1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử Toán ĐH năm 2013 Đề số 29 pptx

30 289 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 3,08 MB

Nội dung

Sở GD-ĐT phú thọ Trờng T.H.p.t long châu sa é THI thử I HC NM học: 2010-2011 Mụn thi : TON Thời gian làm bài:150 phút(không kể thời gian giao đề) PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu I:(2 im) Cho hm s : 1x2 1x y (C) 1. Kho sỏt v v th hm s. 2. Vit phng trỡnh tip tuyn vi (C), bit tip tuyn ú i qua giao im ca ng tim cn v trc Ox. Cõu II:(2 im) 1. Gii phng trỡnh: sin2 cos2 cot cos sin x x tgx x x x 2. Gii phng trỡnh: 1 xlog1 4 3logxlog2 3 x93 Cõu III: (2 im) 1.Tính nguyên hàm: sin 2 ( ) 3 4sin 2 xdx F x x cos x 2.Giải bất phơng trình: 1 2 3 x x x Cõu IV: (1 im) Trong mt phng Oxy cho tam giỏc ABC cú trng tõm G(2, 0) bit phng trỡnh cỏc cnh AB, AC theo th t l 4x + y + 14 = 0; 02y5x2 . Tỡm ta cỏc nh A, B, C. PHN RIấNG (3 im) Chú ý:Thí sinh chỉ đợc chọn bài làm ở một phần nếu làm cả hai sẽ không đợc chấm A. Theo chng trỡnh chun Cõu Va : 1. Tỡm h s ca x 8 trong khai trin (x 2 + 2) n , bit: 49CC8A 1 n 2 n 3 n . 2. Cho ng trũn (C): x 2 + y 2 2x + 4y + 2 = 0. Vit phng trỡnh ng trũn (C') tõm M(5, 1) bit (C') ct (C) ti cỏc im A, B sao cho 3AB . B. Theo chng trỡnh Nõng cao Cõu Vb: 1. Gii phng trỡnh : 21x2log1xlog 3 2 3 2. Cho hỡnh chúp SABCD cú ỏy ABCD l hỡnh vuụng tõm O, SA vuụng gúc vi đáy hỡnh chúp. Cho AB = a, SA = a 2 . Gi H v K ln lt l hỡnh chiu vuông góc ca A lờn SB, SD. Chng minh SC (AHK) v tớnh th tớch khối chúp OAHK. Ht. (Cán bộ coi thi không giải thích gì thêm) Hớng dẫn chấm môn toán Câu ý Nội Dung Điểm I 2 1 Khảo sát hàm số (1 điểm) 1 TXĐ: D = R\ {-1/2} Sựự Biến thiên: , 2 3 0 2 1 y x D x Nên hàm số nghịch biến trên 1 1 ( ; ) ( ; ) 2 2 va 0,25 + Giới hạn ,tiệm cận: 1 2 lim x y 1 2 lim x y ĐTHS có tiẹm cận đứng : x = -1/2 1 lim 2 x y 1 lim 2 x y đTHS có tiệm cận ngang: y = -1/2 0,25 + Bảng biến thiên: 0,25 x y y - 1 /2 - - -1/2 - 1 /2  §å ThÞ : 0,25 2 Giao điểm của tiệm cận đứng với trục Ox là        0, 2 1 A Phương trình tiếp tuyến () qua A có dạng        2 1 xky () tiếp xúc với (C) / x 1 1 k x 2x 1 2 x 1 k co ù nghieäm 2x 1                             0,25                       )2( k 1x2 3 )1( 2 1 xk 1x2 1x 2 Thế (2) vào (1) ta có pt hoành độ tiếp điểm là 0,25 y x 0 I - 1/2 1 1 -1/2   2 1 3 x x 1 2 2x 1 2x 1              1 (x 1)(2x 1) 3(x ) 2      và 1 x 2   3 x 1 2    5 x 2   . Do đó 12 1 k  0,25  Vậy phương trình tiếp tuyến cần tìm là: 1 1 y x 12 2          0,25 II 2 1 1. Giải phương trình: gxcottgx xsin x2cos xcos x2sin  (1) (1) xsin xcos xcos xsin xcosxsin xsinx2sinxcosx2cos      x cos x sin xcosxsin x cos x sin xx2cos 22     0,25 cosx cos2x sin2x 0      2 2cos x cosx 1 0 sin2x 0       0,25 1 cosx (cosx 1 :loaïi vì sinx 0) 2      0,25    2k 3 x 0,25 2 2. Phương trình:   1 xlog1 4 3logxlog2 3 x93    (1) (1)   1 xlog1 4 x9log 1 xlog2 33 3    0,25 1 xlog1 4 xlog2 xlog2 33 3       đặt: t = log 3 x 0,25 thành 2 2 t 4 1 t 3t 4 0 2 t 1 t          (vì t = -2, t = 1 không là nghiệm) 0,25 IV 1 t 1 hay t 4     Do đó, (1) 3 1 log x 1 hay x 4 x hayx 81 3        0,25 III 2 1 1 Ta cã 2 2 sin 2 2sin cos ( ) 3 4sin (1 2sin ) 2 sin 4sin 2 xdx x xdx F x x x x x          0,25 §¨t u = sinx cos du xdx   O,25 Ta cã:   2 2 ( ) ( ) 1 ( 1) 1 1 ln 1 1 udu du du F x G u u u u u c u                0,25 VËy 1 ( ) ln 1 sin 1 F x sinx c x      0,25 2 1 §k: 3 x  Bpt 2 1 2 3 2 5 6 4 x x x x x x            0,25 2 4 0 3 12 8 0 3 4 6 2 3 6 2 3 3 3 6 2 3 3 3 x x x x x x                          0,25 0,25 0,25 . Tọa độ A là nghiệm của hệ   4x y 14 0 x 4 2x 5y 2 0 y 2            A(–4, 2) 0,25 Vì G(–2, 0) là trọng tâm của ABC nên            2yy 2xx yyyy3 xxxx3 CB CB CBAG CBAG (1) 0,25 Vì B(x B , y B )  AB  y B = –4x B – 14 (2) C(x C , y C )  AC  5 2 5 x2 y C C  ( 3) 0,25 Thế (2) và (3) vào (1) ta có              0y 1x 2y3x 2 5 2 5 x2 14x4 2xx CC BB C B CB Vậy A(–4, 2), B(–3, –2), C(1, 0) 0,25 V.a 3 1 1 1. Điều kiện n  4 Ta có:       n 0k knk2k n n 2 2xC2x Hệ số của số hạng chứa x 8 là 4n4 n 2C  0,25 Hệ số của số hạng chứa x 8 là 4n4 n 2C  0,25 Ta có: 3 2 1 n n n A 8C C 49     (n – 2)(n – 1)n – 4(n – 1)n + n = 49  n 3 – 7n 2 + 7n – 49 = 0  (n – 7)(n 2 + 7) = 0  n = 7 0,25 Nên hệ số của x 8 là 2802C 34 7  0,25 2 2 Phương trình đường tròn (C): x 2 + y 2 – 2x + 4y + 2 = 0 có tâm I(1, –2) 3R  Đường tròn (C') tâm M cắt đường tròn (C) tại A, B nên AB  IM tại trung điểm H của đoạn AB. 0,25 Ta có 2 3 2 AB BHAH  0,25 Có 2 vị trí cho AB đối xứng qua tâm I. Gọi A'B' là vị trí thứ 2 của AB Gọi H' là trung điểm của A'B' 0,25 Ta có: 2 2 2 3 3 IH' IH IA AH 3 2 2               Ta có:     2 2 MI 5 1 1 2 5      0,25 và 2 7 2 3 5HIMIMH  ; 3 13 MH' MI H'I 5 2 2      0,25 Ta có: 13 4 52 4 49 4 3 MHAHMAR 2222 1  43 4 172 4 169 4 3 'MH'H'A'MAR 2222 2  0,25 Vậy có 2 đường tròn (C') thỏa ycbt là: (x – 5) 2 + (y – 1) 2 = 13 hay (x – 5) 2 + (y – 1) 2 = 43 0,25 V.b 3 1 1 1. Giải phương trình:     21x2log1xlog 3 2 3  §k: 1 1 2 x     3 3 2log x 1 2log 2x 1 2      0,25   3 3 log x 1 log 2x 1 1        3 3 log x 1 2x 1 log 3     0,25   x 1 2x 1 3                     2 2 1 x 1 x 1 hoac 2 2x 3x 2 0 2x 3x 4 0(vn) 0,25 x 2   0,25 2 2 +BC vuông góc với (SAB)  BC vuông góc với AH mà AH vuông với SB  AH vuông góc với (SBC)  AH vuông góc SC (1) 0,25 + Tương tự AK vuông góc SC (2) (1) và (2)  SC vuông góc với (AHK ) 0,25 2 2 2 2 SB AB SA 3a     SB = a 3 AH.SB = SA.AB  AH= a 6 3  SH= 2a 3 3  SK= 2a 3 3 (do 2 tam giác SAB và SAD bằng nhau và cùng vuông tại A) 0,25 Ta có HK song song với BD nên HK SH 2a 2 HK BD SB 3    . 0,25 kÎ OE// SC ( )( ( )) OE AHK doSC AHK    suy ra OE lµ ®êng cao cña h×nh chãp OAHK vµ OE=1/2 IC=1/4SC = a/2 0,5 Gọi AM là đường cao của tam giác cân AHK ta có 2 2 2 2 4a AM AH HM 9     AM= 2a 3 0,25    3 OAHK AHK 1 1 a 1 a 2 V OE.S . HK.AM 3 3 2 2 27 (®vtt) S 0,25 A M I E O H K M C D Câu II: 1. Giải phương trình: gxcottgx xsin x2cos xcos x2sin  (1) (1) xsin xcos xcos xsin xcosxsin xsinx2sinxcosx2cos      xcosxsin xcosxsin xcosxsin xx2cos 22     cosx cos2x sin2x 0      2 2cos x cosx 1 0 sin2x 0       1 cosx (cosx 1 :loaïi vì sinx 0) 2         2k 3 x 2. Phương trình:   1 xlog1 4 3logxlog2 3 x93    (1) (1)   1 xlog1 4 x9log 1 xlog2 33 3    1 xlog1 4 xlog2 xlog2 33 3       đặt: t = log 3 x (1) thành 2 2 t 4 1 t 3t 4 0 2 t 1 t          (vì t = -2, t = 1 không là nghiệm) t 1 hay t 4     Do đó, (1) 3 1 log x 1 hay x 4 x hayx 81 3        Câu IV: . Tọa độ A là nghiệm của hệ   4x y 14 0 x 4 2x 5y 2 0 y 2            A(–4, 2) Vì G(–2, 0) là trọng tâm của ABC nên            2yy 2xx yyyy3 xxxx3 CB CB CBAG CBAG (1) Vì B(x B , y B )  AB  y B = –4x B – 14 (2) C(x C , y C )  AC  5 2 5 x2 y C C  ( 3) Thế (2) và (3) vào (1) ta có [...]... = 8     8  m  24  m = 2 6 4   Hết ÐỀ THI TUYỂN SINH ĐẠI HỌC KHỐI D NĂM 2009 Mơn thi : TỐN PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2,0 điểm) Cho hàm số y = x4 – (3m + 2)x2 + 3m có đồ thị là (Cm), m là tham số 1 Khảo sát sự biến thi n và vẽ đồ thị của hàm số đã cho khi m = 0 2 Tìm m để đường thẳng y = -1 cắt đồ thị (Cm) tại 4 điểm phân biệt đều có hồnh độ nhỏ hơn 2 Câu II (2,0 điểm) 1 Giải... – 1 = 0  m = 1 a Hết BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THÚC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn thi: TỐN; Khối: A Thời gian làm bài: 180 phút, khơng kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm): Câu I (2,0 điểm) Cho hàm số y  x2 2x  3 1 1 Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1) 2 Viết phương trình tiếp tuyến của đồ thị (1), biết tiếp tuyến đó cắt trục... -Hết - ĐÁP ÁN ĐỀ THI MƠN TỐN KHỐI A NĂM 2009 Câu I 1 Khảo sát sự biến thi n và vẽ đồ thị hàm số + Tập xác định:với mọi x   + y’ = 1  2x  3 2  0,  x   3 2 3 2 + Tiệm cận Vì lim x  Vì x2 1 1  nên tiệm cận ngang là : y = 2x  3 2 2 lim 3 x   2  x2 x2 3  ; lim    nên tiệm cận đứng là : x =  3  2x  3 2x  3 2 x   2 Bảng biến thi n:  2 Vẽ đồ thị: đồ... tuyến cần tìm là: y    x   12  2 Câu Va: 1 Điều kiện n  4  n  C x n Ta có: x 2  2  k 2k n  k 2 n k 0 Hệ số của số hạng chứa x8 là C4 2n  4 n Ta có: A 3  8C2  C1  49 n n n  (n – 2)(n – 1)n – 4(n – 1)n + n = 49  n3 – 7n2 + 7n – 49 = 0  (n – 7)(n2 + 7) = 0  n = 7 Nên hệ số của x8 là C4 23  280 7 2 Phương trình đường tròn (C): x2 + y2 – 2x + 4y + 2 = 0 có tâm I(1, –2) R  3 Đường tròn... các số phức z trong mp Oxy là đường tròn tâm I (3; -4) và bán kính R = 2 x2  x 1 Câu VII.b pt hồnh độ giao điểm là : (1)  2x  m x  x2 + x – 1 = x(– 2x + m) (vì x = 0 khơng là nghiệm của (1))  3x2 + (1 – m)x – 1 = 0 phương trình này có a.c < 0 với mọi m nên có 2 nghiệm phân biệt với mọi m b Ycbt  S = x1 + x2 =  = 0  m – 1 = 0  m = 1 a Hết BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THÚC ĐỀ... OIM cân tại I  MOI = 300 1  OM có hệ số góc k =  tg300 =  3 1 x x2 +k=  pt OM : y= thế vào pt (C)  x 2  2x  0 3 3 3 3 3 3  x= 0 (loại) hay x  Vậy M  ;   2 2  2 Cách khác: Ta có thể giải bằng hình học phẳng OI=1, IOM  IMO  300 , do đối xứng ta sẽ có 2 điểm đáp án đối xứng với Ox H là hình chiếu của M xuống OX Tam giác OM 1H là nửa tam giác đều 3 3 3 3 3  OM  , HM   2 6 3 2... (P): x + 2y – 1 1 1 3z + 4 = 0 Viết phương trình đường thẳng d nằm trong (P) sao cho d cắt và vng góc với đường thẳng  Câu VII.b (1,0 điểm) x2  x  1 Tìm các giá trị của tham số m để đường thẳng y = -2x + m cắt đồ thị hàm số y  tại hai điểm x phân biệt A, B sao cho trung điểm của đoạn thẳng AB thuộc trục tung ]BÀI GIẢI GỢI Ý Câu I 1 m = 0, y = x4 – 2x2 TXĐ : D = R y’ = 4x3 – 4x; y’ = 0  x = 0... SEBC  2a 2  a 2  3a 2 (E là trung điểm của AB) 1 1 3a 15 3a 3 15 V  SABCDSI  3a 2  3 3 5 5 Câu V.Chứng minh rằng với mọi số thực dương x, y, z thoả mãn x(x + y + z) = 3yz, ta có: 3 3 3  x  y    x  z   3  x  y  x  z  y  z   5  y  z  Giải: Từ giả thi t ta có: x2 + xy + xz = 3yz  (x + y)(x + z) = 4yz Đặt a = x + y và b = x + z Ta có: (a – b)2 = (y – z)2 và ab = 4yz Mặt khác... hpt:  2x  y  2z  9b  16  0   x 1 y  3 z  1  2  1  2   H(2b  3; b  4; 2b  3)  MH 2  (3b  4) 2  (2b  4) 2  (4b  6) 2  29b 2  88b  68 u cầu bài tốn trở thành: MH 2  d 2 (11b  20)2 9 2  261b  792b  612  121b 2  440b  400  29b 2  88b  68   140b 2  352b  212  0  35b 2  88b  53  0 b  1   b  53 35   18 53 3  Vậy có 2 điểm thoả mãn là: M(0;1;-3) và... (SBC) và (ABCD) bằng 600 Gọi I là trung điểm của cạnh AD Biết hai mặt phẳng (SBI) và (SCI) cùng vng góc với mặt phẳng (ABCD), tính thể tích khối chóp S.ABCD theo a Câu V (1,0 điểm) Chứng minh rằng với mọi số thực dương x, y, z thoả mãn x(x + y + z) = 3yz, ta có: 3  x  y   x  z 3 3  3  x  y  x  z  y  z   5  y  z  PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần . ÐỀ THI TUYỂN SINH ĐẠI HỌC KHỐI D NĂM 2009 Môn thi : TOÁN PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2,0 điểm). Cho hàm số y = x 4 – (3m. có:       n 0k knk2k n n 2 2xC2x Hệ số của số hạng chứa x 8 là 4n4 n 2C  0,25 Hệ số của số hạng chứa x 8 là 4n4 n 2C  0,25

Ngày đăng: 10/03/2014, 14:20

HÌNH ẢNH LIÊN QUAN

Bảng biến thiờn: - Đề thi thử Toán ĐH năm 2013 Đề số 29 pptx
Bảng bi ến thiờn: (Trang 23)

TỪ KHÓA LIÊN QUAN

w