1. Trang chủ
  2. » Ngoại Ngữ

No-Till Vegetable Production Non-Chemical Methods of Cover Crop Suppression and Weed Control

24 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

No-Till Vegetable Production: Non-Chemical Methods of Cover Crop Suppression and Weed Control by Steve Diver Appropriate Technology Transfer for Rural Areas — ATTRA Fayetteville, Arkansas Last Updated April, 2002 Introduction No-till systems are gaining increased attention as a practical way to raise vegetables and improve soil quality at the same time Growing and managing cover crops to provide killed mulches and living mulches is an important component of these production systems The combination of organic mulches on the soil surface and reduction of tillage have numerous benefits to soil biology, soil structure, and soil health In conventional no-till vegetable production, herbicides are commonly used to kill cover crops and create a no-till mulch, and for follow-up post-emergent weed control Herbicides a good job of controlling vegetation and they are a major reason no-till agriculture has been so successful However, sustainable agriculture has a goal of reducing chemical inputs, instead relying on cultural practices, biological processes, and naturally-derived products Secondly, herbicides are simply not allowed in certified organic vegetable production So the question arises, how can farmers get into no-till production without herbicides? The purpose of this document is to provide resources on no-till vegetable production in general, and secondly, to address non-chemical options for cover crop suppression and weed control A companion ATTRA publication, Pursuing Conservation Tillage Systems for Organic Crop Production, may be referred to for a more detailed review of the cover crop and tillage techniques described in this publication It also features a selection of research abstracts that summarize efforts underway in different regions of the United States Conservation Tillage No-till vegetable production is a form of conservation tillage Conservation tillage is the generic term that describes reduced-tillage cropping systems like no-till, strip-till, mulchtill and ridge-till In agronomic crop production, for example corn, soybeans, cotton, and peanuts, crop residue management to control soil erosion is the primary goal of conservation tillage For example, technical specifications for conservation tillage state that crop residues should remain on 30% of the soil surface These residues protect the soil from erosion and by wind and water Conservation tillage also reduces the number of equipment passes (e.g., plow, disc, harrow) required to prepare a seedbed and thus saves fuel and reduces soil disturbance and compaction The operating principle of conservation tillage is simply to minimize disturbance of the soil Maintenance of crop residues, especially killed mulches from cover crops, is key to proper management of these systems Some benefits of a no-till organic mulch include moisture conservation, weed suppression, erosion control, increased soil organic matter, food and habitat for soil organisms, and, in the case of a legume, biologically fixed nitrogen Conservation agriculture is another term used to describe a systems approach to agriculture that focuses on minimal soil disturbance, cover crops, and crop residues Conservation agriculture refers to several practices which permit the management of the soil for agrarian uses, altering its composition, structure and natural biodiversity as little as possible and defending it from degradation processes (e.g soil erosion and compaction) Direct sowing (non-tillage), reduced tillage (minimum tillage), non- or surface-incorporation of crop residues and establishment of cover crops in perennial woody crops (of spontaneous vegetation or by sowing appropriate species) or in between successive annual crops, are some of the techniques which constitute conservation agriculture Generally, conservation agriculture includes any practice which reduces, changes or eliminates soil tillage and avoids residue burning to maintain enough surface residue throughout the year Source: Conservation Agriculture: For a Better Environment European Conservation Agriculture Federation http://www.ecaf.org/English/englis.htm For background information on the value and importance of conservation tillage on soil health, one book in particular may be viewed as essential reading, Stubble Over the Soil by Carlos Crovetto Lamarca (1) Focusing on the vital role of reduced tillage and plant residues to improve soil quality, Lamarca provides an interesting and practical review of this revolutionary shift in agriculture His 245-page book is filled with color photos and educational illustrations of no-till agriculture, agricultural implements, cover crops, mulches, crop residues, and soil quality improvements Larmarca is an agronomist with Chequen farm in Chile, a famous site of no-till agriculture in South America He has played an instrumental role in no-till agriculture in Venezuela, Columbia, Argentina, Brazil, Uruguay, Bolivia, Mexico, the United Kingdom, and the U.S Managing Cover Crops and Weeds Through Mechanical Suppression Cover crops are an integral component of conservation tillage cropping systems A typical system is fall establishment of a winter cover crop, followed by herbicide kill prior to spring planting The killed residue that results is essentially an organic mulch grown in place While herbicides are commonly used to manage cover crops, non-chemical alternatives exist, though they are less widely known In keeping with ATTRA’s mandate to transfer technology on low-chemical-input farming methods, and to support the information needs of farmers who want to reduce their use of herbicides or raise certified organic crops, emphasis is placed on non-chemical options to suppress cover crops In addition, while the organic mulch that results from cover crops—whether killed by chemical or mechanical means—can provide fairly good weed suppression for the first 30-45 days after kill-down, there will always be additional weeds that sprout through the mulch; therefore, follow-up weed control methods are important Non-chemical methods of cover crop suppression that can be integrated with no-till vegetable production include: strip tillage, mowing, rolling and crimping (also known as roll chopping), undercutting, and thermal weed control (flame, steam, infra-red) Based on extensive research and field experience, growers looking into no-till vegetable production can proceed with a high degree of confidence that strip tillage, mowing, roll chopping, and undercutting are solid performers However, further work is needed to define the commercial viability and affordability of the thermal control techniques in terms of knock-down cover crop suppression To handle follow-up weed control for weeds emerging through the killed mulch, supplemental weed control options include: high-residue cultivators, weeder geese, chicken tractors, hand hoeing, and spot-spray steam weed control High-residue cultivators are widely used in agronomic no-till crop production, and would be an affordable option on larger-scale no-till vegetable farms raising sweet corn, green beans, and related row crops Weeder geese, chicken tractors, and hand hoeing also have a proven track record, but are geared to smaller-scale market farming [See Farmer Profiles] Spot-spray steam weed control is a technique the author feels has good potential as an appropriate technology in association with organic no-till mulch While commercial steam equipment is available to control vegetation it is extremely expensive and targeted to other market segments (e.g., Aqua Heat for large-scale orchards, Waipuna for municipal parks and non-croplands) Thus, steam needs an infusion of on-farm technology development Infra-red thermal weeding equipment, on the other hand, looks affordable and practical Trials in association with organic no-till mulches are needed to ascertain how well it actually works A companion ATTRA publication, Flame Weeding for Vegetables, provides essential details and equipment suppliers for flame and infra-red weeding systems Where is no-till vegetable production taking place, and who are some of the innovative farmers and researchers implementing this technology? What are some examples of nonchemical cover crop suppression? These are the focus of the remaining sections Focus on Cover Crops A cover crop is any crop grown to provide soil cover, regardless of whether it is later incorporated In no-till farming, cover crops need to match the growing cycle of the cash crop, be susceptible to chemical or mechanical killing techniques, and provide a reasonably thick mulch Common plants raised as cover crops: Cereal grains: rye, wheat, barley, oats Grasses: sorghum sudan, millet, annual ryegrass Forage legumes: clover, vetch, medics Grain legumes: cow pea, soybean, field peas Broadleaves: buckwheat, rapeseed, mustard Resources on Cover Crops: Managing Cover Crops Profitably, 2nd Edition SAN Handbook No http://www.sare.org/handbook/mccp2/index.htm Overview of Cover Crops and Green Manures ATTRA http://attra.ncat.org/attra-pub/covercrop.html Converting the Cover Crop Into an Organic Mulch Three methods have emerged as non-chemical approaches to knocking down and killing cover crops to create a no-till mulch: mowing, rolling , and undercutting Flail mowers are viewed as ideal mow-down equipment, but small-scale farmers are known to employ rotary mowers (commonly known as a "brush hog") and even string weeders (commonly known as a "weed eater") to chop down cover crops Obviously, the number of acres in production makes a big difference in terms of which piece of equipment is most affordable For example, the cost of a 4-6 foot wide rotary mower starts at $400-600 while a flail mower starts at about $2,000 The primary advantage of a high-speeed flail mower is that it can chop cover crops down to about an inch above the ground, shredding the material and leaving the mulch in place Rotary mowers clip higher and tend to throw the vegetative residue over a wider area However, a market gardener in Georgia had a local machine shop weld metal strips onto the back end of his rotary mower so that it catches and distributes the cover crop mulch on top of his production beds Thus, growers are known to make with what they have and adapt Timing is important; hairy vetch should be mowed when it has already begun flowering; mowing of rye should also be delayed until flowering (when the anthers are shedding pollen) When annual cover crops are mowed at the optimum time, the root system senesces and dies Emphasis is placed on optimum timing because cover crops mowed too early will re-sprout and start to compete with the vegetable crop like a weed Vetch, for example, is notorious for re-sprouting when it is mowed too early Mechanical roller-crimpers and rolling stalk-choppers have evolved as a means to roll down and crimp cover crops a technique known as rolling or roll chopping These are heavy-duty drum rollers with horizontal-welded blunt-steel strips When they are pulled through the field they crush and crimp the cover crop, which leaves residue lying flat on the soil surface and discourages regrowth The rolling stalk chopper is an implement used in field corn production, modified and adapted to no-till vegetable production Steve Groff, a no-till vegetable farmer in Lancaster County, Pennsylvania, is probably the best known example of a no-till vegetable farmer using a rolling stalk chopper to manage cover crops like rye-vetch Mechanical roller crimpers, on the other hand, were specially developed for cover crop management in no-till production Millions of acres of conservation agriculture in Brazil and Paraguay are managed with these mechanical roller crimpers Researchers in Alabama showed that rolling down cereal grains like winter rye, wheat, and black oats was most effective during the early milk stage, which occurs after flowering (anthesis) and prior to the soft dough stage (grain formation) (2) Mowing at this stage killed cover crops just as well as herbicides The undercutter-roller is a specialized implement developed at Ohio State University, designed to slice through the soil and sever cover crop roots underground It consists of a V-plow sweep blade mounted on a toolbar, followed by a rolling harrow to crimp and roll the cover crop residue at it falls on the ground Undercutting suppressed weeds in trials better than either a flail mower or sicklebar mower (3-4) Whereas mowing cuts the cover crop residue into little pieces and promotes faster breakdown, the undercut mulch is thicker and better able to prevent light penetration to the soil surface, which results in fewer weeds The residue also remains on the soil surface longer Materials to build one of these units costs around $800 An schematic diagram of the undercutter toolbar was published in American Journal of Alternative Agriculture (4), and it provides sufficient details to reproduce one of these setups in a local machine shop Dr Nancy Creamer, who led team that developed the undercutter system at Ohio State, is now located at North Carolina State University Dr Creamer continues to work on tillage systems integrated with cover crops in association with vegetable production, and can provide details on modifications since made to the undercutter implement Contact: Dr Nancy Creamer Organic Farming Systems Campus Box 7609 North Carolina State University Raleigh, NC 27695-7609 919-515-9447 919-515-2505 Fax nancy_creamer@ncsu.edu http://www.ncsu.edu/organic_farming_systems/ The USDA Mow-Kill System of No-Till Vegetable Production USDA researchers in Beltsville, MD demonstrated that no-till tomatoes transplanted into a hairy vetch mulch produce excellent yields (5-6) Since hairy vetch is a winter annual legume, it was planted in the fall on pre-formed beds A Brillion™ seeder was used to establish the cover crop, ensuring good seed-to-soil contact, germination, and establishment In the spring the vetch was flail-mowed to about an inch high Tomatoes were transplanted into the mow-killed mulch immediately following the mowing operation Transplanting was done with minimal disturbance to the soil The researchers compared vetch mulch plots with plastic mulch, paper mulch, and bare ground Yields from plants grown under the vetch mulch averaged more than 45 tons per acre, trailed by 35 tons for plastic mulch and 34 tons for paper mulch Control plots managed as bare ground averaged 19 tons per acre An important benefit of the vetch mulch was weed control achieved early in the growing season No pre-plant herbicides were necessary Weeds emerging later in the growing season were controlled by application of a contact herbicide The results of this USDA research are summarized in the USDA Farmers' Bulletin Sustainable Production of Fresh-Market Tomatoes with Organic Mulches For further information or technical assistance, contact: Dr Aref A Abdul-Baki USDA-ARS Sustainable Agricultural Systems Laboratory BLDG 010A, Room 213, BARC-West Beltsville, MD 20705 301-504-5057 FAX: 301-504-6491 E-mail: abdul-ba@ba.ars.usda.gov http://www.barc.usda.gov/anri/sasl/aab.html http://www.barc.usda.gov/anri/sasl/covercrops.html Resource: Sustainable Production of Fresh-Market Tomatoes with Organic Mulches 1997 By Aref Abdul-Baki and John R Teasdale USDA Farmers' Bulletin No 2279 23 p http://www.ars.usda.gov/is/np/tomatoes.html Farmer Profiles: Doug Walton and Alex Hitt In Oklahoma, Doug Walton manages a 1-acre organic market garden and sells fresh produce at the Muskogee Farmers' Market Walton plants cover crops on top of raised production beds, and uses a string weeder with a plastic head attachment to cut down the cover crops and create a no-till mulch Hand raking and speading of mulches after weed eating is a necessary chore, but this type of intensive hand labor is a common feature of biointensive market farming and it fits his scale of production In conjunction with USDA-ARS and Oklahoma State University, Walton is also conducting research on summer cover crops and biculture cover crop mixes, funded through the SARE farmer research grant program In North Carolina, Alex Hitt is a well-known organic market gardener who sells fresh produce at the Raleigh Farmers' Market Following the mow-kill guidelines established by USDA, Hitt uses a flail mower to mechanically kill a rye-vetch cover crop mix and create a no-till mulch for tomatoes Weeds that emerge through the mulch are simply hand weeded The mulch does a good job of weed suppression, and the tomatoes grow a thick canopy of leaves that helps shade out weeds, so hand weeding is not too cumbersome More on the Rolling Technique: Mechanical Kill of Cover Crop Prior to the advent of the mechanical roller crimper, USDA researchers in Mississippi set disc coulters at an angle to mechanically kill hairy vetch, referring to this technique as rolling They learned that the most effective time to this was in the seed formation growth phase for the legume (mid- to late-April in Mississippi), or when stem lengths along the ground exceeded 15 inches (7) More recently, they have also modified an implement used in Mississippi Delta cotton production known as a "do all." To obtain articles and updates, contact: Dr Seth Dabney USDA-ARS National Sedimentation Laboratory P.O Box 1157 Oxford, MS 38655 662-232-2975 Fax: 662-232-2915 E-mail: sdabney@ars.usda.gov http://www.sedlab.olemiss.edu/personal_pages/Dabney.html Resource: Managing Cover Crops and Green Manures Seth Dabney, USDA-ARS National Sedimentation Laboratory http://www.sedlab.olemiss.edu/uep_unit/projects/cover_crops/index.html Researchers with USDA and Virginia Polytechnic Institute demonstrated the feasibility of planting vegetables (broccoli and cabbage) into a soybean cover crop that is cut or “rolled” down to provide a no-till mulch ‘Devine’, a forage soybean variety, was bred as a hay crop and therefore produces lush growth More biomass is desirable because it translates to higher nitrogen fixation and a thicker mulch The thick thatch that results helps keep down weeds, holds moisture, protects the soil from fall rains, and enriches the soil with organic matter In addition, as the soybean mulch decays, it releases nitrogen which feeds the vegetable crop In research trials, yields from no-till plots were comparable to those from conventional plots where vegetables were planted into bare soil To ensure uniform plant stand establishment, the researchers started with vegetable transplants and set them out with a multi-row no-till transplanter Soybeans take about 60 days to grow and start flowering, a period which coincides with optimum plowdown as a cover crop Thus, spring-planted (April 15-May 15) “hay beans” would be available as a summer mulch (June 15-July 15) Summer-planted (July 1-August 1) “hay beans” would be available as a fall mulch (September 1-October 1) More recently, Dr Aref A Abdul-Baki has grown fond of “Iron and Clay” cowpeas as a summer cover crop In the 1997 growing season, which featured one of the worst droughts Maryland experienced in years, ‘Iron and Clay’ cowpeas withstood drouthy conditions better than ‘Devine’ soybeans For further information and details, contact: Dr Aref A Abdul-Baki USDA-ARS Sustainable Agricultural Systems Laboratory BLDG 010A, Room 213, BARC-West Beltsville, MD 20705 301-504-5057 FAX: 301-504-6491 E-mail: abdul-ba@ba.ars.usda.gov http://www.barc.usda.gov/anri/sasl/aab.html http://www.barc.usda.gov/anri/sasl/covercrops.html Dr Ron Morse Department of Horticulture Virginia Polytechnic Institute and State University Blacksburg, VA 24061 540-231-6724 Fax: 540-231-3083 E-mail: morser@vt.edu Strip Tillage Strip tillage is a specialized form of conservation tillage that is particularly well suited to vegetable crops A common method is to establish a winter cover crop in the fall; in the following spring these cover crops are “strip tilled” with a multi-row tillage implement such as a multi-vator or a multiple-head roto-tiller The result is a field with narrow strips of exposed soil that vegetables are planted into, and broader strips of cover crop vegetation that remain as a living mulch between the rows Depending on the specific cropping system, the cover crops in the alleyway are eventually killed (usually with herbicides) to avoid competition, or left undisturbed as a living mulch However, living mulch left in the field may require additional vegetative suppression to avoid competition with the main vegetable crop For example, partial tillage has been shown to work well with white clover Dr Sharad Phatak, a researcher at the University of Georgia, has pioneered innovative methods of strip-tillage vegetable production in association with cover crops in the southeastern United States To obtain articles and updates, contact: Dr Sharad Phatak University of Georgia, Coastal Plain Experiment Station 100 Horticulture Building Tifton, Georgia 31793-0748 912-386-3901 Fax: 912-386-3356 E-mail: phatak@tifton.cpes.peachnet.edu http://www.uga.edu/~hort/FacSCP.html http://www.uga.edu/~hort/FacSCP2.html Dr Greg Hoyt, a researcher at North Carolina State University, has worked with cover crops and strip tillage systems appropriate for vegetables and tobacco in the Appalachian mountain region To obtain articles and updates, contact: Dr Greg Hoyt North Carolina State University Mountain Horticultural Crops Research & Extension Center 2016 Fanning Bridge Rd Fletcher, NC 28732 828-654-8590 greg_hoyt@ncsu.edu http://fletcher.ces.state.nc.us/staff/gdhoyt/ Dr John Luna, project leader of the Integrated Farming Systems group at Oregon State University, has helped develop strip tillage systems appropriate for the Pacific Northwest The strip tillage reports on their web page at Oregon State provides details on cover cropping systems, equipment, and related cultural practices This is an excellent website on strip-tillage vegetable production, including field trials with cover crops See: Strip Tillage Vegetable Production Systems http://ifs.orst.edu/strptil.html High Residue Cultivators The aim of conservation tillage is to maintain sufficient crop residues to cover at least 30% of the soil surface after planting Since the action of post-plant cultivation incorporates crop residues and reduces surface protection, herbicides are preferred over mechanical cultivation to obtain adequate weed control In the instance where mechanical cultivation is still desirable as a form of weed control—such as in reduced or zero-use herbicide cropping systems, or under dry conditions when herbicides are not effective—high-residue cultivators are an option Conservation tillage cultivators look much like conventional cultivators However, instead of three to five shovels per row, high-residue cultivators usually bear a single shank that supports a wide sweep or horizontal disk A coulter is mounted in front of the shank to cut through residue Whereas regular cultivators cut weeds and “throw” soil and crop residues, a conservation tillage sweep is designed to cut weeds and allow soil and residues to “float” over the sweep as it passes through the soil In vegetable production, high-residue cultivation may be appropriate for direct-seeded row crops like sweet corn, green beans, and potatoes Resource: Cultivators for No-till and Ridge-till Iowa State University http://www.ae.iastate.edu/tillage/AE-3055.txt Thermal Vegetation Control: Flame, Steam, Infra-Red Several sources have reported that flamers—especially hooded flamers— are used in Europe as a method to kill and suppress cover crops prior to planting Since there is little experience with flamers in the U.S as a means of cover crop suppression, it should be viewed as a potentially useful but experimental method Ron Jones of Thermal Weed Control Systems, Inc in Neillsville, WI, a manufacturer of hooded flamers, reports they are being used by vegetable growers in the U.S to fry lettuce residues between sequential crops, thereby reducing incidence of disease Flamers are a common non-chemical weed control technique in organic vegetable production, mainly as a stale seedbed technique to control the first flush of weeds in the spring (i.e., beds are flamed prior to planting the vegetables) Flaming can also be used as a post-emergence treatment in certain vegetable crops like sweet corn, potatoes, and onions Thus, while flaming equipment is available and experience supports its use to control preand post-emerge weeds, trials are necessary to determine how well a flaming treatment will, for example, suppress cover crops in a vegetative stage of growth It is quite possible that flaming will suppress certain cover crops and not others Flaming the dried residues of a killed winter cover crop mulch may result in a fire hazard Thus, flaming is suggested as a means to kill cover crops, but not as a method for post-emergent weed control in association with no-till organic mulches Steam is an old form of thermal weed control that is regaining popularity after several decades of little use Steam is very effective as a non-chemical means of vegetation control, and can be used to kill live stands of cover crops and turfgrass sod Aqua Heat and Waipuna are the two main companies supplying steam weeding equipment, and both offer patented technology that improves steam's performance However, steam equipment is expensive and bulky and has not been developed with row crop farming mind The Aqua Heat equipment is geared to large-scale orchards and vineyards, and the Waipuna equipment is geared to municipal and institutional use in non-cropland areas such as pavements and fence rows Innovative farmers may find a way to devise a portable steamer Such a device seems an ideal match to no-till organic vegetable production, and could be used as a knock-down treatment to create a no-till mulch or as a spot-spray treatment for post-emergent weeds Infra-red weeders have been used in Europe for several years, and in 2001 a North American distributor started carrying this equipment An infra-red weeder consists of a propane flamer that heats a ceramic tile; these are mounted on a frame with wheels, similar to a wheel hoe; radiant heat from the ceramic tile, rather than flame itself, sears the weeds Thus, an infra-red weeder could be an ideal tool to enable post-emergent weed control in organic no-till Field trials are needed Two resources on thermal weed control are provided below Flame Weeding Resource List: Literature, Web Links, Videos, Equipment and Supplies ATTRA http://ncatark.uark.edu/~steved/flame-weeding-RL.doc FOREVERGREEN™ Chemical Free Weed Control http://www.chemfree-weedcontrol.com/ Matching Cover Crops to No-Till Vegetable Production Timing is a critical factor in vegetable production Vegetable farmers like to plant as soon as possible in the Spring with an aim to harvest early and sell into market windows that yield a premium price In addition, farmers that live in hot, dry regions plant early to take advantage of spring rains and cooler temperatures On the other hand, no-till production relies on cover crop maturation to occur prior to mechanical disturbance by mowing or roll chopping Therefore, matching a cover crop to the growing cycle of the vegetable crop is very important For example, in the MidSouth (Arkansas-Oklahoma region where the author lives) the flowering cycle of crimson clover corresponds fairly reliably to the average frost-free date, which is April 15th Thus, crimson clover would be a good selection for warm-season transplant crops like tomatoes, peppers, and summer squash, or it could be direct-seeded to sweet corn, green beans, or watermelon On the other hand, hairy vetch blooms 30 days later than crimson clover Thus, vetch is better suited to hot-loving crops like eggplant and okra, as well as second-round plantings of tomatoes and peppers Bigflower vetch is a desirable species because it flowers about two weeks earlier than hairy vetch Winter Annual Cover Crops + Warm-Season Vegetables: *Crimson clover, Hairy vetch, Winter wheat, Rye *Establish cover crops in September-October *Rapid cover crop growth in April-May, flowering begins *Mow or crimp cover crops in April-May *Plant tomatoes, peppers, summer squash, green beans into no-till mulch in April-May Summer Annual Cover Crops + Cool-Season Vegetables: *Forage soybeans, Forage cowpeas, millet, buckwheat *Establish cover crops in June-July *Rapid cover crop growth in August-September, flowering begins *Mow or crimp cover crops in August-September *Plant broccoli, cauliflower, cabbage into no-till mulch in August, September General Observations about Vetch as a No-Till Mulch The United States is a large country with lots of different growing climates and soil types These differences in climatic growing conditions affect the way cover crops perform in different regions In light of these differences, it may be helpful to mention a few universal points about hairy vetch as a no-till mulch First, to obtain a no-till legume mulch for spring-planted vegetables, vetch is treated as a winter annual legume, meaning it is planted in the fall and matures in the following spring Thus, successful stand establishment—seeding method, legume inoculation, and sufficient soil moisture—in the preceding autumn is rather important Secondly, viable options for killing the vetch, whether chemical or non-chemical, need to be identified and implemented Factors to consider when planting warm-season vegetables (tomatoes, cucurbits, eggplant, peppers) into a no-till hairy vetch mulch:   Good stand establishment of the cover crop is critical o Plant vetch seed early in the fall for optimum growth  Universal Rule: Legumes, forages, and cover crops that are planted early in the fall produce more spring growth (biomass) than those planted late in the fall o Good seed-soil contact is very important  Drilling produces a superior stand in comparison to broadcasting seed  Broadcasting seed (ideally followed by harrowing or cultivating) is a common way to “overseed” a legume into a standing crop o Plant seed when soil moisture is optimum, or irrigate o Inoculate legume seed to increase nitrogen fixation In the Mid-South (Arkansas, Oklahoma, Texas, Louisiana, Mississippi, Tennesse) vetch flowers about 30 to 45 days after the last frost-free date in the spring o Early-market tomatoes are usually planted on the last frost-free date o Hairy vetch matures in late spring  As vetch grows longer, it produces more nitrogen  As vetch grows longer, it produces more biomass  As vetch grows longer, the resulting mulch will be denser  As vetch grows longer, it is easier to kill by mowing o Thus, no-till vetch is better suited to late-planted warm-season vegetable crops o Early-market vegetables are better adapted to plastic mulch o One way to bring these two events—vetch flowering and optimum tomato planting dates—in closer proximity to one another is the use of an early maturing type of vetch  As an example, bigflower vetch is known to flower to weeks earlier than hairy vetch However, the seed of bigflower vetch is more expensive and less commonly available To assist growers with background information on "when" plants bloom, sequence of bloom, and related ecological features of phenology, ATTRA compiled a resource list at the following website It would be nice to have a guide that shows blooming periods for different cover crops in each region of the country, but nothing like this has yet been developed See: Phenology Web Links: Sequence of Bloom, Floral Calendars, What's in Bloom http://www.attra.org/attra-pub/phenology.html No-Till Transplanters Dr Ron Morse, a horticulture specialist at Virginia Polytechnic Institute, developed a notill transplanter for cabbage production in the mountains of southwest Virginia For information and plans, contact: Dr Ron Morse Department of Horticulture 306-C Saunders Hall Virginia Polytechnic Institute & State University Blacksburg, VA 24061-0327 540-231-6724 donna@vt.edu Several transplanters used in commercial vegetable production can also be adapted to notill transplantation The following dealers can provide assistance Contact: Mechanical Transplanters Co 1150 S Central Ave Holland, MI 49422-1708 616-396-8738 616-396-3619 Fax 800-757-5268 mtc@mechanicaltransplanter.com http://www.mechanicaltransplanter.com Market Farm Implements [Ralph Moore] 257 Fawn Hollow Road Friedans, PA 15541 814-443-1931 http://www.marketfarm.com/ Holland Transplanter Co 510 E 16th, P.O Box 1527 Holland, MI 49423-1527 616-392-3579 616-392-7996 Fax 800-275-4482 hldtrans@iserv.net http://www.transplanter.com Farmer Profile: Steve Groff, No-Till Vegetable Farmer Steve Groff is a no-till vegetable farmer from Pennsylvania who raises about 175 acres of mixed vegetables (tomatoes, pumpkins, & others) and field crops (corn, soybeans, small grains, alfalfa) on hilly land in Lancaster County Groff says that no-till farming, cover crops, effective crop rotations, and reduced herbicides and pesticides are the foundation of what he calls “new generation cropping systems.” In the early 1980s Groff brought no-till vegetable production to his farm, drawing on the technical expertise of people like Dr Ron Morse at VPI and Dr Aref Abdul-Baki at USDA Groff uses specialized equipment, including a rolling stalk chopper to knock down and crimp the cover crops, thus allowing him to plant vegetables into a killed cover crop mulch This cropping system requires post-emergent herbicides, but at greatly reduced rates over conventional production systems After many years of no-till production the soils are very mellow and easy to plant into The following notes from seminars and conversations with Groff provide a brief introduction to his no-till vegetable farming practices:        Winter cover crops: rye, hairy vetch, and clover o Spring crops planted into no-till mulch include: vegetables, corn, soybeans Groff initially tried mowing rye, but found out that timing is critical: o When rye is mowed at heading, it will naturally die out o When rye is mowed prior to heading, it will re-sprout and compete like a weed o In addition, mowing chews up the cover crop residue which promotes faster breakdown of the mulch thatch Rolling is an alternative to mowing Groff uses a Buffalo stalk chopper to roll down and crimp the rye-vetch mix The no-till mulch controls weeds fairly well, but herbicides are still needed as an adjunct to mulch-based weed control Summer cover crops: German millet and forage soybeans o Fall crops planted into no-till mulch include: broccoli In addition to soil improvement and weed suppression, the mulch enhances insect and disease control o Colorado potato beetles are less severe in mulched fields, the result of natural biological control by beneficial insects who inhabit the mulch o Onset of early blight on tomatoes was delayed on no-till ground o The mulch prevents soil splashing and subsequent spread of disease inoculum o The savings in fungicide sprays can be significant When Groff made his first application, Penn State had already forecasted seven fungicide sprays for prevention of early blight on tomatoes "No-Till Vegetables" is a 30-minute video explaining Groff’s new-generation cropping system The price is $21.95 + $3.00 shipping Made by a professional production company in association with Mr Goff and university consultants, the video provides an excellent introduction to no-till vegetable production, and like the book Stubble Over the Soil, I highly recommend Groff's video Contact: Cedar Meadow Farm 679 Hilldale Road Holtwood, PA 17532 717-284-5152 http://www.cedarmeadowfarm.com Permanent Mulching Systems: The Other No-Till Organic mulches — for example straw, hay, and leaves — have a long history of use in organic vegetable production A common method is to till and prepare the soil as usual, followed by direct seeding and transplanting to establish vegetables, with post-plant topdressing of organic mulches to control weeds and conserve moisture A different approach to mulching, however, is the use of permanent, deep mulches in association with no-till Ruth Stout, who wrote articles for Organic Gardening magazine from 1953 to 1971, and published the classic book, The Ruth Stout No-Work Garden Book, is perhaps the best known advocate of permanent mulching systems for home gardens In the 1990s, permanent mulches as a no-till approach to commercial-scale vegetable production received increased attention through the work of Emilia Hazelip, a permaculture teacher and market farmer in southern France Inspired by the work of Masanobu Fukuoka, the Japanese farmer who advocated a natural system of no-till production using undersown clovers and straw, Ms Hazelip's "synergistic gardening" method features the use of raised beds, plant residues, and companion planting (8) Mark Cain, a market gardener in Arkansas who attended a workshop by Hazelip in 1995, organized his farm around the synergistic gardening concept and manages about acres of production beds with permanent deep mulches using mostly local hay bales obtained at low cost After trying the no-till, deep mulch system for about years, Cain noted that weed populations tend to increase in the mulch after several growing seasons and consequently labor becomes prohibitive; thus, his current strategy is to completely renovate the beds through tillage every 3-5 years, then start over with a permanent mulch scheme He also came to the conclusion that wheat straw, though more expensive because it has to be shipped in from some distance, is far superior to local hay bales because hay mulch is loaded with weed seeds Cain said it takes about 150 square bales of wheat straw mulch to cover one acre of raised beds A web article, below, provides a description of his production system Synthetic weed barriers, also known as geotextile mulches, are fairly new to no-till vegetable production Unlike plastic mulches, which breakdown in sunlight and require disposal after one or two growing seasons, weed barriers are very durable and may last 10 years or longer exposed to full sun conditions A prominent example is the SunbeltHydroSource Dryland Production Bed advocated by the late Dan Wofford of Western Polyacrylamide, Inc (9) The DeWitt Sunbelt Weed Barrier was designed for use as a weed control ground cloth in container nurseries, greenhouses, and retail garden centers However, Wofford advocated the use of large sections of the Sunbelt Weed Barrier in small-scale vegetable production as a no-till production method Wofford's invention was an innovate adaptation of an existing technology, and for small-scale producers, it provides a super low-maintenance approach to long term weed control Wofford helped over 130 market farmers in the Missouri - Kansas - Oklahoma region set up 4,500 squarefoot no-till production beds using rolls of weed barrier that come in 15 x 300 ft lengths Several web resources on this method are provided below Summary In summary, no-till and reduced-tillage vegetable production has potential for wider adaptation by commercial growers As cover crops are an important link in no-till production, a first step is selection of cover crops adapted to the specific region and to the specific cropping system For example, the use of hairy vetch as a no-till mulch for tomatoes has performed very nicely in Beltsville, Maryland Adapting the USDA MowKill+Vetch System to other climatic regions of the country will require some trial and error Non-chemical weed control options exist to manage cover crops, but success is often dependent on specialized equipment, cultural practices, good timing , and also some tinkering on the part of the farmer In addition, the biological growing conditions that effect cover crop establishment, biomass production, nitrogen fixation, and mechanical kill varies from place to place and season to season A common experience among early adopters of no-till is the development of partnerships with the Extension Service to obtain technical assistance, especially with specialized equipment Organic mulches and synthetic weed barriers are available to implement no-till at the market garden scale, and experience demonstrates they are an effective form of weed control that not rely on cover crop establishment and vegetation management The ability to implement a conservation tillage vegetable production system is highly dependent on factors that impact the individual farmer: cost of equipment, technical assistance, time, labor, crop rotation, soil type, slope, weed populations, and weather References: 1) Lamarca, Carlos Crovetto 1996 Stubble Over the Soil: The Vital Role of Plant Residue in Soil Management to Improve Soil Quality American Society of Agronomy, Madison, WI 245 p 2) Ashford, D.L., D.W Reaves, M.G Patterson, G.R Wehtje, and M.S MillerGoodman 2000 Roller vs herbicides: An alternative kill method for cover crops p 64-69 Proceedings: 23rd Annual Southern Conservation Tillage Conference for Sustainable Agriculture June 19-21, Monroe, Louisiana 3) Regnier, Emilie 1990 Controlling weeds with winter cover crops Sustainable Agriculture News The Ohio State University Winter-Spring p 4-5 4) Creamer,N.G., B Plassman, M.A Bennett, R.K Wood, B.R Stinner, and J Cardina 1995 A method for mechanically killing cover crops to optimize weed suppression American Journal of Alternative Agriculture Volume 10 Number 5) Stanley, Doris 1991 More for less: A new way to grow tomatoes Agricultural Research October p 14 6) Abdul-Baki, Aref A., J.R Teasdale, R Korcak, D Chitwood, and R Huettle 1995 Yield, earliness, and fruit weight of fresh-market tomatoes grown in synthetic and organic mulches HortScience Vol 30, No p 806 7) Dabney, S., N W Buehring, and D B Reginelli 1991 Mechanical control of legume cover crops p 146-147 In: Hargrove, W L (ed.) Cover Crops for Clean Water Soil and Water Conservation Society, Ankeny, IA 8) Emilia Hazelip video 9) AVG article Web Resources: Smart Cover Cropping Steve Groff feature, Sustainable Farming Connection website Accessed at: http://www.ibiblio.org/farming-connection/covercro/groff/coverman.htm Transplanter and Stalk-Chopper Modifications Steve Groff feature, Sustainable Farming Connection website Accessed at: http://www.ibiblio.org/farming-connection/covercro/groff/equiip.htm No-Tillage Rolf Derpsch - GTZ http://www.rolf-derpsch.com/notill.htm Source: No-Tillage, Sustainable Agriculture in the New Millenium Rolf Derpsch - GTZ http://www.rolf-derpsch.com/ A no-tillage agriculture website by the famous no-till agronomist, Rolf Derpsch It reviews the benefits of no-till, including a paradigm comparison between tillage and no-tillage agriculture, as well as topics relating to sustainability; organic matter; soil quality; etc Affordable Small-Scale Equipment for Production of Transplanted Vegetables in High-Residue, No-Till Farming Systems Ronald Morse, Department of Horticulture, Virginia Tech http://vric.ucdavis.edu/issues/bulletinboard/soilconf/afford.pdf The classic paper by Ron Morse on the use of tranplant equipment in association high-residue, no-till vegetable production Managing Cover Crops and Green Manures Seth Dabney, USDA-ARS National Sedimentation Laboratory http://www.sedlab.olemiss.edu/uep_unit/projects/cover_crops/index.html The classic on-line slide show by Seth Dabney, USDA agronomist, on cover crops in no-till vegetable production It combines text and photos to provide a quick educational summary of cover crops and green manures in association with conservation tillage An excellent introduction to this topic! Cultural Weed Management Methods for High-Residue/No-Till Production of Transplanted Broccoli (Brassica oleracea L GP Italica) R Morse ISHS Acta Horticulturae 504 http://www.actahort.org/books/504/504_13.htm These data illustrate that no-till broccoli can be successfully produced without using herbicides, when appropriate high-residue cover crops are effectively killed by flail mowing or rolling and broccoli transplants are properly established and maintained in these evenly distributed in situ cover crop mulches Effects of Different Fertilizers and Continuous No-Till Production on Diseases, Growth, and Yield of Staked Tomato UT Vegetable Initiative Progress Report The University of Tennessee http://volspace.utk.edu/~taescomm/research/tomato99.html Marketable yields were significantly higher with no-till than with conventional tillage and also with sulfate of potash instead of muriate of potash (Table 3) Reasons for the improved yields with no-till are uncertain but may be due to improved soil drainage, earlier nitrogen application, or improved weed control - all of which were different in 1999 than in the first two years of the study No-Till Production of Irish Potato on Raised Beds Ronald Morse, Virginia Cooperative Extension Commercial Horticulture Newsletter, November-December 1998 http://www.ext.vt.edu/news/periodicals/commhort/1998-12/1998-12-01.html No-Till Broccoli Production without Herbicides Ronald Morse, Virginia Cooperative Extension Commercial Horticulture Newsletter, March - April 1997 http://www.ext.vt.edu/news/periodicals/commhort/1997-04/1997-04-03.html Vegetable Growers, Try No-Till Transplanting Pocono Northeast Resource Conservation & Development http://www.parcd.org/PNERCD/Projects/No%20Till/no_till.htm Features the Subsurface Tiller Transplanter (SST-T) developed at Virginia Tech Cover Crop Use in Crop Production Systems NebGuide http://www.ianr.unl.edu/pubs/fieldcrops/g1146.htm       Cover Crops Seeded Late Season in Soybeans Cover Crops Seeded Early Season in Soybeans Winter Rye Seeded Late Season for Continuous Corn Winter Rye - Hairy Vetch Planted for Seed Production in Irrigation Corn Cover Crops Seeded Late Season after Dry Edible Bean Harvest Cover Crops Spring Seeded to Provide Protection for Sugarbeets and Selected Vegetable Crops No Till / Zone Till of Pumpkins into Cover Crops Ohio State University Extension http://ohioline.ag.ohio-state.edu/~ipm/mini/96m-10.htm A No-Tillage Tomato Production System Using Hairy Vetch and Subterranean Clover Mulches Aref A Abdul-Baki and John R Teasdale HortScience 28(2):106-108 1993 Reviewed in: Sustainable Agriculture newletter, UC-SAREP, Winter 1995 (v7n1) http://www.sarep.ucdavis.edu/newsltr/v7n1/sa-11.htm Nutrient Quantity or Nutrient Access?: A New Understanding of How to Maintain Soil Fertility in the Tropics Roland Bunch paper http://ppathw3.cals.cornell.edu/mba_project/moist/RolandB.html http://www.necofa.org/activities/publications/bunch_primav.html A paper by Roland Bunch, author of "Two Ears of Corn: A Guide to People-Centered Agricultural Development," featuring the Five Principles of Agriculture for the Humid Tropics: Maximize Organic Matter Production Keep the Soil Covered Use Zero Tillage Maximize Biodiversity Feed the Crops Largely Through the Mulch Just Say No to Till: No-Till Improves Profits, Soil Quality, and Yields Feature article on Steve Groff, Cedar Meadow Farm The Vegetable Grower News http://www.vegetablegrowersnews.com/pages/2001/issue01_05/01_05_no_till.html Invest in Sustainability with Cover Crop Systems: Old-Fashioned Practice has Modern-Day Benefits Colleen Scherer, The Grower magazine online http://www.growermagazine.com/home/archive/covercrops.htm Cover Crops for No-Till Systems Ontario Ministry of Agriculture, Food, and Rural Affairs http://www.gov.on.ca/OMAFRA/english/crops/facts/notill_ccrops.htm Cover Crop Types Ontario Ministry of Agriculture, Food, and Rural Affairs http://www.gov.on.ca:80/OMAFRA/english/crops/facts/cover_crops01/cover_types.htm Adaptation and Use of Cover Crops Ontario Ministry of Agriculture, Food, and Rural Affairs http://www.gov.on.ca:80/OMAFRA/english/crops/facts/cover_crops01/cover.htm Choosing a Cover Crop Ontario Ministry of Agriculture, Food, and Rural Affairs http://www.gov.on.ca:80/OMAFRA/english/crops/facts/cover_crops01/choosing.htm Managing Weeds in Conservation Tillage Ontario Ministry of Agriculture, Food, and Rural Affairs http://www.gov.on.ca:80/OMAFRA/english/crops/facts/consertill.htm Soil Management: The Key to Sustainability Aref Abdul-Baki, USDA-ARS Vegetable Laboratory http://vric.ucdavis.edu/issues/bulletinboard/soilconf/key.pdf Alternative Tillage Methods for Cucurbit Crops Michelle Infante, Rutgers Cooperative Extentsion http://www.co.gloucester.nj.us/rutgers/tillage/tillage.htm Conservation Tillage Methods Dr Mary Peet, North Carolina State University Sustainable Practices for Vegetable Production in the South http://www.cals.ncsu.edu/sustainable/peet/tillage/cons_til.html No-Till Vegetable Production for the Sands Hill Region of North Carolina Greg D Hoyt Veg-I-New, January 1999 http://ipmwww.ncsu.edu/vegetables/veginews/veginw13.htm#title2 Comparing Weed Suppression in No-Till and Conventionally Tilled Pumpkin Systems that Utilize Stale Seedbed Techniques and Transplants 2000 New York Vegetable and Cultural Practices Results Cornell University Commercial Vegetable Production http://www.hort.cornell.edu/commercialvegetables/online/2000veg/freeville/compweed.p df Permanent Mulching, Organic Mulches, Synergistic Gardening No-Till, Mulch-Based Market Gardening Mark Cain, Huntsville, AR http://www.seedballs.com/mcain.html Ruth Stout and Permanent Hay Mulch Mother Earth News, February 1999 http://www.findarticles.com/m1279/1999_Feb/53682884/p1/article.jhtml The Synergistic Garden Emilia Hazelip Reproduced from Prodder, translated from French by Linda Hull http://www.seedballs.com/hazelip.html Fabric Weed Barriers in Field Production of Vegetables, Herbs, & Flowers HydroSource Polymer & Research Library http://www.hydrosource.com/serv01.htm A collection of articles by Dan Wofford on the DeWitt Sunbelt Weed Barrier to create a lowmaintenance production bed for market garden-scale vegetable production IPM-Based Landscape Design: Landscape Fabric and Mulch IPM Access, IPM Practitioners Association http://www.efn.org/~ipmpa/fabric.html This website is geared to woody landscape plantings, but the background information on geotextile mulches and how they function as a weed barrier is relevant and useful Note: In vegetable production the weed barrier is left *uncovered*; bark mulches are used in landscape plantings for an aesthetic effect only, they not increase weed control Growing Broccoli the Eco-Friendly Way Agricultural Research, March 1997 http://www.ars.usda.gov/is/AR/archive/mar97/mulch.pdf Evaluation of Cover Crop Mulches in No-Till Processing Tomato Production Systems Final Report - January 1999, UC-SAREP http://sarepdevel.ucdavis.edu/grants/Reports/Mitchell/mitchell.htm Cover Crops and Conservation Tillage for Soil Erosion Control on Cropland Section 9: The Agronomy Guide, Pennsylvania State University http://AgGuide.agronomy.psu.edu/sect9/sect9toc.htm Conservation Technology Information Center http://www.ctic.purdue.edu/CTIC.html Southern Conservation Tillage Conferences for Sustainable Agriculture http://nespal.cpes.peachnet.edu/sctc/ Annual Conferences on conservation tillage and sustainable agriculture for the Southeastern U.S cropping systems have been held each year since 1978 On-line conference programs and proceedings are available for 1998-2001 A few papers deal specifically with no-till vegetable production In addition, some of the agronomic papers contain helpful data on cover crop phenology and biomass production 24rd Annual Conservation Tillage Conference for Sustainable Agriculture Conference July 9-11, 2001, Oklahoma City, Oklahoma HTML Source: http://www.agr.okstate.edu/SCTC/ Notable Paper:  No-Herbicide, No-Till Summer Broccoli — Quantity of Rye and Hairy Vetch on Weed Suppression and Crop Yield Ron Morse pages: 83-92 Request reprint from the author: morser@vt.edu 23rd Annual Conservation Tillage Conference for Sustainable Agriculture Conference June 19-21, 2000, Monroe, Louisiana HTML Source with Access to PDF Articles: http://www.agctr.lsu.edu/subjects/tillage/proceedings/proceedings.htm Notable Papers:    Roller Vs Herbicides: An Alternative Kill Method for Cover Crops No-Till Production of Tomatoes High-Residue, No-Till Systems for Production of Organic Broccoli 22nd Annual Conservation Tillage Conference for Sustainable Agriculture Conference July 6-8, 1999, Tifton, Georgia HTML Source: http://nespal.cpes.peachnet.edu/sctc/TiftConf.htm PDF Download for 222-page Proceedings: http://nespal.cpes.peachnet.edu/sctc/Master.Proceedings.pdf Notable Papers:     Opportunities for Conservation Tillage in Vegetable Production Impact of Compost and Tillage on Sweet Corn Yield, Soil Properties and Nematodes Crimson Clover-Cotton Relay Cropping with Conservation Tillage Systems Tomato Yield and Soil Quality as Influenced by Tillage, Cover Cropping, and Nitrogen Fertilization 21st Annual Conservation Tillage Conference for Sustainable Agriculture Conference July 15-17, 1998, North Little Rock, Arkansas Meeting the Challenges 21st Annual Southern Conservation Tillage Conference for Sustainable Agriculture (Univ of Arkansas Special Report 186) HTML Source: http://www.uark.edu/depts/agripub/Publications/specialreports/ PDF Download to 98-page Proceedings: http://www.uark.edu/depts/agripub/Publications/specialreports/186.pdf Notable Paper:  Keys to Successful Production of Transplanted Crops in High-Residue, No-Till Farming Systems Ron Morse pages: 79-82 ATTRA is operated by the National Center for Appropriate Technology under a grant from the U.S Fish and Wildlife Service, Dept of the Interior These organizations not recommend or endorse products, companies, or individuals Compiled by: Steve Diver NCAT Agricultural Specialist steved@ncat.org Updated April, 2002 Also see the ATTRA web page: ATTRA http://www.attra.ncat.org ... follow-up weed control methods are important Non-chemical methods of cover crop suppression that can be integrated with no-till vegetable production include: strip tillage, mowing, rolling and crimping... Managing Cover Crops and Weeds Through Mechanical Suppression Cover crops are an integral component of conservation tillage cropping systems A typical system is fall establishment of a winter cover crop, ... rapeseed, mustard Resources on Cover Crops: Managing Cover Crops Profitably, 2nd Edition SAN Handbook No http://www.sare.org/handbook/mccp2/index.htm Overview of Cover Crops and Green Manures ATTRA

Ngày đăng: 18/10/2022, 16:01

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w