http://ductam_tp.violet.vn/
ĐỀ THITHỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011
Môn: TOÁN (Thời gian : 180 phút)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I (2 điểm):
1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số :
3x 4
y
x 2
. Tìm điểm thuộc (C) cách đều
2 đường tiệm cận .
2).Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn
2
0;
3
.
sin
6
x + cos
6
x = m ( sin
4
x + cos
4
x )
Câu II (2 điểm):
1).Tìm các nghiệm trên
0;2
của phương trình :
sin 3x sin x
sin 2x cos2x
1 cos2x
2).Giải phương trình:
3 3
x 34 x 3 1
Câu III (1 điểm): Cho chóp S.ABC có đáy ABC là tam giác vuông tại C, AC = 2, BC = 4. Cạnh bên
SA = 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB.
1).Tính góc giữa AC và SD; 2).Tính khoảng cách giữa BC và SD.
Câu IV (2 điểm):
1).Tính tích phân: I =
2
0
sin x cosx 1
dx
sin x 2cosx 3
2). a.Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i
b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn :
1 < | z – 1 | < 2
PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b
Câu V.a.( 2 điểm ) Theo chương trình Chuẩn
1).Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong
qua đỉnh A, C lần lượt là : (d
1
) : 3x – 4y + 27 = 0 và (d
2
) : x + 2y – 5 = 0
2). Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng:
1
x 1
d : y 4 2t
z 3 t
và
2
x 3u
d : y 3 2u
z 2
a. Chứng minh rằng (d
1
) và (d
2
) chéo nhau.
b. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d
1
) và (d
2
).
3). Một hộp chứa 30 bi trắng, 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi
xanh . Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu .
Câu V.b.( 2 điểm ) Theo chương trình Nâng cao
1).Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuông tại A, phương
trình đường thẳng BC là :
3
x – y -
3
= 0, các đỉnh A và B thuộc trục hoành và bán kính đường
tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC .
2).Cho đường thẳng (d) :
x t
y 1
z t
và 2 mp (P) : x + 2y + 2z + 3 = 0 và (Q) : x + 2y + 2z + 7 = 0
a. Viết phương trình hình chiếu của (d) trên (P)
b. Lập ph.trình mặt cầu có tâm I thuộc đường thẳng (d) và tiếp xúc với hai mặt phẳng (P) và (Q)
3). Chọn ngẫu nhiên 5 con bài trong bộ tú lơ khơ . Tính xác suất sao cho trong 5 quân bài đó có
đúng 3quân bài thuộc 1 bộ ( ví dụ 3 con K )
Ht
Cỏn b coi thi khụng gii thớch gỡ thờm.
trờng thpt hậu
lộc 2
đáp án đề thithử đại học lần 1 năm học
2009
-
2010
Môn thi: toán
Thời gian làm bài: 180 phút, không kể thời gian giao đề
Câu Nội dung Điểm
I
2.0đ
1
1,25đ
Khảo sát và vẽ ĐTHS
- TXĐ: D =
R
\ {2}
- Sự biến thiên:
+ ) Giới hạn :
x x
Lim y Lim y 3
nên đờng thẳng y = 3 là tiêm cận
ngang của đồ thị hàm số
+)
x 2 x 2
Lim y ; Lim y
. Do đó đờng thẳng x = 2 là tiệm cận đứng
của đồ thị hàm số
+) Bảng biến thiên:
Ta có : y =
2
2
2
x
< 0 ,
x D
Hàm số nghịch biến trên mỗi khoảng
;2
và
- Đồ thị
+ Giao điểm với trục tung : (0 ;2)
+ Giao điểm với trục hoành : ( 4/3 ; 0)
+ ĐTHS nhận giao điểm I(2 ;3) của hai đờng tiệm cận làm tâm đối
xứng
Gọi M(x;y)
(C) và cách đều 2 tiệm cận x = 2 và y = 3
| x 2 | = | y 3 |
3x 4 x
x 2 2 x 2
x 2 x 2
x 1
x
x 2
x 4
x 2
Vậy có 2 điểm thoả mãn đề bài là : M
1
( 1; 1) và M
2
(4; 6)
0,25
0,25
0,25
0.5
2
Xét phơng trình : sin
6
x + cos
6
x = m ( sin
4
x + cos
4
x ) (2)
y
y
x
-
-
2
3
3
6
4
2
-5
5
x
O
y
0.75đ
2 2
3 1
1 sin 2x m 1 sin 2x
4 2
(1)
Đặt t = sin
2
2x . Với
2
x 0;
3
thì
t 0;1
. Khi đó (1) trở thành :
2m =
3t 4
t 2
với
t 0;1
Nhận xét : với mỗi
t 0;1
ta có :
sin 2x t
sin 2x t
sin 2x t
Để (2) có 2 nghiệm thuộc đoạn
2
0;
3
thì
3 3
t ;1 t ;1
2 4
Da vào đồ thị (C) ta có : y(1)< 2m y(3/4)
7
1 2m
5
Vậy các giá trị cần tìm của m là :
1 7
;
2 10
0,25
0,5
II
2,0đ
1
1,0đ
sin3x sin x
sin 2x cos2x
1 cos2x
(1)
2cos2x.sin x
2cos 2x
4
2 sin x
ĐK : sinx 0
x
k
Khi
x 0;
thì sinx > 0 nên :
(1)
2
cos2x =
2
cos 2x
4
x
16 2
k
Do
x 0;
nên
9
x hay x
16 16
Khi
x ;2
thì sinx < 0 nên :
(1)
2
cos2x =
2
cos 2x
4
cos -2x = cos 2x-
4
5
x
16 2
k
Do
x ;2
nên
21 29
x hay x
16 16
0,5
0,5
2
1,0đ
Đặt
3 3
u x 34, v x 3
. Ta có :
2 2
3 3
u v 1
u v 1
u v u v uv 37
u v 37
2
u v 1
u v 1
uv 12
u v 3uv 37
u 3
v 4
u 4
v 3
Với u = -3 , v = - 4 ta có : x = - 61
Với u = 4, v = 3 ta có : x = 30
Vậy Pt đã cho có 2 nghiệm : x = -61 và x = 30
0,25
0,5
0.25
III
1.0đ
1đ
a)Ta có : AB =
2 5
,
Gọi M là trung điểm của BC ,
ta có : DM = 1
SD =
2 2
SA AD 30
,
SC =
2 2
SA AC 29
N
M
D
S
A
B
C
K
SM =
2 2
SC CM 33
Ta có :
2 2 2
SD MD SM 30 1 33 1
cos SDM
2SD.MD
2 30 30
(*)
Góc
giữa hai đờng thẳng AC và SD là góc giữa hai đờng thẳng DM
và SD hay
bù với góc
SDM . Do đó : cos
=
1
30
b) Kẻ DN // BC và N thuộc AC . Ta có : BC // ( SND) . Do đó :
d(BC, SD) = d( BC/(SND)) = d(c/(SND))
Kẻ CK và AH vuông góc với SN , H và K thuộc đờng thẳng SN
Ta có : DN // BC
DN AC 1
Và
SA ABC SA DN 2
Từ (1) và (2) suy ra : DN
( SAC)
DN KC 3
Do cách dựng và (3) ta có : CK
(SND) hay CK là khoảng cách từ C
đến mp(SND)
Mặt khác : ANH = CNK nên AH = CK
Mà trong tam giác vuông SAN lại có :
2 2 2
1 1 1 1 5
1 AH
AH SA AN 25
26
Vậy khoảng cách giữa BC và SD là : CK =
5
26
0.5
0,5
IV
2đ
1
1.0đ
Ta có : sinx
cosx + 1 = A(sinx + 2cosx + 3) + B(cosx
sinx) + C
= (A 2B) sinx + ( 2A + B) cosx + 3A + C
1
A
5
A 2B 1
3
2A B 1 B
5
3A C 1
8
C
5
Vậy I =
2 2 2
0 0 0
d sin x 2cosx 3
1 3 8 dx
dx
5 5 sin x 2cosx 3 5 sin x 2cosx 3
I =
2
2
0
0
1 3 8
x ln sin x 2cosx 3 J
5 5 5
I =
3 8
ln 4 ln 5 J
10 5 5
Tính J =
2
0
dx
sin x 2cosx 3
.
Đặt t = tan
x
2
2
2
1 x 2tdt
dt tan 1 dx
2 2 t 1
Đổi cận : Khi x =
2
thì t = 1
Khi x = 0 thì t = 0
Vậy
1 1 1
2
2 2
2
2
0 0 0
2 2
2dt
dt dt
t 1
J 2 2
2t 1 t
t 2t 5
t 1 2
2 3
t 1 t 1
Lại đặt t = 1 = 2 tan u . suy ra dt = 2 ( tan
2
u + 1)du
Đổi cận khi t = 1 thì u =
4
0,25
0,25
Khi t = 0 thì u =
với tan
1
2
2
4
4
2
2 tan u 1 du
J u
4
4 tan u 1
Do đó : I =
3 3 5 8
ln
10 5 4 5
0.5
2a
0.5đ
G/s số phức z có dạng : z = x + iy với x,y
R
, | z | =
2 2
x y
Ta có : | z | = 1 + ( z 2 ) i
2 2
x y
= ( 1 y ) + ( x 2 ) i
2
2 2
x 2 0
x 2
1 y 0
3
y
2
x y 1 y
0,5
0.5
2b
0.5
G/s số phức z có dạng
: z = x + iy với x,y
R
,
Ta có : | z - i | = | x + ( y - 1)i | =
2
2
x y 1
Do đó : 1 < | z - i | < 2
1 < | z - i |
2
< 4
2
2
1 x y 1 4
Gọi (C
1
) , (C
2
) là hai đờng tròn đồng tâm I( 0 ; 1) và có bán kính lần
lợt là : R
1
=1 , R
2
= 2 . Vậy tập hợp các điểm cần tìm là phần nằm giữa
hai đờng tròn (C
1
) và (C
2
)
Va
3đ
1
+) PT cạnh BC đi qua B(2 ; -1) và nhận VTCP
1
u 4;3
của (d
2
) làm
VTPT
(BC) : 4( x- 2) + 3( y +1) = 0 hay 4x + 3y - 5 =0
+) Tọa độ điểm C là nghiệm của HPT :
4x 3y 5 0 x 1
C 1;3
x 2y 5 0 y 3
+) Đờng thẳng đi qua B và vuông góc với (d
2
) có VTPT là
2
u 2; 1
có PT : 2( x - 2) - ( y + 1) = 0 hay 2x - y - 5 = 0
+) Tọa độ giao điểm H của và (d
2
) là nghiệm của HPT :
2x y 5 0 x 3
H 3;1
x 2y 5 0 y 1
+) Gọi B là điểm đối xứng với B qua (d
2
) thì B thuộc AC và H là trung
điểm của BB nên :
B' H B
B' H B
x 2x x 4
B' 4;3
y 2y y 3
+) Đờng thẳng AC đi qua C( -1 ; 3) và B(4 ; 3) nên có PT : y - 3 = 0
+) Tọa độ điểm A là nghiệm của HPT :
y 3 0 x 5
A ( 5;3)
3x 4y 27 0 y 3
+) Đờng thẳng qua AB có VTCP
AB 7; 4
, nên có PT :
x 2 y 1
4x 7y 1 0
7 4
0,25
0,5
0,25
2a
Đờng thẳng (d
1
) đi qua M
1
( 1; -4; 3) và có VTCP
1
u 0;2;1
Đờng thẳng (d
2
) đi qua M
2
( 0; 3;-2) và có VTCP
2
u 3;2;0
Do đó :
1 2
M M 1;7; 5
và
1 2
u ,u 2; 3;6
Suy ra
1 2 1 2
u ,u .M M 49 0
. Vậy (d
1
) và (d
2
) chéo nhau
0.5
2b
Lấy A( 1;
-
4 + 2t; 3 + t) thuộc (d
1
) và B(
-
3u; 3 + 2u;
-
2) thuộc (d
2
) .T
a có
:
AB 3u 1;7 2u 2t; 5 t
A,B là giao điểm của đờng vuông góc chung của (d
1
) và (d
2
) với hai
đờng đó
1
2
AB.u 0
14 4u 4t 5 t 0 u 1
9u 3 14 4u 4u 0 t 1
AB.u 0
Suy ra : A( 1; -2; 4) và B(3; 1; -2)
AB 2;3; 6
AB = 7
Trung điểm I của AB có tọa độ là : ( 2; -
1
2
; 1)
Mặt cầu (S) cần tìm có tâm I và bán kính là AB/2 và có PT :
2
2 2
1 49
x 2 y z 1
2 4
0,5
3
Số cách lấy 2 bi bất kì từ hai hộp bi là
: 52.25 =
1300
Số cách lấy để 2 viên bi lấy ra cùng màu là : 30x10+7x6+15x9 = 477
Xác suất để 2 bi lấy ra cùng màu là :
477
1300
0.5
0.5
Vb
3.0 đ
1
+) Tọa độ điểm B là nghiệm của HPT :
x 1
3x y 3 0
B 1;0
y 0
y 0
Ta nhận thấy đờng thẳng BC có hệ số góc
k =
3
, nên
0
ABC 60
. Suy ra
đờng phân giác trong góc B của
ABC có hệ số góc k =
3
3
nên có PT :
3 3
y x
3 3
()
Tâm I( a ;b) của đờng tròn nội tiếp tam giác ABC thuộc () và cách
trục Ox một khoảng bằng 2 nên : | b | = 2
+ Với b = 2 : ta có a =
1 2 3
, suy ra I=(
1 2 3
; 2 )
+ Với b = -2 ta có a =
1 2 3
, suy ra I = (
1 2 3
; -2)
Đờng phân giác trong góc A có dạng:y = -x + m ().Vì nó đi qua I
nên
+ Nếu I=(
1 2 3
; 2 ) thì m = 3 + 2
3
.
Suy ra : () : y = -x + 3 + 2
3
. Khi đó () cắt Ox ở A(3 + 2
3
. ; 0)
Do AC vuông góc với Ox nên có PT : x = 3 + 2
3
.
Từ đó suy ra tọa độ điểm C = (3 + 2
3
; 6 + 2
3
)
Vậy tọa độ trọng tâm G của tam giác ABC lúc này là :
4 4 3 6 2 3
;
3 3
.
+ Nếu I=(
1 2 3
; 2 ) thì m = -1 - 2
3
.
Suy ra : () : y = - x -1 - 2
3
. Khi đó () cắt Ox ở A(-1 - 2
3
. ; 0)
Do AC vuông góc với Ox nên có PT : x = -1 - 2
3
.
0.25
0.5
O
y
x A
B
C
60
Từ đó suy ra tọa độ điểm C = (-1 - 2
3
; -6 - 2
3
)
Vậy tọa độ trọng tâm G của tam giác ABC lúc này là :
1 4 3 6 2 3
;
3 3
.
Vậy có hai tam giác ABC thoả mãn đề bài và trọng tâm của nó là :
G
1
=
4 4 3 6 2 3
;
3 3
và G
2
=
1 4 3 6 2 3
;
3 3
0,25
2a
+ Đờng thẳng (d) đi qua M(0; -1; 0) và có VTCP
d
u 1;0; 1
+ Mp (P) có VTPT :
P
n 1;2;2
Mp (R) chứa (d) và vuông góc với (P) có VTPT :
R d P
n u ;n 2; 3;2
Thay x, y, z từ Pt của (d) vào PT của (P) ta có :
t - 2 - 2t + 3 = 0 hay t =1 . Suy ra (d) cắt (P) tại K(1; -1; -1)
Hình chiếu (d) của (d) trên (P) đi qua K và có VTCP :
d' R P
u n ;n 10;2; 7
Vậy (d) có PTCT :
x 1 y 1 z 1
10 2 7
0,25
0,25
2b
Lấy I(t; -1; -t) thuộc (d) , ta có :
d
1
= d(I, (P)) =
1 t
3
; d
2
= d(I, (Q)) =
5 t
3
Do mặt cầu tâm I tiếp xúc với (P0 và (Q) nên : R = d
1
= d
2
| 1 - t | = | 5 - t |
t = 3
Suy ra : R = 2/3 và I = ( 3; -1; -3 ) . Do đó mặt cầu cần tìm có PT là :
2 2 2
4
x 3 y 1 z 3
9
0,25
0,25
3. sai
Số cách chọn 5 quân bài trong bộ bài tú lơ khơ là :
52
5
C 2598960
Số cách chọn 5 quân bài trong bộ bài tú lơ khơ mà trong 5 quân bài đó
có đúng 3 quân bài thuộc 1 bộ là : 13.
4
3
C 52
Xác suất để chọn 5 quân bài trong bộ bài tú lơ khơ mà trong 5 quân bài
đó có đúng 3 quân bài thuộc 1 bộ là :
52
2598960
=
13
649740
0.5
0.5
. Ht
Cỏn b coi thi khụng gii thớch gỡ thờm.
trờng thpt hậu
lộc 2
đáp án đề thi thử đại học lần 1 năm học
200 9
-
201 0
Môn thi: toán
Thời gian.
ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 201 1
Môn: TOÁN (Thời gian : 180 phút)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I (2 điểm):
1).Khảo sát sự biến thi n