THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Tiêu đề | In Situ Growth of Ni(OH)2 Nanostructures on Substrate for Glucose Measurement |
---|---|
Tác giả | Vu Thi Oanh |
Người hướng dẫn | Dr. Chu Thi Xuan |
Trường học | Hanoi University of Science and Technology |
Chuyên ngành | Materials Science |
Thể loại | master thesis |
Năm xuất bản | 2022 |
Thành phố | Hanoi |
Định dạng | |
---|---|
Số trang | 74 |
Dung lượng | 2,52 MB |
Nội dung
Ngày đăng: 11/10/2022, 22:02
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[1] Ngoc NB, Lin ZL, Ahmed W. Diabetes: What challenges lie ahead for Vietnam Annals of Global Health 2020;86:1–9. https://doi.org/10.5334/aogh.2526 | Link | |
[2] Jarosz M, Socha RP, Jóźwik P, Sulka GD. Amperometric glucose sensor based on the Ni(OH) 2 /Al(OH) 4− electrode obtained from a thin Ni 3 Al foil. Applied Surface Science 2017;408:96–102. https://doi.org/10.1016/j.apsusc.2017.02.188 | Link | |
[3] Pal N, Banerjee S, Bhaumik A. A facile route for the syntheses of Ni(OH)2 and NiO nanostructures as potential candidates for non-enzymatic glucose sensor.Journal of Colloid and Interface Science 2018;516:121–7.https://doi.org/10.1016/j.jcis.2018.01.027 | Link | |
[5] Mishra AK, Mukherjee B, Kumar A, Jarwal DK, Ratan S, Kumar C, et al. Superficial fabrication of gold nanoparticles modified CuO nanowires electrode for non-enzymatic glucose detection. RSC Advances 2019;9:1772–81.https://doi.org/10.1039/C8RA07516F | Link | |
[6] Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, et al. Recent advances in electrochemical glucose biosensors: A review. RSC Advances 2013;3:4473–91.https://doi.org/10.1039/c2ra22351a | Link | |
[7] Niu X, Li X, Pan J, He Y, Qiu F, Yan Y. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges. RSC Advances 2016;6:84893–905.https://doi.org/10.1039/c6ra12506a | Link | |
[9] Park S, Boo H, Chung TD. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta 2006;556:46–57.https://doi.org/10.1016/j.aca.2005.05.080 | Link | |
[10] Safavi A, Maleki N, Farjami E. Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosensors and Bioelectronics 2009;24:1655–60.https://doi.org/10.1016/j.bios.2008.08.040 | Link | |
[11] Singer N, Pillai RG, Johnson AID, Harris KD, Jemere AB. Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing.Microchimica Acta 2020;187:15–20. https://doi.org/10.1007/s00604-020-4171-5 | Link | |
[13] Chawla M, Pramanick B, Randhawa JK, Siril PF. Effect of composition and calcination on the enzymeless glucose detection of Cu-Ag bimetallic nanocomposites. Materials Today Communications 2021;26:101815.https://doi.org/10.1016/j.mtcomm.2020.101815 | Link | |
[14] Zhao C, Wu X, Li P, Zhao C, Qian X. Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchimica Acta 2017;184:2341–8. https://doi.org/10.1007/s00604-017-2229-9 | Link | |
[15] Qian J, Wang Y, Pan J, Chen Z, Wang C, Chen J, et al. Non-enzymatic glucose sensor based on ZnO–CeO2 whiskers. Materials Chemistry and Physics 2020;239:122051. https://doi.org/10.1016/j.matchemphys.2019.122051 | Link | |
[16] Niu X, Lan M, Zhao H, Chen C. Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Nickel Nanostructures.Analytical Chemistry 2013;85:3561–9. https://doi.org/10.1021/ac3030976 | Link | |
[17] Karimi-Maleh H, Cellat K, Arıkan K, Savk A, Karimi F, Şen F, et al. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Materials Chemistry and Physics 2020;250:124023. https://doi.org/10.1016/j.matchemphys.2019.122051 | Link | |
[18] Chelaghmia ML, Nacef M, Affoune AM, Pontié M, Derabla T. Facile Synthesis of Ni(OH)2 Modified Disposable Pencil Graphite Electrode and its Application for Highly Sensitive Non-enzymatic Glucose Sensor. Electroanalysis 2018;30:1117–24. https://doi.org/10.1002/elan.201800002 | Link | |
[19] Faure C, Delmas C, Fouassier M. Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. Journal of Power Sources 1991;35:279–90. https://doi.org/10.1016/0378-7753(91)80112-B | Link | |
[20] Xing W, Li F, Yan Z, Lu GQ. Synthesis and electrochemical properties of mesoporous nickel oxide. Journal of Power Sources 2004;134:324–30.https://doi.org/10.1016/j.jpowsour.2004.03.038 | Link | |
[21] Ma X, Liu J, Liang C, Gong X, Che R. A facile phase transformation method for the preparation of 3D flower-like β-Ni(OH) 2 /GO/CNTs composite with excellent supercapacitor performance. J Mater Chem A 2014;2:12692–6.https://doi.org/10.1039/C4TA02221A | Link | |
[22] Li J, Liu Y, Cao W, Chen N. Rapid: In situ growth of β-Ni(OH)2 nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density. Dalton Transactions 2020;49:4956–66.https://doi.org/10.1039/d0dt00687d | Link | |
[23] Li J, Liu Y, Cao W, Chen N. Rapid: In situ growth of β-Ni(OH)2 nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density. Dalton Transactions 2020;49:4956–66.https://doi.org/10.1039/d0dt00687d | Link |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN