NHĨM WORD HĨA ĐỀ TỐN 77 SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH VĨNH LONG ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 CHUYÊN Năm học: 2021 - 2022 Mơn thi: TỐN Thời gian làm bài: 120 phút (Không kể thời gian phát đề) Câu (2,0 điểm) a) Cho biểu thức A = x 2x − x x x +1 − − với x > 0, x ≠ Rút gọn A chứng B = x −1 x − x x +1 minh B > A b) So sánh 24 + 26 10 Câu (1,0 điểm) Cho Parabol (P): y = x đường thẳng (d): y = ( m − 1) x + m + (m tham số) Tìm m để (d) cắt (P) điểm nằm phía trục tung Câu (1,5 điểm) a) Giải phương trình: 43 − x = x − x −1 x + x − y = b) Giải hệ phương trình: 2 y − y = x− y Câu (1,5 điểm) a) Chứng minh tổng bình phương số nguyên liên tiếp số phương b) Tìm nghiệm ngun dương phương trình: x y + xy + y = 32 x Câu (1,0 điểm) Cho hình vng ABCD điểm E cạnh BC biết AB = 4cm, BE = BC Tia Ax vng góc với AE A cắt tia CD F a) Tính diện tích ∆ AEF b) Gọi I trung điểm đoạn thẳng EF, tia AI cắt CD K Chứng minh: AE = KF CF Câu (2,0 điểm) Cho ( O ; R ) điểm M cho OM = 2R Kẻ tiếp tuyến MA, MB với ( O ) (A, B tiếp điểm) Trên đoạn thẳng AB lấy điểm I (Với AI < BI I khác A) Qua I vẽ dây CD cho IC = ID C thuộc cung nhỏ AB Tiếp tuyến ( O ) C cắt OI Q Chứng minh: a) Tứ giác OCQD nội tiếp đường tròn b) ∆ AMB tam giác c) OQ ⊥ MQ Câu (1,0 điểm) 3+ x 6− x + Cho số thực x thỏa mãn ≤ x ≤ Tìm giá trị lớn giá trị nhỏ biểu thức: T = x 3− x = = = = = = = = = = = = = = = = = = = Hết = = = = = = = = = = = = = = = = = = = https://www.facebook.com/groups/627287241235464 NHĨM WORD HĨA ĐỀ TỐN 78 HƯỚNG DẪN GIẢI CHI TIẾT Câu (2,0 điểm) x 2x − x x x +1 − − với x > 0, x ≠ Rút gọn A chứng B = x −1 x − x x +1 a) Cho biểu thức A = minh B > A b) So sánh 24 + 26 10 Lời giải Với x > 0, x ≠ Ta có: A = a) = B = x x + − = x +1 ( b) Ta co: ( 24 + 26 ) ( ( ) x x −1 x − x −1 x x −1 ( ) x x −1 x − x +1 − = = x −1 x −1 x −1 x −1 ) −1 = x +1 x − x +1 Ta lại có: B − A = x − x − ⇒ B > A (đpcm) )( x 2x − x − = x −1 x − x x +1 ) ( x− x −1 = x − x + = ) x +1 −1 = x − x ( ) x − > với x > 0, x ≠ = 24 + 26 + 24.26 = 50 + 624 < 50 + 625 = 100 = 10 ⇒ 24 + 26 < 10 Câu (1,0 điểm) Cho Parabol (P): y = x đường thẳng (d): y = ( m − 1) x + m + (m tham số) Tìm m để (d) cắt (P) điểm nằm phía trục tung Lời giải 2 Xét PT hoành độ giao điểm: x = ( m − 1) x + m + ⇔ x − ( m − 1) x − m − = ( *) ( ) 2 Ta có: ∆ = ( m − 1) − ( −m − ) = m − 2m + + 4m + 16 = m + 2m + + 16 = ( m + 1) + 16 > ∀ m 2 ⇒ pt (*) ln có nghiệm phân biệt hay (d) cắt (P) điểm phân biệt ∀ m x1 + x2 = m − Theo Vi-et ta có: x1 x2 = − m − Để (d) cắt (P) điểm nằm phía trục tung pt (*) ln có nghiệm phân biệt trái dấu hay: −m − < ⇔ m > − Câu (1,5 điểm) a) Giải phương trình: 43 − x = x − x −1 x + x − y = b) Giải hệ phương trình: 2 y − y = x− y Lời giải a) ĐK: 43 − x ≥ ⇔ x ≤ 43 x − ≥ x ≥ 1 ≤ x ≤ 43 1 ≤ x ≤ 43 ⇔ ⇔ ⇔x=7 Phương trình ⇔ ⇔ 2 x − x + = ( ) ( ) 43 − x = x − x + x − x − 42 = 43 − x = x − ( ) https://www.facebook.com/groups/627287241235464 NHÓM WORD HÓA ĐỀ TOÁN 79 b) ĐK: x ≠ y 2x 2 x + x − y = −1 2 x ( x − y ) + x = −1( x − y ) ( 1) ⇔ Hệ phương trình ⇔ 4 y ( x − y ) − y = ( x − y ) ( ) 4 y − y = x− y Cộng vế với vế (1) với (2) ta được: x ( x − y ) + x + y ( x − y ) − y = ( x − y ) x = y ( KTM ) x − y = ⇔ 2( x − y) ( x + 2y) = ⇔ ⇔ x + 2y = x = −2 y ( TM ) −2 y −1 −7 = ⇔ y= ⇒x = Với x = −2 y ⇒ −2 y + −3 y 12 −7 x = ( TM ) Thử lại ta thấy y = 12 −7 x = Vậy hệ pt có nghiệm là: y = 12 Câu (1,5 điểm) a) Chứng minh tổng bình phương số nguyên liên tiếp số phương b) Tìm nghiệm ngun dương phương trình: x y + xy + y = 32 x Lời giải a) Giả sử số nguyên liên tiếp là: x ; x + 1; x + 2; x + 3; x + 4; x + ( x ∈¢ ) Ta có: x + ( x + 1) + ( x + ) + ( x + 3) + ( x + ) + ( x + ) 2 2 = x + x + x + + x + x + + x + x + + x + x + 16 + x + 10 x + 25 = x + x + x + + x + x + + x + x + + x + x + 16 + x + 10 x + 25 = x + 30 x + 55 ( ) 2 b) Ta có: x y + xy + y = 32 x ⇔ y x + x + = 32 x ⇔ y = 32 x ( x + 1) Do: x ; y ∈¢ + ⇒ 32 x M( x + 1) ⇒ 32 x ( x + ) M( x + 1) ⇒ 32 x + 64 x + 32 − 32 M( x + 1) ⇒ 32 M( x + 1) 2 ⇒ ( x + 1) ∈ U ( 32 ) = { 1; 2; 4;8;16;32} ⇒ ( x + 1) ∈ { 4;16 } (Vì: 2 ( x + 1) 2 > số phương) x = ( TM ) 2 ⇒ y = ( TM ) TH1: ( x + 1) = ⇔ x + x − = ⇔ x = −3 ( KTM ) x = ( TM ) 2 ⇒ y = ( TM ) TH2: ( x + 1) = 16 ⇔ x + x − 15 = ⇔ x = −5 ( KTM ) Vậy nghiệm pt là: ( x; y ) = ( 1;8 ) ; ( 3;6 ) Câu (1,0 điểm) Cho hình vng ABCD điểm E cạnh BC biết AB = 4cm, BE = cắt tia CD F https://www.facebook.com/groups/627287241235464 BC Tia Ax vng góc với AE A NHĨM WORD HĨA ĐỀ TỐN 80 a) Tính diện tích ∆ AEF b) Gọi I trung điểm đoạn thẳng EF, tia AI cắt CD K Chứng minh: AE = KF CF Lời giải a) Ta có: ¶A1 = ·A3 (cùng phụ với ·A ) ¶A1 = ·A3 ( cmt ) ∆ ABE ∆ ADF ⇒ ∆ ABE = ∆ ADF ( g c g ) Xét có: o ¶ ¶ B = D = 90 gt ( ) ⇒ AD = AE (2 cạnh tương ứng) ⇒ ∆ AEF ⊥ cân A 3 Mà: BE = BC (gt) ⇒ BE = ×4 = ( cm ) 4 AE AF 5.5 2 2 = = 12,5 cm Theo Pi-Ta-Go ta có: ⇒ AE = AB + BE = + = ( cm ) ⇒ S AEF = 2 b) Vì: ∆ AEF ⊥ cân A (cmt) ⇒ ¶E = ¶F1 = 45o ( ) Mà: FI = EI ( gt ) ⇒ AI trung trực EF ⇒ AI ⊥ EF ⇒ ∆ IAE ; ∆ IAF cân I ⇒ FI = EI = AI o ¶ ¶ Xét ∆ IKF ∆ CEF có: I = C = 90 ⇒ ∆ IKF ∽ ∆ CEF ( g g ) ⇒ IF = KF ⇒ KF CF = IF EF CF EF ¶F chung ⇒ KF CF = IF EF = IF ( IE ) = IE = IE + IA2 = AE (đpcm) https://www.facebook.com/groups/627287241235464 NHĨM WORD HĨA ĐỀ TỐN 81 Câu (2,0 điểm) Cho ( O ; R ) điểm M cho OM = 2R Kẻ tiếp tuyến MA, MB với ( O ) (A, B tiếp điểm) Trên đoạn thẳng AB lấy điểm I (Với AI < BI I khác A) Qua I vẽ dây CD cho IC = ID C thuộc cung nhỏ AB Tiếp tuyến ( O ) C cắt OI Q Chứng minh: a) Tứ giác OCQD nội tiếp đường tròn b) ∆ AMB tam giác c) OQ ⊥ MQ Lời giải a) Ta có: IC = ID ( gt ) ⇒ OI ⊥ CD I (Đường kính vng góc với dây cung qua trung điểm) ⇒ OI đường trung trực CD ⇒ OQ đường trung trực CD ⇒ QD = QC Xét ∆ DOQ ∆ COQ có: QD = QC ( cmt ) ; OC = OD = R ( gt ) ; OQ chung ⇒ ∆ DOQ = ∆ COQ ( c.c.c ) ⇒ ·OCQ = ·ODQ = 90o ⇒ ·OCQ + ·ODQ = 180o ⇒ Y DOCQ nội tiếp OA R = = ⇒ ·M1 = 30o b) Xét ∆ AOM ⊥ A có: sin ·M1 = OM R Gọi H giao điểm AB OM ta có: MA = MB (Tính chất tiếp tuyến cắt nhau) Mà: OA = OB = R ⇒ OM đường trung trực AB ⇒ OM ⊥ AB H ⇒ ·HAM = 90o − ·M = 90o − 30o = 60o hay ·BAM = 60o Mặt khác: ∆ ABM cân A (Vì: MA = MB) ⇒ ∆ ABM (đpcm) c) Theo hệ thức lượng tam giác vng ta có: OI OQ = OD = R OI OM ⇒ OI OQ = OH OM ⇒ = 2 OH OQ OH OM = OA = R Xét ∆ OHI ∆ OQM có: OI = OM ( cmt ) ; ¶O chung OH OQ ⇒ ∆ OHI ∽ ∆ OQM ( c g c ) ⇒ ·OQM = ·OHI = 90o ⇒ OQ ⊥ MQ (đpcm) Câu (1,0 điểm) https://www.facebook.com/groups/627287241235464 NHĨM WORD HĨA ĐỀ TỐN 82 Cho số thực x thỏa mãn ≤ x ≤ Tìm giá trị lớn giá trị nhỏ biểu thức: T = 3+ x 6− x + x 3− x Lời giải Ta có: T = ( + x − x ( + x ) ( − x ) + ( − x ) x − x2 + 6x − x2 2x2 − x − + = = = x 3− x x ( − x) 3x − x x − 3x ) ⇒ T x − x = x − x − ⇔ Tx − 3Tx − x + x + = ⇔ ( T − ) x + ( − 3T ) x + = ( *) ( 2 Có: ∆ = ( − 3T ) − ( T − ) = 36 − 36T + 9T − 36T + 72 = T − 8T + 12 ) T ≤ 2 Để phương trình (*) có nghiệm ∆ ≥ ⇔ T − 8T + 12 ≥ ⇔ T − 8T + 12 ≥ ⇔ T ≥ x2 − 6x − Với T = ⇔ = ⇔ x − x − = x − x ⇔ − = (vô lý) x − 3x x2 − 6x − Với T = ⇔ = ⇔ x − x − = x − 18 x ⇔ x − 12 x + = ⇔ x = ( TM ) 2 x − 3x ⇒ TMin = ⇔ x = 2 x − x − 13 Vì: ≤ x ≤ Thay x = vào T ta được: T = = = 6,5 ⇔ 2 x − x − = 13 x − x x − 3x x = ⇔ x − 12 x − 18 = 13x − 39 x ⇔ x − 27 x + 18 = ⇔ x − x + = ⇔ ( TM ) x = x =1 ⇒ TMax = 6,5 ⇔ x = ( ) ( https://www.facebook.com/groups/627287241235464 ) ( ) ... ứng) ⇒ ∆ AEF ⊥ cân A 3 Mà: BE = BC (gt) ⇒ BE = ×4 = ( cm ) 4 AE AF 5.5 2 2 = = 12,5 cm Theo Pi-Ta-Go ta có: ⇒ AE = AB + BE = + = ( cm ) ⇒ S AEF = 2 b) Vì: ∆ AEF ⊥ cân A (cmt) ⇒ ¶E = ¶F1 = 45o... ∀ m 2 ⇒ pt (*) ln có nghiệm phân biệt hay (d) cắt (P) điểm phân biệt ∀ m x1 + x2 = m − Theo Vi-et ta có: x1 x2 = − m − Để (d) cắt (P) điểm nằm phía trục tung pt (*) ln có nghiệm phân biệt