Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 82 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
82
Dung lượng
2,42 MB
Nội dung
IăH CăQU CăGIAăTHÀNHăPH ăH ăCHệăMINH TR NGă IăH CăBÁCHăKHOA -o0o - TR NăQU CăHUY NGHIÊN C U CH T O CELLULOSE AEROGEL T SINH KH I NG D NG TRONG H P PH FABRICATION OF CELLULOSE AEROGEL FROM BIOMASS FOR ADSORPTION APPLICATION ChuyênăngƠnh:ăK ăTHU TăHịAăH C Mưăs :ă8520301 LU NăV NăTH CăS TP.ăH ăCHệăMINH,ăthángă07ăn mă2022 Cơng trình đ c hoàn thành t iμ Tr ng i H c Bách Khoa – i h c Qu c gia Thành ph H Chí Minh Cán b h ng d n khoa h cμ PGS TS LÊ TH KIM PH NG Cán b ch m nh n xét 1μ PGS.TS Lê Anh Kiên Cán b ch m nh n xét β: TS Tr n T n Vi t Lu n v n th c s đ c b o v t i Tr ng i H c Bách Khoa – i h c Qu c gia Thành ph H Chí Minh, ngày 14 tháng 08 n m β0β2 Thành ph n H i đ ng đánh giá lu n v n th c s g mμ PGS TS Nguy n Tr ng S n - Ch t ch PGS.TS Lê Anh Kiên - y viên ph n bi n γ TS Tr n T n Vi t - y viên ph n bi n β TS Tr n Ph c Nh t Uyên - y viên TS Ph m Hoàng Huy Ph c L i - Th kỦ Xác nh n c a Ch t ch H i đ ng đánh giá Lu n v n Tr ngành sau lu n v n đ CH ăT CHăH Iă ng Khoa qu n lỦ chuyên c s a ch a (n u có) NGăăăăăăăăăăăăTR NGăKHOAăK ăTHU TăHịAăH C (H tên ch kỦ) (H tên ch kỦ) i IăH CăQU CăGIAăTP.ăHCM TR NGă C NGăHọAăXẩăH IăCH ăNGH AăVI TăNAM căl pă- T ădoă- H nhăphúc IăH CăBÁCHăKHOA NHI M V LU NăV NăTH CăS H tên h c viênμ TR N QU C HUY MSHV: 1970646 Ngày, tháng, n m sinhμ β4/10/1λλγ N i sinhμ L t Chuyên ngànhμ K thu t Hóa h c Mã s μ 85β0γ01 I TÊNă TÀI: Tên ti ng Vi t: Nghiên c u ch t o cellulose aerogel t sinh kh i ng d ng h p ph Tên ti ng Anh: Fabrication of cellulose aerogel from biomass for adsorption application II NHI M V VÀ N I DUNG: - T ng h p Micro nano cellulose fiber (MNCF) t s i d a - T ng h p Cellulose fiber-lignin aerogel (CFLA) - Kh o sát c u trúc – hình thái – đ c tính c a v t li u CFLA - Kh o sát ng d ng h p ph Cu (II), Ni (II) Pb (II) CFLA III NGÀY GIAO NHI M V : 14/02/2022 IV NGÀY HOÀN THÀNH NHI M V : 06/06/2022 V CÁN B H NG D N: PGS TS LÊ TH KIM PH NG TP HCM, ngày ầ thángầ n m 2022 CÁNăB ăH NGăD N CH ăNHI MăB ăMỌNă ÀOăT O (H tên ch kỦ) TR (H tên ch kỦ) NGăKHOAăK ăTHU TăHịAăH C (H tên ch kỦ) ii L IC M N L i đ u tiên tác gi c m n chân thành s tri ân sâu s c đ n ng i thân gia đình dành s quan tâm t o m i u ki n thu n l i cho tác gi su t th i gian th c hi n lu n v n Tác gi xin chân thành c m n PGS TS Lê Th Kim Ph ng t n tình h ng d n, t o u ki n thu n l i cho tác gi su t trình h c t p, th c hi n lu n v n Tác gi xin g i l i c m n đ n anh ch nghiên c u sinh, h c viên, nghiên c u viên b n sinh viên i H c Bách Khoa – Trung Tâm Nghiên C u Cơng Ngh L c Hóa D u, Tr ng i H c Qu c Gia TP.HCM h tr tác gi su t trình h c t p nghiên c u Tác gi Tr năQu căHuy iii TÓM T T LU NăV N Trong lu n v n, s i micro nano cellulose (MNCF) đ ph c t ng h p t s i d a theo ng pháp ki m hóa k t h p q trình x lỦ c h c đ ng hóa rotor stator siêu âm Cellulose fiber-lignin aerogel (CFLA) đ c t ng h p t h n h p s i micro nano cellulose (MNCF) natri lignosulphonate (LS) s d ng ch t t o liên k t chitosan (CS) nh h ng c a y u t t ng h p CFLA bao g mμ hàm l natri lignosulphonate (LS), hàm l ng MNCF, hàm l ng chitosan (CS) n ng đ huy n phù đ kh o sát C u trúc - hình thái - đ c tính c a v t li u CFLA phù h p đ ph ng phápμ Kh i l h c xác đ nh b ng ng c ng d ng làm v t li u h p ph Cu (II), Ni (II) Pb (II) ng c a th i gian n ng đ ban đ u đ n dung l nghiên c u c ng riêng, kính hi n vi n t quét, ph h ng ngo i chuy n hóa Fourier, nhi u x tia X phân tích nhi t tr ng l V t li u CFLA đ ng ng h c trình h p ph đ ng h p ph c a CFLA đ nh c c kh o sát v i mơ hình đ ng h c bi u ki n b c m t b c hai Quá trình h p ph đ ng nhi t đ c đánh giá v i mô hình đ ng nhi t Langmuir Freundlich Quá trình h p ph Cu (II), Ni (II) Pb (II) phù h p v i mơ hình đ ng h c b c hai mơ hình đ ng nhi t langmuir Dung l đ c xác đ nh c a Cu (II), Ni (II) Pb (II) t ng h p ph c c đ i ng ng v i 158,73 mg/g; 72,99 mg/g 276,24 mg/g V t li u CFLA cho th y kh n ng h p ph ion kim lo i Pb (II) t t h n V t li u CFLA có ti m n ng ng d ng làm s ch n iv c ô nhi m kim lo i n ng ABSTRACT In this study, micro nano cellulose fiber (MNCF) was syntheiszed from pineapple leaf fiber by alkali treatment method Cellulose fiber lignin aerogel (CFLA) samples were syntheisze from MNCF by cross-linking method Effect of conditions on CFLA synthesis including suspensions concentration, cellulose fiber concentration, chitosan concentration and sodium lignosulphonate concentration were investigated The structure - morphology - characterization of CFLA samples were studied by density, scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis The synthesized CFLA was applied as adsorbent for removal of Cu (II), Ni (II) and Pb (II) from water The effect factors including contact time and initial concentration on the adsorption ablity of CFLA were studied The adsorption kinetics was examined pseudo-first-order and pseudo-secondorder kinetic models The experimental data was studied by using Langmuir and Freundlich isotherm models The asobtained adsorbent showed the maximum adsorption capacity for Cu (II), Ni (II) and Pb (II) of 158.73 mg.g-1, 72.99 mg.g-1 and 276.24 mg.g-1 respectively Furthermore, the adsorption isotherm and kinetics models were in accord with the Langmuir and pseudo-second-order models, indicating that the adsorption behavior was dominated by monolayer chemisorption The CFLA adsorbent had better affinity for Pb (II) than other coexisting ions in wastewater Such a CFLA adsorbent holds great potential in the application of contaminant cleaning v L IăCAMă OAN Tác gi xin cam đoan lu n v n cơng trình nghiên c u th c s c a cá nhân tác gi đ c th c hi n d is h ng d n c a PGS TS Lê Th Kim Ph ng Trung Tâm Nghiên C u Cơng Ngh L c Hóa D u, Tr ng i h c Bách Khoa - HQG TP HCM Các s li u, k t qu nghiên c u lu n v n hoàn toàn trung th c, ch a t ng đ c công b b t c m t cơng trình khác tr vi c hoàn thành lu n v n đ u đ v n đ u đ c M i s giúp đ cho c c m n, thơng tin trích d n lu n c ch rõ ngu n g c Tác gi xin ch u trách nhi m v nghiên c u c a Tác gi Tr năQu căHuy vi M CL C TÓM T T LU NăV N .iv ABSTRACT v M C L C vii DANH M C HÌNH ix DANH M C B NG .xi DANH M C CÁC T T V Nă CH VI T T T xii NGă1:ăT NG QUAN 1.1 Ô nhi m kim lo i n ng 1.2 Kim lo iăđ ng, niken chì 1.2.1 Ngu n g c ô nhi m 1.2.2 c tính 1.3 M t s ph ngăphápăx lý ô nhi m kim lo i n ng 1.3.1 Ph ng pháp k t t a 1.3.2 Ph ng pháp n hóa 1.3.3 Ph ng pháp sinh h c 1.3.4 Ph ng pháp trao đ i ion h p ph 1.4 Cellulose fiber-lignin aerogel (CFLA) 1.4.1 Nguyên li u t ng h p 1.4.2 Ph ng pháp t ng h p 10 1.4.3 C u trúc tính ch t 13 1.5 Tình hình nghiên c uătrongăn căvƠăngoƠiăn c, tính c p thi t tính m i c aăđ tài 14 1.5.1 Tình hình nghiên c u n c n c 14 1.5.2 Tính c p thi t tính m i c a đ tài 16 CH NGă2:ăTH C NGHI M 17 2.1 M c tiêu n iădungăvƠăph ngăphápănghiênăc u 17 2.1.1 M c tiêu nghiên c u 17 2.1.2 N i dung nghiên c u 17 2.1.3 Ph ng pháp nghiên c u 17 vii 2.2 Hóa ch t, d ng c , thi t b vƠăđ aăđi m th c hi n 18 2.2.1 Hóa ch t 18 2.2.2 D ng c thi t b 18 2.2.3 a m th c hi n 18 2.3 N i dung nghiên c u 19 2.3.1 T ng h p v t li u 19 2.3.2 Kh o sát kh n ng h p ph kim lo i c a v t li u 23 2.3.3 Các ph ng pháp đánh giá hình thái c u trúc 24 2.3.4 Kh o sát h p ph kim lo i 29 CH NGă3ăK T QU VÀ BÀN LU N 33 3.1 S i micro nano cellulose 33 3.1.1 Phân tích hình thái c u trúc SEM 33 3.1.2 Phân tích phân b kích th c DLS 34 3.1.3 Nhi u x tia X 34 3.1.4 Quang ph h ng ngo i FT-IR 36 3.2 Cellulose fiber-lignin aerogel 37 3.2.1 nh h ng u ki n t ng h p 37 3.2.2 Phân tích hình thái c u trúc SEM 43 3.2.3 Nhi u x tia X 44 3.2.4 Quang ph h ng ngo i FT-IR 44 3.2.5 Phân tích nhi t tr ng l ng TGA 46 3.3 Kh o sát ng d ng h p ph kim lo i Cu (II), Ni (II) Pb (II) 47 3.3.1 nh h ng c a th i gian 47 3.3.2 nh h ng c a n ng đ đ u 49 CH NGă4:ăK T LU NăVÀă XU T 55 4.1 K t lu n 55 4.2.ă xu t 55 TÀI LI U THAM KH O 57 viii DANH M C HÌNH Hình 1.1: Q trình h p ph v t lý hóa h c Hình 1.2: Quy trình s n xu t s i d a Hình 1.3: C u trúc hóa h c c a natri lignosulphonate Hình 1.4: C u trúc c a chitosan 10 Hình 1.5: Quá trình hình thành sol gel 10 Hình 1.6μ Các ph ng pháp s y nh h ng đ n c u trúc .11 Hình 1.7μ S đ mơ t q trình s y siêu t i h n 12 Hình 1.8: Quá trình s y th ng hoa 12 Hình 1.9: Các liên k t ngang có th hình thành gi a chitosan natri lignosulphonate .13 Hình 1.10μ C ch t o ph c c a kim lo i v i chitosan 14 Hình 2.1: Quy trình x lý s i d a 19 Hình 2.2: Quy trình t ng h p CFLA .20 Hình 2.3: Quy trình kh o sát h p ph Cu (II), Ni (II) Pb (II) 23 Hình 2.4: C u t o thi t b quang ph FTIR 25 Hình β.5μ Nguyên lỦ đo nhi u x tia X 26 Hình 2.6: C u t o máy SEM 27 Hình 2.7: Các thành ph n c b n ph Hình 2.8: Thi t b đo s phân b kích th ng pháp đo TGA .28 c h t (Model: Zetasizer Nano ZS90) 29 Hình 2.9: C u t o thi t b quang ph h p thu phân t UV-VIS 30 Hình 3.1: nh SEM c a s i d a ki m hóa x lỦ c h c 33 Hình 3.2: K t qu phân b kích th c DLS 35 Hình 3.3: Gi n đ XRD c a : a) s i d a b) s i d a ki m hóa 35 Hình 3.4: Ph FTIR c a: a) s i d a ki m hóa b) s i d a 36 Hình 3.5: Cellulose fiber-lignin aerogel (CFLA) 37 Hình 3.6: Kh i l ng riêng đ x p c a CFLA 0,50; 0,75 1,00% .38 Hình 3.7: Kh i l ng riêng đ x p theo kh i l ng s i cellulose 39 Hình 3.8: nh SEM c a (a) CFLA-F1, (b) CFLA-F2, (c) CFLA-F3 (d) CFLA-F4 40 Hình 3.9: Kh i l Hình 3.10: Kh i l ng riêng đ x p c a CFLA theo t l kh i l ng riêng đ x p theo t l kh i l ng chitosan 41 ng lignosulphonate 42 Hình 3.11: nh SEM c a CFLA 43 ix CH NGă4: K T LU N VÀ XU T 4.1 K t lu n S i micro nano cellulose (MNCF) đ c t ng h p thành công b ng ph ng pháp ki m hóa x lỦ c h c đ ng hóa rotor-stator k t h p siêu âm Bên c nh đó, CFLA đ c t ng h p thành công b ng ph u đ ng pháp t o liên k t ngang i u ki n t ng h p t i c xác đ nh v i: n ng đ huy n phù % t l MNCF:CS:LS 1μ1μ1 t ng v i m u CFLA K t qu phân tích: kh i l ng ng riêng, FTIR, XRD, TGA c a CFLA cho th y nhóm ch c ch a oxy, amine sulfua c a MNCF, CS LS liên k t v i hình thành c u trúc aerogel K t qu phân tích SEM cho th y v t li u CFLA có kích th nh h c kênh mao qu n đ t 40 – 80 m ng c a y u t nh th i gian ti p xúc n ng đ ban đ u đ n kh n ng h p ph c a CFLA đ i v i: Cu (II): th i gian h p ph đ t cân b ng sau 30 phút Quá trình h p ph ph thu c vào giai đo n cân b ng h p ph , phù h p v i mơ hình đ ng h c b c hai h p ph đ ng nhi t Langmuir Dung l ng h p ph Cu (II) c c đ i đ c xác đ nh 158,73 mg/g Ni (II): th i gian h p ph đ t cân b ng sau 30 phút Quá trình h p ph ph thu c vào giai đo n cân b ng h p ph , phù h p v i mơ hình đ ng h c b c hai h p ph đ ng nhi t Langmuir Dung l ng h p ph Ni (II) c c đ i đ c xác đ nh 72,99 mg/g Pb (II): th i gian h p ph đ t cân b ng sau 15 phút Quá trình h p ph ph thu c vào giai đo n cân b ng h p ph , phù h p v i mô hình đ ng h c b c hai h p ph đ ng nhi t Langmuir Dung l ng h p ph Pb (II) c c đ i đ c xác đ nh 276,24 mg/g C ch h p ph c a CFLA đ i v i Cu (II), Ni (II) Pb (II) c ng đ c nghiên c u Quá trình h p ph ph thu c vào s t o ph c gi a nhóm –OH, N-H SO3 c a CFLA v i ion kim lo i Cu (II), Ni (II) Pb (II) Qua k t qu nghiên c u c a lu n v n cho th y v t li u CFLA phù h p đ h p ph ion kim lo i Cu (II), Ni (II) Pb (II) n đ x lý ion kim lo i n ng n 4.2 c V t li u CFLA có kh n ng ng d ng c xu t Tác gi đ xu t h ng nghiên c u ti p theo kh o sát trình h p ph ion kim lo i c a CFLA mơ hình lõi l c đ xác đ nh đ 55 c thông s k thu t áp d ng vào ng d ng làm lõi l c lo i b kim lo i n ng Quy trình thí nghi m mơ hình c t h p ph đ ng đ c th hi n hình 4.1 Hình 4.1: Quy trình thí nghi m c t h p ph kim lo i n ng CFLA Thuy t minh quy trình: V t li u CFLA đ c nh i c t h p ph đ c ng n cách v i đ u b ng m t l p màng l c micro Sau đó, m u dung d ch ch a ion kim lo i n ng đ th đ c b m qua c t h p ph Dung d ch sau h p ph đ c xác đ nh n ng đ b ng ph c t o ph c v i thu c ng pháp quang ph UV-Vis 56 TÀI LI U THAM KH O [1] G A Engwa et al., "Mechanism and health effects of heavy metal toxicity in humans," Intechopen, vol 10, pp 70-90, 2019 [2] C Aydinalp and S Marinova, "The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa)," Bulgarian Journal of Agricultural Science, vol 15, no 4, pp 347-350, 2009 [3] L Zhang et al., "Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body," Journal of Environmental Sciences, vol 21, no 6, pp 764-769, 2009 [4] H Mekatel et al., "Treatment of polluted aqueous solutions by Ni2+, Pb2+, Zn2+, Cr+6, Cd+2 and Co+2 Ions by ion exchange process using faujasite zeolite," Procedia engineering, vol 33, pp 52-57, 2012 [5] I R Pala et al., "ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water," ACS applied materials & interfaces, vol 4, no 4, pp 2160-2167, 2012 [6] K Y A Lin et al., "Removing oil droplets from water using a copper-based metal organic frameworks," Chemical Engineering Journal, vol 249, pp 293-301, 2014 [7] A Abbas et al., "Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications," Separation and Purification Technology, vol 157, pp 141-161, 2016 [8] K Chen et al., "Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents," Journal of Colloid and Interface Science, vol 494, pp 307-316, 2017 [9] T V Nhân N T Nga, Giáo trình x lý n thu t, 2002 57 c th i, Nhà xu t b n khoa h c k [10] Dr N M Aljamali et al., "Physical and Chemical Adsorption and its Applications," Thermodynamics and Chemical Kinetics, vol 7, no 2, pp 1-9, 2021 [11] D Sud et al., "Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review," Bioresource Technology, vol 99, no 14, pp 6017-6027, 2008 [12] M Asim et al., "A Review on Pineapple Leaves Fibre and Its Composites," International Journal of Polymer Science, vol 2015, pp 1-16, 2015 [13] P Fatehi and J Chen, Production of Biofuels and Chemicals from Lignin, Singapore, Springer, 2016, pp 33-54 [14] F Peng et al., "Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass," Chemicals from Hemicelluloses: A Review, vol 1067, pp 219-259, 2011 [15] N Roussel, In Woodhead Publishing series in Civil and Structural Engineering, Woodhead Publishing, vol 7, pp 144-208, 2012 [16] J Regalbuto and E John, catalyst preparation science and engineering, Florida: CRC press, 2016 [17] C A García-González et al., "Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties," The Journal of Supercritical Fluids, vol 66, pp 297-306, 2012 [18] A S Dorchen et al., "Silica aerogel; synthesis, properties and characterization," journal of materials processing technology, vol 199, no 3, p 10–26, 2008 [19] B M Novak et al., "Low-density, mutually interpenetrating organic–inorganic composite materials via supercritical drying techniques," Chemistry of materials, vol 6, no 3, p 282–286, 1994 [20] E Barrios et al., "Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review," Polymers, vol 11, no 4, p 726, 2019 [21] W Abdelwahed et al., "Freeze-drying of nanoparticles: Formulation, process and storage considerations," Advanced Drug Delivery Reviews, vol 58, no.15, p 1688–1713, 2006 58 [22] F Gu et al., "Synthesis of Chitosan Ignosulfonate Composite as an Adsorbent for Dyes and Metal Ions Removal from Wastewater," ACS Omega, vol 25, no 4, p 21421–21430, 2019 [23] Y Cai et al., "Selective adsorption of Cu (II) from aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor," RSC Advances, vol 5, no 118, pp 97435-97445, 2015 [24] T Aro and P Fatehi, "Production and application of lignosulfonates and sulfonated lignin," ChemSusChem, vol 10, no 9, pp 1861-1877, 2017 [25] N T Son et al., "Advanced thermal insulation and absorption properties of recycled," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 445, pp 128-134, 2014 [26] N D H Nga et al., "Advanced fabrication and application of pineapple aeroges from agricultural waste," Materials Technology, vol 35, no 12, pp 807-814, 2020 [27] V V Phu et al., "A novel application of cellulose aerogel composites from pineapple leaf fibers and cotton waste: Removal of dyes and oil in wastewater," Journal of Porous Materials, vol 29, pp 1-11, 2022 [28] D T Yen et al., "Green fabrication of bio-based aerogels from coconut fibers for wastewater treatment," Journal of Porous Materials, vol 29, pp 1-14, 2022 [29] N D H Nga et al., "Heat and sound insulation applications of pineapple aerogels from pineapple waste," Materials Chemistry and Physics, vol 242, p 122267, 2020 [30] H Sehaqui et al., "High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)," Composites Science and Technology, vol 71, no 13, pp 1593-1599, 2011 [31] M Zhang et al., "Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties," Carbohydrate Polymers, vol 264, p 118033, 2021 [32] Y Yi et al., "A high lignin-content, ultralight, and hydrophobic aerogel for oil-water separation: preparation and characterization," Journal of Porous Materials, vol 28, no 6, pp 1881-1894, 2021 59 [33] J Wang et al., "Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal," Carbohydrate Polymers, vol 206, pp 837-843, 2019 [34] W Li et al., "A mesoporous nanocellulose/sodium alginate/carboxymethylchitosan gel beads for efficient adsorption of Cu2+ and Pb2+," International Journal of Biological Macromolecules, vol 187, pp 922-930, 2021 [35] M Monier et al., "Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin," Journal of Hazardous Materials, vol 177, no 3, pp 962-970, 2010 [36] W S W Ngah et al., "Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan–zeolite composites," Chemical Engineering Journal, vol 223, pp 231-238, 2013 [37] B Anna et al., "Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems," Environmental Earth Sciences, vol 73, no 9, pp 5435-5444, 2015 [38] V N Tirtom et al., "Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution," Chemical Engineering Journal, vol 197, pp 379-386, 2012 [39] C Zou et al., "Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite," Environmental Science and Pollution Research, vol 26, no , pp 1315-1322, 2019 [40] L Mo et al., "Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration," Journal of Hazardous Materials, vol 415, p 125612, 2021 [41] N D H Nga et al., "Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-insulating and Flexible Cellulose Aerogel Composites," Journal of Polymers and the Environment, vol 29, no 4, pp 1112-1121, 2021 [42] J A D Haseth and P R Griffiths, "Chapter1: introduction to vibrational spectroscopy," in Fourier Transform Infrared Spectrometry, Wiley-Blackwell, 2007, pp 1-3 60 [43] R C Burns et al., "HPHT growth and x-ray characterization of high-quality type IIa diamond," Journal of physics, vol 21, p 364224, 2009 [44] Stokes and Debbie, "Chapter 2: Principles of SEM," in Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM), Chichester, John Wiley & Sons, 2008, pp 17-62 [45] P Sirajudheen et al., "Synthesis and characterization of La(III) supported carboxymethylcellulose-clay composite for toxic dyes removal: Evaluation of adsorption kinetics, isotherms and thermodynamics," International Journal of Biological Macromolecules, vol 161, pp 1117-1126, 2020 [46] T Phòng T H Nhu , X lý n c c p n c th i d t nhu m, Hà n i: NXB khoa h c k thu t, 2005 [47] X Peng et al., "Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: Equilibrium, thermodynamic and kinetics," Journal of Colloid and Interface Science, vol 430, pp 272-282, 2014 [48] M T Yagub et al, "Dye and its removal from aqueous solution by adsorption: A review," Advances in Colloid and Interface Science, vol 209, pp 172-184, 2014 [49] I Langmuir, "The adsorption of gases on plane surfaces of glass, mica and platinum," J Am Chem Soc, vol 40, no 9, pp 1361-1403, 1918 [50] H Freundlich, "Über die adsorption in Lösungen," Z Phys Chem, vol 57, no 1, pp 385-470, 1906 [51] B M Cherian et al., "Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical application," Carbohydrate Polymers, vol 86, no 4, pp 1790-1798, 2011 [52] M Mahardika et al., "Production of Nanocellulose from Pineapple Leaf Fibers via High-Shear Homogenization and Ultrasonication," Fibers, vol 6, no 2, p 28, 2018 [53] N K Waghmare and S Khan, "Extraction and Characterization of Nano-cellulose Fibrils from Indian Sugarcane Bagasse- an Agro Waste," Journal of Natural Fibers, vol 4, pp 1-9, 2021 61 [54] B Tsegaye et al., "Alkali delignification and Bacillus sp BMP01 hydrolysis of rice straw for enhancing biofuel yields," Tsegaye et al Bulletin of the National Research Centre, vol 43, no 1, pp 1-10, 2019 [55] H Zhang et al., "Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption,," Journal of colloid and interface science, vol 536, pp 245-251, 2019 [56] X Zhang et al., "The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel," Journal of wood science, vol 61, no 6, pp 595-601, 2015 [57] H Yang et al., "Ambient pressure dried graphene aerogels with superelasticity and multifunctionality," Journal of Materials Chemistry A, vol 3, no 38, pp 1926819272, 2015 [58] E O Olanipekun et al., "Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential," International Journal of Biological Macromolecules, vol 183, pp 1971-1977, 2021 [59] X Ji et al., "Synthesis Mechanism of an Environment-Friendly Sodium Lignosulfonate/Chitosan Medium-Density Fiberboard Adhesive and Response of Bonding Performance to Synthesis Mechanism," Materials, vol 13, no 24, p 5697, 2020 [60] S Kalliola et al., "The stability of green nanoparticles in increased pH and salinity for applications in oil spill-treatment," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 493, pp 99-107, 2016 [61] Q Shen et al., "A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 320, no 3, pp 57-60, 2008 [62] T Shi et al., "Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution," Journal of Hazardous Materials, vol 169, no 3, pp 838-846, 2009 62 [63] M Rhazi et al., "Influence of the nature of the metal ions on the complexation with chitosan.: Application to the treatment of liquid waste.," European Polymer Journal , vol 38, no 3, pp 1523-1530, 2002 [64] A H Hawari et al., "Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass," Process Biochemistry, vol 42, no 11, pp 1546-1552, 2007 [65] C Ji et al., "Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons," Water Research, vol 189, p 116599, 2021 63 PH L C i u ki n t ng h p Tên m u m (g) h (mm) d (mm) CFLA_F1 0,2838 24,99 32,21 CFLA_F2 0,3034 22,25 32,92 CFLA_F3 0,2898 24,53 31,66 CFLA_F4 0,2696 25,99 33,16 CFLA_C1 0,2837 24,99 32,22 CFLA_C2 0,3631 23,55 29,61 CFLA_C3 0,3651 23,42 32,69 CFLA_C4 0,3607 25,53 32,17 CFLA_L1 0,2839 24,97 32,20 CFLA_L2 0,5754 26,49 29,74 CFLA_L3 0,4564 18,53 29,56 CFLA_L4 0,4412 15,67 28,44 CFLA_0,50 0,1750 21,54 29,05 CFLA_0,75 0,2822 24,45 32,70 CFLA_1,00 0,2838 24,99 32,21 64 nhăh Kim lo i STT ng c a th i gian Cu (II) t (phút) Ni (II) qe (mg/g) Pb (II) t (phút) qe (mg/g) t (phút) qe (mg/g) 0,25 47,18 0,25 7,46 0,25 40,11 1,00 75,44 1,00 11,85 1,00 69,50 2,50 80,69 2,50 15,67 2,50 116,86 3,00 83,84 3,00 17,58 5,00 121,13 4,50 84,09 5,00 32,44 7,00 123,23 7,00 89,01 7,00 32,87 15,0 121,45 15,0 94,24 15,0 35,00 30,0 122,05 30,0 96,42 30,0 38,37 60,0 122,41 60,0 96,15 60,0 39,56 65 nhăh ng c a n ngăđ banăđ u Cu (II) Kim lo i STT Ni (II) Ce qe (mg/L) (mg/g) Pb (II) Ce (mg/L) qe (mg/g) Ce (mg/L) qe (mg/g) 15,63116 50,30568 29,61474 18,15574 25,03115 43,07945 96,06791 91,72125 103,8995 50,81625 94,31818 95,15007 177,8608 112,9999 207,5739 56,74972 170,0661 139,2576 258,5281 139,6092 314,0974 59,91747 260,4351 172,9051 377,6292 145,2062 411,8526 64,87661 363,3775 199,591 456,9909 143,7989 491,7052 64,65702 445,1282 204,6678 552,5965 143,7477 603,0509 64,73948 548,5316 211,9223 66 ng chu n y = 0.2288x - 0.0055 R² = 0.9955 0.25 h p thu 0.2 0.15 0.1 0.05 0 0.2 -0.05 0.4 0.6 0.8 1.2 N ng đ ph c Cu (ppm) ng chu n Cu (II) 0.5 y = 0.6978x + 0.0111 R² = 0.9917 0.4 h p thu 0.3 0.2 0.1 0 0.2 0.4 0.6 N ng đ ph c Ni (ppm) ng chu n Ni (II) 67 0.8 h p thu 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 y = 0.0385x + 0.0016 R² = 0.9906 0.5 1.5 N ng đ ph c Pb (ppm) ng chu n Pb (II) 68 2.5 LÝ L CH TRÍCH NGANG H tên: Tr n Qu c Huy NgƠy,ătháng,ăn măsinh: 24/10/1993 a ch liên l cμ ng Cao Th ng-Ph N iăsinhμ L t ng 7-Thành ph àL t TDD: 0915125909 Email: Quochuytran2410@gmail.com QUÁăTRỊNHă ÀOăT O 2014-2018: Sinh viên chuyên nghành Hóa h u c , khoa K thu t Hóa H c, tr ng đ i h c Công Nghi p Th c Ph m TP.HCM 2019-2022: H c viên cao h c chuyên nghành K thu t Hóa H c, tr Khoa, đ i h c Qu c Gia TP.HCM 69 ng i h c Bách ... n v n nghiên c u tách s i micro nano cellulose t s i d a s d ng đ gia c c u trúc cho aerogel Natri lignosulphonate Ngu n tài nguyên tái t o d i nh t th gi i sinh kh i Trong sinh kh i, cellulose. .. m hóa Cellulose, hemicellulose, Lignin Lignin, cellulose, Hemicellulose 3334,55 3335,75 2917,54 2898,89 C=O Hemicellulose, lignin 1728,96 - C=O Hemicellulose, lignin 1605,24 - C-O-C Hemicellulose,... cellulose c ng b gi m m t ph n Cho th y, lo i b lignin hemicelluse NaOH c ng lo i b m t ph n cellulose 3.2 Cellulose fiber-lignin aerogel 3.2.1 nh h ng u ki n t ng h p Trong nghiên c u này, cellulose