng  P  : x  y  z   Khoảng cách   P  bao nhiêu? A B C D 3 Lời giải Chọn B 2.0   1  2.1  d  , P  d M , P  2         M 0;  1;1     Chọn Khi 22   1  2 Câu 41: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng  : Chú ý: Khi câu hỏi tính khoảng cách từ đường thẳng  tới  P  đề ln cho  //  P  nên ta khơng cần kiểm tra điều phương án đưa tồn khoảng cách ( khác ) nên chắn  //  P  Câu 42: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng song song  P  : x  y  z  13  mặt phẳng  Q  : x  y  z   Khoảng cách h hai mặt phẳng  P   Q  bao nhiêu? A h  C h  Lời giải B h  D h  14 Chọn D Cách 1: Chọn M  13;0;0    P  , h  d   P  ,  Q    d  M ,  Q    Cách 2: Ta có h  d   P  ,  Q    13   1 12   2    2  2  13  2.0  2.0  12   2    2  2  14 14 Chú ý: Ở cách ta sử dụng công thức sau : Nếu  P  : ax  by  cz  d   Q  : ax  by  cz  e  h  d   P  ,  Q    d e a  b2  c Câu 43: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho điểm M  1;5;  1 đường thẳng x  y 1 z :   Khi khoảng cách h từ điểm M đến đường thẳng  bao nhiêu? 3 A h  B h  C h  17 D h  26 Lời giải Chọn A uu r Cách 1: Ta có u   1; 2; 3 Gọi H hình chiếu vng góc M  suy uuuur H  2  t;1  2t; 3t     MH  3  t ; 4  2t ;1  3t  uuuur r Vì MH u   3  t   4  2t     3t    t   H  1;3; 3  Khi h  d  M ,    MH  22  22  2  uur uuuu r uu r uuuu r Cách 2: Ta có u   1; 2; 3 N  2;1;0     MN  3; 4;1  u , MN    10;8;  uu r uuuu r u , MN   10   82  22    2 uu r Khi h  d  M ,    2 u      3    Cách 3: H    H  2  t;1  2t ; 3t   MH   t  3       3t  1  14t  28t  26  14  t  1  12  12 2 2 Khi h  d  M ,    MH  12   x   4t  Câu 44: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng 1 :  y   t  z  3  t  x  y 1 z   Khoảng cách hai đường thẳng 1  bao nhiêu? 1 A B C D Lời giải Chọn ur C uu r Do u1   4; 1;1 phương với u2   4;1; 1 phương án cho kết khác suy 2 : 1 ,  song song với uu r uuuu r uuuu r  M  1; 2; 3  1 Ta có  , suy MN   3; 3;3  u2 , MN    0; 9; 9   N  2; 1;0    uu r uuuu r 2 u2 , MN  02   9    9     3 uu r Khi d  1 ,    d  M ,    2 u         Câu 45: [2H3-3] Trong không gian với hệ tọa độ Oxyz , khoảng cách h hai đường thẳng x y  z 1 x 1 y  z  1 :      : bao nhiêu? 1 1 1 2 2 A h  B h  C h  D h  3 Lời giải Chọn B ur uu r Do u1   2; 1; 1 không phương với u2   3; 1; 2  kết có tồn h suy 1 ,  chéo ur uu r  u1 , u2    1;1;1  M  0; 4;1  1  M  1; 2; 1     r Ta có  ur  uu , suy  uuuuuur u1   2; 1; 1 u2   3; 1; 2   M 1M   1; 2; 2  ur uu r uuuuuur u1 , u2  M 1M 1.1   2    2      Khi h  d  1 ,    ur uu r 2 u1 , u2      Câu 46: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A  1;  2;3 , B  2; 1;1 , C  1;1;0  , D  1; 2; 1 Khoảng cách hai đường thẳng AB CD bao nhiêu? 10 A B C D 11 11 11 11 Lời giải Chọn C uuu r uuur uuu r uuur uuur Ta có AB   1;1; 2  , CD   2;1; 1 , AC   2;3; 3 , suy  AB, CD    1; 3; 1 Suy uuu r uuur uuur  AB, CD  AC  2   3.3   3   d  AB, CD     uuu r uuur 2  AB, CD  11     Câu 47: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A  0;1;1 , B  1; 2;0  , C  2;1; 1 Diện tích tam giác ABC bao nhiêu? A 22 B 22 C 22 D 11 Lời giải Chọn A uuur  AB   1; 3; 1 Ta có  uuur  AC   2;0; 2  uuu r uuur uuu r uuur    6   AB, AC    6; 4; 6   S ABC   AB, AC    22    2 Câu 48: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho tứ diện ABCD có A  0; 1;1 , B  2;1;1 , C  1;0;0  , D  1;1;1 Thể tích V tứ diện ABCD bao nhiêu? 1 A V  B V  C V  D V  Lời giải Chọn D uuu r uuur uuur Ta có AB   2; 2;0  , AC   1;1; 1 , AD   1; 2;0  uuu r uuur r uuur uuur 1 uuu Suy  AB, AC    2; 2;0   V  VABCD   AB, AC  AD  2.1  2.2   6 Câu 49: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hình hộp ABCD ABC D có A  1;0;  , B  1;1; 1 , D  0;1;1 , A  2; 1;0  Thể tích V khối hình hộp ABCD ABC D A V  B V  C V  Lời giải D V  Chọn C uuur uuur uuur Ta có AD   2;1; 3 , AD   1;1; 1 , AA   3; 1; 2  uuu r uuur uuu r uuur uuur Suy  AB, AD    2; 1;1  V  VABCD ABC D   AB, AD  AA  2.3   1   2   Câu 50: [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho hình chóp S ABCD có S  1;3; 1 , A  1;0;0  , B  0; 2;0  , C  0;0;  Độ dài đường cao hình chóp S ABCD 21 21 A B C D 21 13 Lời giải Chọn D x y z    4x  y  z   Cách 1: Phương trình mặt phẳng theo đoạn chắn  ABC  :  2 4.1  2.3   21   Khi đường cao hình chóp S ABCD : h  d  S ,  ABC    2 21  1 uur uur uuu r uuu r uuur Cách 2: Ta có SA   0; 3;1 , SB   1; 5;1 , SC   1;3; 5  AB   1; 2;0  , AC   1;0;  r uur uur uur uur uuu   SA, SB    2; 1; 3  SA, SB  SC 2.1  1.3   5  3V 21    h  S ABC  uuu   Suy  uuu r uuur r u u u r 2 SABC 4 2  AB, AC    AB, AC    8; 4; 2   2 ... [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A  1;  2;3 , B  2; ? ?1; 1 , 2 : C  ? ?1; 1;0  , D  1; 2; ? ?1? ?? Khoảng cách hai đường thẳng AB CD bao nhiêu? 10 A B C D 11 11 11 11 ... [2H3-3] Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A  1;  2;3 , B  2; ? ?1; 1 , C  ? ?1; 1;0  , D  1; 2; ? ?1? ?? Khoảng cách hai đường thẳng AB CD bao nhiêu? 10 A B C D 11 11 11 11 Lời... z ? ?1   ? ?1 D Chéo Chọn D ur uu r ur uu r  u1   ? ?1; 3;  u2   ? ?1; 2 ;1? ??  u1 , u2    ? ?1; ? ?1; 1   uuuuuur Ta có    M  0; 2 ;1? ??  d1  M  1; 2;0   d  M 1M   1; 4; ? ?1? ??

Ngày đăng: 18/10/2022, 17:30

HÌNH ẢNH LIÊN QUAN

Câu 7: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M 1; 2;5 . Khi đó tọa độ hình chiếu vng góc M' của M trên mặt phẳng  Oxy là  - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
u 7: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M 1; 2;5 . Khi đó tọa độ hình chiếu vng góc M' của M trên mặt phẳng Oxy là (Trang 1)
Câu 13: [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD ABCD. '' biết - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
u 13: [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD ABCD. '' biết (Trang 2)
Câu 49: [2H3-3] . Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD ABCD.  có A 1;0; , - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
u 49: [2H3-3] . Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD ABCD.  có A 1;0; , (Trang 6)
B D 0;1;1 , A  2;1;0 . Thể tích V của khối hình hộp ABCD ABCD.  là - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
;1;1 , A  2;1;0 . Thể tích V của khối hình hộp ABCD ABCD.  là (Trang 6)
ABCD là hình bình hành 11 21 1 1;1;4  - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
l à hình bình hành 11 21 1 1;1;4  (Trang 7)
Câu 8: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M 2;1;3 . Khi đó tọa độ hình chiếu vng góc M' của M trên mặt phẳng Ox là  - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
u 8: [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M 2;1;3 . Khi đó tọa độ hình chiếu vng góc M' của M trên mặt phẳng Ox là (Trang 8)
ABCD là hình bình hành - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
l à hình bình hành (Trang 9)
Gọi 'I là tâm của đường trịn đường kính 'I là hình chiếu vng góc củ aI trên (P)) - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
i 'I là tâm của đường trịn đường kính 'I là hình chiếu vng góc củ aI trên (P)) (Trang 14)
Cách 1: Ta có uuur  1; 2;3 . Gọi H là hình chiếu vng góc củ aM trên  suy ra - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
ch 1: Ta có uuur  1; 2;3 . Gọi H là hình chiếu vng góc củ aM trên  suy ra (Trang 18)
Câu 49: [2H3-3] . Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD ABCD.  có A 1;0; , - Bài 1  bài tập có đáp án chi tiết về mặt phẳng oxyz trong không gian
u 49: [2H3-3] . Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD ABCD.  có A 1;0; , (Trang 20)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w