Ng 3.8: Các tính c ht ca Cu(II), Ni(II) và Pb(II)

Một phần của tài liệu Nghiên cứu chế tạo cellulose aerogel từ sinh khối ứng dụng trong hấp phụ (Trang 67 - 82)

Hình 3.11 : nh SEM ca CFLA

B ng 3.8: Các tính c ht ca Cu(II), Ni(II) và Pb(II)

âm đi n H ng s th y phân (pK) Bán kính ion (pm)

Cu(II) 1,90 7,7 73

Ni(II) 1,91 9,9 69

Pb(II) 2,33 7,7 118

M t khác, Cu (II) có bán kính ion nh h n Pb (II) mà ion kim lo i có bán kính ion nh

h n s d ti p c n v i tâm h p ph h n [64]. i u này đúng v i th c nghi m khi dung

l ng h p ph Cu (II) 2,49 mmol/g l n h n Pb (II) 1,γγ mmol/g. Tuy nhiên, Cu(II) l i

có đ âm đi n th p h n Pb (II) mà ion có đ âm đi n l n h n s có t ng tác c ng hóa

tr m nh h n. i u này gi i thích t i sao, hình 3.19 tuy CFLA h p ph Pb (II) th p

h n Cu (II) nh ng các peak nhóm ch c trong ph CFLA_Pb l i g n nh t ng tác h t

so v i m u CFLA ban đ u. Trong quá trình s y và đo m u FTIR c a các m u sau h p

ph s y đi u ki n th ng, có th m t ph n kim lo i Cu (II) đã b gi i h p nhi t đ

cao so v i Pb (II) có liên k t hóa h c v i CFLA m nh h n Cu (II) và Ni (II). i u này

t ng t v i m t k t qu nghiên c u đã đ c công b khi Cu (II) b gi i h p nhi t đ

CH NGă4: K T LU N VÀ XU T

4.1. K t lu n

S i micro nano cellulose (MNCF) đã đ c t ng h p thành cơng b ng ph ng pháp

ki m hóa và x lỦ c h c đ ng hóa rotor-stator k t h p siêu âm. Bên c nh đó, CFLA đã

đ c t ng h p thành công b ng ph ng pháp t o liên k t ngang. i u ki n t ng h p t i

u đã đ c xác đnh v i: n ng đ huy n phù 1 % và t l MNCF:CS:LS là 1μ1μ1 t ng

ng v i m u CFLA. K t qu phân tích: kh i l ng riêng, FTIR, XRD, và TGA c a

CFLA cho th y các nhóm ch c ch a oxy, amine và sulfua c a MNCF, CS và LS đã liên

k t v i nhau hình thành c u trúc aerogel. K t qu phân tích SEM cho th y v t li u CFLA

có kích th c kênh mao qu n đ t 40 – 80 m.

nh h ng c a các y u t nh th i gian ti p xúc và n ng đ ban đ u đ n kh n ng h p

ph c a CFLA đ i v i:

Cu (II): th i gian h p ph đ t cân b ng là sau 30 phút. Quá trình h p ph ph thu c

vào giai đo n cân b ng h p ph , phù h p v i mơ hình đ ng h c b c hai và h p ph đ ng nhi t Langmuir. Dung l ng h p ph Cu (II) c c đ i đ c xác đnh là 158,73 mg/g.

Ni (II): th i gian h p ph đ t cân b ng là sau 30 phút. Quá trình h p ph ph thu c

vào giai đo n cân b ng h p ph , phù h p v i mơ hình đ ng h c b c hai và h p ph đ ng nhi t Langmuir. Dung l ng h p ph Ni (II) c c đ i đ c xác đnh là 72,99 mg/g.

Pb (II): th i gian h p ph đ t cân b ng là sau 15 phút. Quá trình h p ph ph thu c

vào giai đo n cân b ng h p ph , phù h p v i mơ hình đ ng h c b c hai và h p ph đ ng nhi t Langmuir. Dung l ng h p ph Pb (II) c c đ i đ c xác đnh là 276,24 mg/g.

C ch h p ph c a CFLA đ i v i Cu (II), Ni (II) và Pb (II) c ng đ c nghiên c u.

Quá trình h p ph ph thu c vào s t o ph c gi a nhóm –OH, N-H và SO3 c a CFLA

v i các ion kim lo i Cu (II), Ni (II) và Pb (II).

Qua k t qu nghiên c u c a lu n v n cho th y v t li u CFLA phù h p đ h p ph các

ion kim lo i Cu (II), Ni (II) và Pb (II) trong n c. V t li u CFLA có kh n ng ng d ng

đ x lý các ion kim lo i n ng trong n c.

4.2. xu t

Tác gi đ xu t h ng nghiên c u ti p theo là kh o sát quá trình h p ph ion kim

ng d ng làm lõi l c lo i b kim lo i n ng. Quy trình thí nghi m mơ hình c t h p ph

đ ng đ c th hi n trong hình 4.1

Hình 4.1: Quy trình thí nghi m c t h p ph kim lo i n ng trên CFLA

Thuy t minh quy trình: V t li u CFLA đ c nh i trong c t h p ph và đ c ng n

cách v i đ u ra b ng m t l p màng l c micro. Sau đó, m u dung d ch ch a các ion kim

lo i n ng đ c b m qua c t h p ph . Dung d ch sau h p ph đ c t o ph c v i thu c

TÀI LI U THAM KH O

[1] G. A. Engwa et al., "Mechanism and health effects of heavy metal toxicity in

humans," Intechopen, vol. 10, pp. 70-90, 2019.

[2] C. Aydinalp and S. Marinova, "The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa)," Bulgarian Journal of Agricultural Science, vol. 15, no. 4, pp. 347-350, 2009.

[3] L. Zhang et al., "Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body," Journal of Environmental Sciences, vol. 21, no. 6, pp. 764-769, 2009.

[4] H. Mekatel et al., "Treatment of polluted aqueous solutions by Ni2+, Pb2+, Zn2+,

Cr+6, Cd+2 and Co+2 Ions by ion exchange process using faujasite zeolite,"

Procedia engineering, vol. 33, pp. 52-57, 2012.

[5] I. R. Pala et al., "ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted

water," ACS applied materials & interfaces, vol. 4, no. 4, pp. 2160-2167, 2012. [6] K. Y. A. Lin et al., "Removing oil droplets from water using a copper-based metal

organic frameworks," Chemical Engineering Journal, vol. 249, pp. 293-301, 2014. [7] A. Abbas et al., "Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications," Separation and Purification Technology, vol. 157, pp. 141-161, 2016.

[8] K. Chen et al., "Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents," Journal of Colloid and Interface Science, vol. 494, pp. 307-316, 2017.

[9] T. V. Nhân và N. T. Nga, Giáo trình x lý n c th i, Nhà xu t b n khoa h c k

[10] Dr. N. M. Aljamali et al., "Physical and Chemical Adsorption and its Applications," Thermodynamics and Chemical Kinetics, vol. 7, no. 2, pp. 1-9, 2021.

[11] D. Sud et al., "Agricultural waste material as potential adsorbent for sequestering

heavy metal ions from aqueous solutions – A review," Bioresource Technology,

vol. 99, no. 14, pp. 6017-6027, 2008.

[12] M. Asim et al., "A Review on Pineapple Leaves Fibre and Its Composites," International Journal of Polymer Science, vol. 2015, pp. 1-16, 2015.

[13] P. Fatehi and J. Chen, Production of Biofuels and Chemicals from Lignin, Singapore, Springer, 2016, pp. 33-54.

[14] F. Peng et al., "Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass," Chemicals from Hemicelluloses: A Review, vol. 1067, pp. 219-259, 2011.

[15] N. Roussel, In Woodhead Publishing series in Civil and Structural Engineering, Woodhead Publishing, vol. 7, pp. 144-208, 2012.

[16] J. Regalbuto and E. John, catalyst preparation science and engineering, Florida: CRC press, 2016.

[17] C. A. García-González et al., "Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties," The Journal of Supercritical Fluids, vol. 66, pp. 297-306, 2012.

[18] A. S. Dorchen et al., "Silica aerogel; synthesis, properties and characterization,"

journal of materials processing technology, vol. 199, no. 3, p. 10–26, 2008.

[19] B. M. Novak et al., "Low-density, mutually interpenetrating organic–inorganic

composite materials via supercritical drying techniques," Chemistry of materials,

vol. 6, no. 3, p. 282–286, 1994.

[20] E. Barrios et al., "Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review," Polymers, vol. 11, no. 4, p. 726, 2019.

[21] W. Abdelwahed et al., "Freeze-drying of nanoparticles: Formulation, process and storage considerations," Advanced Drug Delivery Reviews, vol. 58, no.15, p.

[22] F. Gu et al., "Synthesis of Chitosan Ignosulfonate Composite as an Adsorbent for Dyes and Metal Ions Removal from Wastewater," ACS Omega, vol. 25, no. 4, p.

21421–21430, 2019.

[23] Y. Cai et al., "Selective adsorption of Cu (II) from aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor," RSC Advances, vol. 5, no. 118, pp. 97435-97445, 2015.

[24] T. Aro and P. Fatehi, "Production and application of lignosulfonates and sulfonated lignin," ChemSusChem, vol. 10, no. 9, pp. 1861-1877, 2017.

[25] N. T. Son et al., "Advanced thermal insulation and absorption properties of recycled," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 445, pp. 128-134, 2014.

[26] N. D. H. Nga et al., "Advanced fabrication and application of pineapple aeroges from agricultural waste," Materials Technology, vol. 35, no. 12, pp. 807-814, 2020.

[27] V. V. Phu et al., "A novel application of cellulose aerogel composites from pineapple leaf fibers and cotton waste: Removal of dyes and oil in wastewater," Journal of Porous Materials, vol. 29, pp. 1-11, 2022.

[28] D. T. Yen et al., "Green fabrication of bio-based aerogels from coconut fibers for wastewater treatment," Journal of Porous Materials, vol. 29, pp. 1-14, 2022. [29] N. D. H. Nga et al., "Heat and sound insulation applications of pineapple aerogels

from pineapple waste," Materials Chemistry and Physics, vol. 242, p. 122267, 2020.

[30] H. Sehaqui et al., "High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)," Composites Science and Technology, vol. 71, no. 13, pp. 1593-1599, 2011.

[31] M. Zhang et al., "Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties," Carbohydrate Polymers, vol. 264, p. 118033, 2021.

[32] Y. Yi et al., "A high lignin-content, ultralight, and hydrophobic aerogel for oil-water separation: preparation and characterization," Journal of Porous Materials, vol. 28, no. 6, pp. 1881-1894, 2021.

[33] J. Wang et al., "Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal," Carbohydrate Polymers, vol. 206, pp. 837-843, 2019.

[34] W. Li et al., "A mesoporous nanocellulose/sodium alginate/carboxymethyl-

chitosan gel beads for efficient adsorption of Cu2+ and Pb2+," International Journal

of Biological Macromolecules, vol. 187, pp. 922-930, 2021.

[35] M. Monier et al., "Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin," Journal of Hazardous Materials, vol. 177, no. 3, pp. 962-970, 2010.

[36] W. S. W. Ngah et al., "Comparative study on adsorption and desorption of Cu(II)

ions by three types of chitosan–zeolite composites," Chemical Engineering

Journal, vol. 223, pp. 231-238, 2013.

[37] B. Anna et al., "Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems," Environmental Earth Sciences, vol. 73, no. 9, pp. 5435-5444, 2015.

[38] V. N. Tirtom et al., "Comparative adsorption of Ni(II) and Cd(II) ions on

epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution,"

Chemical Engineering Journal, vol. 197, pp. 379-386, 2012.

[39] C. Zou et al., "Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite," Environmental Science and Pollution Research, vol. 26, no. 2 , pp. 1315-1322, 2019.

[40] L. Mo et al., "Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration," Journal of Hazardous Materials, vol. 415, p. 125612, 2021.

[41] N. D. H. Nga et al., "Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-insulating and Flexible Cellulose Aerogel Composites," Journal of Polymers and the Environment, vol. 29, no. 4, pp. 1112-1121, 2021.

[42] J. A. D. Haseth and P. R. Griffiths, "Chapter1: introduction to vibrational spectroscopy," in Fourier Transform Infrared Spectrometry, Wiley-Blackwell, 2007, pp. 1-3.

[43] R. C. Burns et al., "HPHT growth and x-ray characterization of high-quality type IIa diamond," Journal of physics, vol. 21, p. 364224, 2009.

[44] Stokes and Debbie, "Chapter 2: Principles of SEM," in Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM), Chichester, John Wiley & Sons, 2008, pp. 17-62.

[45] P. Sirajudheen et al., "Synthesis and characterization of La(III) supported carboxymethylcellulose-clay composite for toxic dyes removal: Evaluation of adsorption kinetics, isotherms and thermodynamics," International Journal of Biological Macromolecules, vol. 161, pp. 1117-1126, 2020.

[46] . T. Phòng và T. H. Nhu , X lý n c c p và n c th i d t nhu m, Hà n i: NXB

khoa h c k thu t, 2005.

[47] X. Peng et al., "Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: Equilibrium, thermodynamic and kinetics," Journal of Colloid and Interface Science, vol. 430, pp. 272-282, 2014. [48] M. T. Yagub et al, "Dye and its removal from aqueous solution by adsorption: A

review," Advances in Colloid and Interface Science, vol. 209, pp. 172-184, 2014. [49] I. Langmuir, "The adsorption of gases on plane surfaces of glass, mica and

platinum," J. Am. Chem. Soc, vol. 40, no. 9, pp. 1361-1403, 1918.

[50] H. Freundlich, "Über die adsorption in Lösungen," Z. Phys. Chem, vol. 57, no. 1, pp. 385-470, 1906.

[51] B. M. Cherian et al., "Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical application," Carbohydrate Polymers, vol. 86, no. 4, pp. 1790-1798, 2011.

[52] M. Mahardika et al., "Production of Nanocellulose from Pineapple Leaf Fibers via High-Shear Homogenization and Ultrasonication," Fibers, vol. 6, no. 2, p. 28, 2018.

[53] N. K. Waghmare and S. Khan, "Extraction and Characterization of Nano-cellulose Fibrils from Indian Sugarcane Bagasse- an Agro Waste," Journal of Natural Fibers, vol. 4, pp. 1-9, 2021.

[54] B. Tsegaye et al., "Alkali delignification and Bacillus sp. BMP01 hydrolysis of rice straw for enhancing biofuel yields," Tsegaye et al. Bulletin of the National Research Centre, vol. 43, no. 1, pp. 1-10, 2019.

[55] H. Zhang et al., "Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption,," Journal of colloid and interface science, vol. 536, pp. 245-251, 2019.

[56] X. Zhang et al., "The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel," Journal of wood science, vol. 61, no. 6, pp. 595-601, 2015.

[57] H. Yang et al., "Ambient pressure dried graphene aerogels with superelasticity and multifunctionality," Journal of Materials Chemistry A, vol. 3, no. 38, pp. 19268- 19272, 2015.

[58] E. O. Olanipekun et al., "Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential," International Journal of Biological Macromolecules, vol. 183, pp. 1971-1977, 2021.

[59] X. Ji et al., "Synthesis Mechanism of an Environment-Friendly Sodium Lignosulfonate/Chitosan Medium-Density Fiberboard Adhesive and Response of Bonding Performance to Synthesis Mechanism," Materials, vol. 13, no. 24, p. 5697, 2020.

[60] S. Kalliola et al., "The stability of green nanoparticles in increased pH and salinity for applications in oil spill-treatment," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 493, pp. 99-107, 2016.

[61] Q. Shen et al., "A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 320, no. 3, pp. 57-60, 2008. [62] T. Shi et al., "Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a

vanadium mine tailing from aqueous solution," Journal of Hazardous Materials, vol. 169, no. 3, pp. 838-846, 2009.

[63] M. Rhazi et al., "Influence of the nature of the metal ions on the complexation with chitosan.: Application to the treatment of liquid waste.," European Polymer Journal , vol. 38, no. 3, pp. 1523-1530, 2002.

[64] A. H. Hawari et al., "Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass," Process Biochemistry, vol. 42, no. 11, pp. 1546-1552, 2007.

[65] C. Ji et al., "Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons," Water Research, vol. 189, p. 116599, 2021.

PH L C i u ki n t ng h p Tên m u m (g) h (mm) d (mm) CFLA_F1 0,2838 24,99 32,21 CFLA_F2 0,3034 22,25 32,92 CFLA_F3 0,2898 24,53 31,66 CFLA_F4 0,2696 25,99 33,16 CFLA_C1 0,2837 24,99 32,22 CFLA_C2 0,3631 23,55 29,61 CFLA_C3 0,3651 23,42 32,69 CFLA_C4 0,3607 25,53 32,17 CFLA_L1 0,2839 24,97 32,20 CFLA_L2 0,5754 26,49 29,74 CFLA_L3 0,4564 18,53 29,56 CFLA_L4 0,4412 15,67 28,44 CFLA_0,50 0,1750 21,54 29,05 CFLA_0,75 0,2822 24,45 32,70 CFLA_1,00 0,2838 24,99 32,21

nhăh ng c a th i gian

Kim lo i

STT

Cu (II) Ni (II) Pb (II)

t (phút) qe (mg/g) t (phút) qe (mg/g) t (phút) qe (mg/g) 1 0,25 47,18 0,25 7,46 0,25 40,11 2 1,00 75,44 1,00 11,85 1,00 69,50 3 2,50 80,69 2,50 15,67 2,50 116,86 4 3,00 83,84 3,00 17,58 5,00 121,13 5 4,50 84,09 5,00 32,44 7,00 123,23 6 7,00 89,01 7,00 32,87 15,0 121,45 7 15,0 94,24 15,0 35,00 30,0 122,05 8 30,0 96,42 30,0 38,37 60,0 122,41 9 60,0 96,15 60,0 39,56

nhăh ng c a n ngăđ banăđ u

Kim lo i

STT

Cu (II) Ni (II) Pb (II)

Ce (mg/L) qe (mg/g) Ce (mg/L) qe (mg/g) Ce (mg/L) qe (mg/g) 1 15,63116 50,30568 29,61474 18,15574 25,03115 43,07945 2 96,06791 91,72125 103,8995 50,81625 94,31818 95,15007 3 177,8608 112,9999 207,5739 56,74972 170,0661 139,2576 4 258,5281 139,6092 314,0974 59,91747 260,4351 172,9051 5 377,6292 145,2062 411,8526 64,87661 363,3775 199,591 6 456,9909 143,7989 491,7052 64,65702 445,1282 204,6678 7 552,5965 143,7477 603,0509 64,73948 548,5316 211,9223

ng chu n ng chu n Cu (II) ng chu n Ni (II) y = 0.2288x - 0.0055 R² = 0.9955 -0.05 0 0.05 0.1 0.15 0.2 0.25 0 0.2 0.4 0.6 0.8 1 1.2 h p thu N ng đ ph c Cu (ppm) y = 0.6978x + 0.0111 R² = 0.9917 0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 h p thu N ng đ ph c Ni (ppm)

ng chu n Pb (II) y = 0.0385x + 0.0016 R² = 0.9906 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.5 1 1.5 2 2.5 h p thu N ng đ ph c Pb (ppm)

LÝ L CH TRÍCH NGANG

H và tên: Tr n Qu c Huy

NgƠy,ătháng,ăn măsinh: 24/10/1993 N iăsinhμ à L t

a ch liên l cμ ng Cao Th ng-Ph ng 7-Thành ph à L t

TDD: 0915125909

Email: Quochuytran2410@gmail.com

QUÁăTRỊNHă ÀOăT O

2014-2018: Sinh viên chuyên nghành Hóa h u c , khoa K thu t Hóa H c, tr ng đ i

h c Công Nghi p Th c Ph m TP.HCM.

2019-2022: H c viên cao h c chuyên nghành K thu t Hóa H c, tr ng i h c Bách

Một phần của tài liệu Nghiên cứu chế tạo cellulose aerogel từ sinh khối ứng dụng trong hấp phụ (Trang 67 - 82)

Tải bản đầy đủ (PDF)

(82 trang)