1. Trang chủ
  2. » Giáo Dục - Đào Tạo

đề thi thử đại học lần 1 môn toán khối a 2014 - thpt nghi sơn

7 760 30

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 125,54 KB

Nội dung

www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 1 SỞ GIÁO DỤC & ĐÀO TẠO THANH HÓA TRƯỜNG THPT NGHI SƠN ĐỀ THI THỬ ĐH LẦN I NĂM HỌC 2013 – 2014 Môn: TOÁN ; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm Cho hàm số 3 2 2 3 3 3( 1) y x mx m x m m = − + − − + (1) 1. Kh ả o sát s ự bi ế n thiên và v ẽ đồ th ị khi m= 0 . 2. Ch ứ ng minh r ằ ng hàm s ố (1) luôn có c ự đạ i,c ự c ti ể u v ớ i m ọ i m.Tìm m để các đ i ể m c ự tr ị c ủ a hàm s ố (1) cùng v ớ i đ i ể m I(1;1), t ạ o thành m ộ t tam giác có bán kính đườ ng tròn ngo ạ i ti ế p b ằ ng 5 . Câu II (2,0 điểm) 1. Gi ả i ph ươ ng trình: 2 3 tan 2 3 sin (1 tan tan ) cos 2 x x x x x − − = + . 2. Gi ả i b ấ t ph ươ ng trình: 2 2 2 3 2 x x x x + + − − ≤ − Câu III (1,0 điểm) Tính nguyên hàm sau: 3 3 3 cot x I dx sin x sin x sin x = − ∫ Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đ áy ABCD là hình vuông c ạ nh a, SA vuông góc v ớ i đ áy. G ọ i E là trung đ i ể m c ủ a BC góc gi ữ a SC và m ặ t ph ẳ ng (SAB) b ằ ng 30 0 . Hãy tính th ể tích kh ố i chóp S.ABCD và kho ả ng cách gi ữ a hai đườ ng th ẳ ng DE và SC thao a. Câu V (1,0 điểm) Cho a, b, c là các s ố th ự c d ươ ng tho ả mãn 1. abc = Ch ứ ng minh r ằ ng: 1 1 1 ( 1 )( 1 )( 1 ) 1 a b c b c a − + − + − + ≤ PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1.Trong m ặ t ph ẳ ng to ạ độ ,Oxy Cho tam giác ABC vuông cân t ạ i A.Bi ế t c ạ nh huy ề n n ằ m trên đườ ng th ẳ ng (d) 7 31 0 x y + − = , điểm 5 (1; ) 2 N thuộc đường thẳng AC,điểm M(2 ;-3) thuộc đường thẳng AB. Xác định tọa độ các đỉnh của tam giác ABC.biết rằng điểm A có hoành độ âm. 2. Trong không gian với hệ trục tọa độ Oxyz cho điểm M(1;0;2), N(-1;-1;0),P(2 ;5 ;3) Viết phương trình mặt phẳng (R) đi qua M, N sao cho khoảng cách từ P đến (R) lớn nhất. Câu VII.a (1,0 điểm) Tìm số hạng không chứa x trong khai triển 2 3 2 , 0 n x x x   − ≠     biết rằng 1 2 3 28 2 1 2 1 2 1 2 1 2 1 n n n n n C C C C + + + + + + + + = − . B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy,cho điểm M(-3;1) và đường tròn 2 2 ( ) : 2 6 6 0 C x y x y + − − + = .Gọi A,B là tiếp điểm của tiếp tuyến kẻ từ M đến ( C).Tìm tọa độ điểm H là hình chiếu của M lên đường thẳng AB. 2. Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh bằng a,góc A bằng 0 60 .Góc giữa mặt phẳng (B’AD) và mặt đáy bằng 0 30 .Tính khoảng cách từ đường thẳng BC tới mặt phẳng (B’AD) . Câu VII.b (1,0 điểm) Giải hệ phương trình: 2 1 2 1 2 2log ( 2 2) log ( 2 1) 6 log ( 5) log ( 4) 1 x y x y xy x y x x y x − + − +  − − + + + − + =   + − + =   Hết www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 2 ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2013-2014 MÔN THI: TOÁN : Khối A Câu Nội Dung Điểm CâuI Cho hàm số 3 2 2 3 3 3( 1) y x mx m x m m = − + − − + (1) I.1 Khi m=0 . Kh ả o sát s ự bi ế n thiên và v ẽ đồ th ị hàm s ố 3 3 y x x = − HS t ự làm: 1 điểm I.2 Ch ứ ng minh r ằ ng hàm s ố (1) luôn có c ự đạ i,c ự c ti ể u v ớ i m ọ i m.Tìm m để các đ i ể m c ự tr ị c ủ a hàm s ố (1)cùng v ớ i đ i ể m I(1;1), t ạ o thành m ộ t tam giác có bán kính đườ ng tròn ngo ạ i ti ế p b ằ ng 5 . 2 2 2 2 ) ' 3 6 3( 1) ) ' 0 3 6 3( 1) 0. y x mx m y x mx m + = − + − + = ⇔ − + − = Ta có ' 1 0 ' 0 m y ∆ = > ∀ ⇒ = có hai nghi ệm phân biệt với mọi m. suy ra hàm số luôn có CĐ,CT +) Điểm CĐ A(m-1;2-2m),CT B(m+1;-2-2m) +) pt AB : 2x+y=0, nên A,B,I lập thành một tam giác. Với 5, 2 5 R AB= = nên tam giác ABC vuông tại I với AB là đường kính Khi đó ycbt tương đương với 2 2 2 2 3 10 4 6 0 5 1 m IA IB AB m m m  =  + = ⇔ + − = ⇔  = −  Kết luận: 3 5 m = ho ặ c m= -1 1 điểm 0.25 0.25 0.25 0.25 CâuII www.MATHVN.com II.1 Gi ả i ph ươ ng trình: 2 3 tan 2 3 sin (1 tan tan ) cos 2 x x x x x − − = + . Đ K: cos 0 2 cos 0 2 2 x x k x x k π π π π ≠   ≠ +   ⇔   ≠   ≠ +   2 2 sin sin 3 2 tan 2 3 sin 1 cos cos cos 2 cos cos sin sin 3 2 2 tan 2 3 sin cos cos cos 2 x x x x x x x x x x x x x x x x     − − = +         +   ⇔ − − =       2 2 cos( ) 2 3(1 tan ) tan 2 3 sin cos cos 2 cos 2 3(1 tan ) tan 2 3 sin cos cos 2 x x x x x x x x x x x x x   −   ⇔ + − − =           ⇔ + − − =       1 điểm 0.25 0.25 www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 3 2 2 tan 3 3(1 tan ) tan 2 3 tan 3 tan 2tan 3 0 1 tan 3 .tan 3 3 1 .tan 6 3 x x x x x x x x x k x x k π π π π  =  + − − = ⇔ − + = ⇔  = −   = ⇔ = + = − ⇔ = − + 0.25 0.25 II.2 Giải bất phương trình: 2 2 2 3 2 x x x x + + − − ≤ − - www.DeThiThuDaiHoc.com Đk: 2 3 x ≥ 2 2( 2) 2 3 2 2 0 ( 2)( 1) 0 2 3 2 2 ( 2) ( 1) 0 2 3 2 x x x x x x x x x x x x x − − + − − + − − ≤ ⇔ + − + ≤ + + − −   ⇔ − + + ≤   + + −   Ta có 2 ( ) ( 1) 2 3 2 f x x x x − = + + + + − ( ) ( ) 2 2 1 3 2( 2 3 2)' 2 3 2 '( ) 1 1 0 2 3 2 2 3 2 2 ( ) ( ) 0 3 x x x x f x x x x x f x f + + + − + − = + = + > + + − + + − ⇒ ≥ > V ậ y tâp nghi ệ m c ủ a BPT là 2 ;2 3 S   =     1 điểm 0.25 0.25 0.25 0.25 Câu III www.DeThiThuDaiHoc.com 1 điểm Tính nguyên hàm sau: 3 3 3 cot x I dx sin x sin x sin x = − ∫ …………………………………………………………………………………………… 3 3 3 3 2 3 2 3 32 2 3 3 7 3 2 3 10 cot x cot x I dx dx 1 sin x sin x sin x sin x 1 sin x cot x dx sin x cot x cot x d(cot x) cot xd(cot x) cot x 3 cot x C 10 = = − − = − = − = − = + ∫ ∫ ∫ ∫ ∫ 0.25 0.25 0.25 0.25 Câu IV IV Cho hình chóp S.ABCD có đ áy ABCD là hình vuông c ạ nh a , SA vuông góc v ớ i đ áy. G ọ i E là trung đ i ể m c ủ a BC góc gi ữ a SC và m ặ t ph ẳ ng (SAB) b ằ ng 30 0 . Hãy tính th ể tích kh ố i chóp S.ABCD và kho ả ng cách gi ữ a hai đườ ng th ẳ ng DE và SC thao a . www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 4 H T M K B E C A D I S Vì ( ) CB AB CB SAB CB SA ⊥  ⇒ ⊥ ⇒  ⊥  SB là hình chiếu của SC trên mp(SAB)    0 0 ( .( )) ( , ) 30 .cot30 3 2 SC SAB SC SB CSB SB BC a SA a ⇒ = = = ⇒ = = ⇒ = Vậy thể tích hình chóp SABCD là: 3 . 1 2 . ( ) 3 3 S ABCD ABCD a V SA S dvdt = = T ừ C d ự ng / / , / /( ) 2 ( , ) ( ,( ) a CI DE CE DI DE SCI d DE SC d DE CSI ⇒ = = ⇒ = T ừ A k ẻ AK CI ⊥ c ắ t ED t ạ i H, c ắ t CI t ạ i K Ta có ( ) ( ) ( ),( ) ( ) AK CI CI SAK SCI SAK SCI SAK SK SA CI ⊥  ⇒ ⊥ ⇒ ⊥ ∩ =  ⊥  Trong mp(SAK) k ẻ ( ) ( , ) ( ,( ) HT AK HT SCI d DE SC d H SCI HT ⊥ ⇒ ⊥ ⇒ = = Ta có . 3 . . 5 CD AI a AK CI CD AI AK CI = ⇒ = = Kẻ 1 / / ( ) 3 5 HK KM a KM AD M DE HK AK HA AD ∈ ⇒ = ⇒ = = Lại có  . 38 sin 19 38 ( , ) 19 SA HT SA HK SAK HT a SK HK SK d ED SC a = = ⇒ = = ⇒ = 0.25 0.25 0.25 0.25 Câu V www.MATHVN.com V Cho a, b, c là các số thực dương thoả mãn 1. abc = Chứng minh rằng: 1 1 1 ( 1 )( 1 )( 1 ) 1 (1) a b c b c a − + − + − + ≤ …………………………………………………………………………………………… Do 1. abc = nên tồn tại 3 số dương x,y,z sao cho , , x y z a b c y z x = = = (1) ( )( )( ) x y z y z x z x y xyz ⇔ − + − + − + ≤ (2) Không m ất tính tổng quát giả sử x= max{x,y,z} khi đó 0, 0 x y z x z y − + ≥ − + ≥ • Nếu 0 z x y − + < thì (2) luôn đúng. • Nếu 0 z x y − + ≥ 0.25 0.25 0.25 www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 5 Ta có 2 2 2 2 2 2 ( ) ( )( ) 4 ( ) ( )( ) 4 ( ) ( )( ) 4 x y z y z x x y z y z x x y z x z x y y z x z x y y x y z z x y x y z z x y z − + + − + − + − + ≤ = − + + − + − + − + ≤ = − + + − + − + − + ≤ = T ừ đ ó ta có (2) đượ c ch ứ ng minh. D ấ u ‘=’ x ả y ra khi x=y=z hay a=b=c 0.25 Câu VIa VIa.1 Trong m ặ t ph ẳ ng to ạ độ ,Oxy Cho tam giác ABC vuông cân t ạ i A . Bi ế t c ạ nh huy ề n n ằ m trên đườ ng th ẳ ng (d) x +7 y -31=0, đ i ể m 5 (1; ) 2 N thu ộ c đườ ng th ẳ ng AC, đ i ể m M (2 ;-3) thu ộ c đườ ng th ẳ ng AB. Xác đị nh t ọ a độ các đỉ nh c ủ a tam giác ABC bi ế t r ằ ng đ i ể m A có hoành độ âm.  2 2 0 2 2 2 2 2 2 ( ): ( 2) ( 3) 0( 0) 7 cos( ) cos45 1 7 4 3 12 7 12 0 3 4 AB a x b y a b a b ABC a b a b a ab b a b − + + = + > + = = + + = −  ⇔ − − = ⇔  =  TH1. 3 4 :4 3 1 0 :3 4 7 0 ( 1;1), ( 4;5), (3;4) a b AB x y AC x y A B C = ⇒ + + = ⇒ − + = ⇒ − − TH2. 23 3 1 9 4 3 :3 4 18 0 :4 3 0 (4; ), (10;3), ( ; ) 2 2 2 2 a b AB x y AC x y A B C= − ⇒ − − = ⇒ + − = ⇒ − − (lo ạ i) V ậ y các đỉ nh c ủ a tam giác ABC là : ( 1;1), ( 4;5), (3;4) A B C − − 1 điểm 0.25 0.25 0.25 0.25 VIa.2 . Trong không gian v ớ i h ệ tr ụ c t ọ a độ Oxyz cho đ i ể m M(1;0;2), N(-1;-1;0),P(2 ;5 ;3).Vi ế t ph ươ ng trình m ặ t ph ẳ ng (R) đ i qua M, N sao cho kho ả ng cách t ừ P đế n (R) l ớ n nh ấ t. pt (MN) 1 2 2 2 x t y t z t = +   =   = +  G ọ i H là hình chi ế u c ủ a P trên (MN) suy ra H(3 ;1 ;4) G ọ i K là hình chi ế u c ủ a P trên (R) nên ( ,( )) d P R PK = ta có PK PH ≤ v ậ y PK max khi K trùng v ớ i H H N M K P (R) qua H(3 ;1 ;4) nhân (1; 4;1) PH −  làm VTPT suy ra (R) x-4y+z-3=0 1 điểm 0. 25 0.25 0.25 0.25 www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 6 VIIa Tìm số hạng không chứa x trong khai triển 2 3 2 , 0 n x x x   − ≠     biết rằng 1 2 3 28 2 1 2 1 2 1 2 1 2 1 n n n n n C C C C + + + + + + + + = − . …………………………………………………………………………………………… Ta có 1 2 3 28 2 1 2 1 2 1 2 1 2 1 n n n n n C C C C + + + + + + + + = − 2 2 1 2 2 1 28 2 1 2 1 2 1 2 1 2 1 n n n n n n n n C C C C − − + + + + + + + + + = − 0 1 2 2 2 1 28 2 1 2 1 2 1 2 1 2 1 2 1 29 ( ) 2.2 (1 1) 2 14 n n n n n n n n C C C C C n + + + + + + + ⇒ + + + + + = ⇔ + = ⇔ = ( ) ( ) ( ) ( ) 14 14 14 2 2 14 3 3 0 14 14 ( ) 2 14 2 3 1 14 14 3 2 2 2 2 1 k k k k k k k k k k k k k x C x x x T C x C x x − = − − − + − +     − = −           = − = −     ∑ Số hạng không chứa x khi 14 ( ) 2 0 2 3 k k k − − + = ⇔ = Vậy ( ) 12 2 3 14 2 T C= 1 điểm 0.25 0.25 0.25 0.25 Câu VIb www.DeThiThuDaiHoc.com VIb.1 Trong m ặt phẳng toạ độ Oxy,cho điểm M(-3;1) và đường tròn 2 2 ( ) : 2 6 6 0 C x y x y + − − + = .Gọi A,B là tiếp điểm của tiếp tuyến kẻ từ M đến ( C).Tìm tọa độ điểm H là hình chiếu của M lên đường thẳng AB. ………………………………………………………………………………………………… 2 2 ( ) :( 1) ( 3) 4 C x y − + − = Gọi 1 1 2 2 ( ; ), ( ; ) A x y B x y Tiếp tuyến tại A,B có phương trình 1 1 2 2 ( 1)( 1) ( 3)( 3) 4 ( 1)( 1) ( 3)( 3) 4 x x y y x x y y − − + − − =   − − + − − =  Vì hai tiếp tuyến cùng đi qua M(-3;1) nên 1 1 2 2 ( 3 1)( 1) (1 3)( 3) 4 ( 3 1)( 1) (1 3)( 3) 4 x y x y − − − + − − =   − − − + − − =  Nên (AB) 2x+y-3=0 H là hình chiếu của M trên AB nên pt (MH): x-2y+5=0 Suy ra 1 13 ( ; ) 5 5 H 1điểm 0.25 0.25 0.25 0.25 VIb.2 2. Cho h ình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh bằng a,góc A bằng 0 60 .Góc giữa mặt phẳng (B’AD) và mặt đáy bằng 0 30 .Tính khoảng cách từ đường thẳng BC tới mặt phẳng (B’AD) . …………………………………………………………………………………………… 1điểm . www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 7 K B' C' A' D' B C A I D Gọi I là trung điểm của AD,K là hình chiếu của B trên B’I, vì  0 60 A ABD = ⇒ ∆ đều cạnh a. 0 ( ') ' 30 ' BI AD BIB AD B IB BB AD ⊥  ⇒ ⊥ ⇒ ∠ =  ⊥  0 3 ' .tan30 2 2 a a BI BB BI = ⇒ = = Do / / / /( ' ) ( ,( ' ) ( ,( ' ) BC AD BC B AD d BC B AD d b B AD ⇒ ⇒ = Vì ' ( ' ) BK B I BK B AD BK AD ⊥  ⇒ ⊥  ⊥  Xét tam giác vuông B’BI tại B ta có 2 2 2 1 1 1 3 3 ( .( ' ) ' 4 4 a a BK d BC B AD BK BI BB = + ⇒ = ⇒ = 0.25 0.25 0.25 0.25 VIIb Giải hệ phương trình: 2 1 2 1 2 2log ( 2 2) log ( 2 1) 6 log ( 5) log ( 4) 1 x y x y xy x y x x y x − + − +  − − + + + − + =   + − + =   …………………………………………………………………………………………… + Điều kiện: 2 2 2 0, 2 1 0, 5 0, 4 0 ( ) 0 1 1, 0 2 1 xy x y x x y x I x y  − − + + > − + > + > + >  < − ≠ < + ≠  1 2 1 2 1 2 1 2 2log [(1 )( 2)] 2log (1 ) 6 log ( 2) log (1 ) 2 0 (1) ( ) log ( 5) log ( 4) = 1 log ( 5) log ( 4) = 1(2). x y x y x y x y x y x y x I y x y x − + − + − + − + − + + − = + + − − =     ⇔ ⇔   + − + + − +     Đặt 2 log (1 ) y x t + − = thì (1) trở thành: 2 1 2 0 ( 1) 0 1. t t t t + − = ⇔ − = ⇔ = V ớ i 1 t = ta có: 1 2 1(3). x y y x − = + ⇔ = − − Th ế vào (2) ta có: 2 1 1 1 4 4 log ( 4) log ( 4) = 1 log 1 1 2 0 4 4 x x x x x x x x x x x x − − − − + − + − + − + ⇔ = ⇔ = − ⇔ + = + + 0 2 x x =  ⇔  = −  . Suy ra: 1 1 y y = −   =  . + Ki ể m tra th ấ y ch ỉ có 2, 1 x y = − = tho ả mãn đ i ề u ki ệ n trên. V ậ y h ệ có nghi ệ m duy nh ấ t 2, 1 x y = − = . 1 điểm 0.25 0.25 0.25 0.25 . www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 1 SỞ GIÁO DỤC & ĐÀO TẠO THANH H A TRƯỜNG THPT NGHI SƠN ĐỀ THI THỬ ĐH LẦN I NĂM HỌC 2 013 . www.MATHVN.com – Toán học Việt Nam www.DeThiThuDaiHoc.com 2 ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2 013 -2 014 MÔN THI: TOÁN : Khối A Câu Nội Dung Điểm CâuI

Ngày đăng: 07/03/2014, 01:19

HÌNH ẢNH LIÊN QUAN

IV Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a, SA vng góc với đ áỵ G ọi E là - đề thi thử đại học lần 1 môn toán khối a 2014 - thpt nghi sơn
ho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a, SA vng góc với đ áỵ G ọi E là (Trang 3)
⊥  SB là hình chiếu của SC trên mp(SAB) - đề thi thử đại học lần 1 môn toán khối a 2014 - thpt nghi sơn
l à hình chiếu của SC trên mp(SAB) (Trang 4)
Gọ iH là hình chiếu của P trên (MN) suy ra H(3 ;1 ;4) - đề thi thử đại học lần 1 môn toán khối a 2014 - thpt nghi sơn
i H là hình chiếu của P trên (MN) suy ra H(3 ;1 ;4) (Trang 5)
Gọi I là trung điểm của AD,K là hình chiếu củ aB trên B’I, vì A= 600 ⇒ ∆ABD đều cạn hạ - đề thi thử đại học lần 1 môn toán khối a 2014 - thpt nghi sơn
i I là trung điểm của AD,K là hình chiếu củ aB trên B’I, vì A= 600 ⇒ ∆ABD đều cạn hạ (Trang 7)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN